/usr/share/doc/python-gamera.toolkits.ocr/html/usermanual.html is in python-gamera.toolkits.ocr 1.2.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 | <?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.12: http://docutils.sourceforge.net/" />
<title>OCR Toolkit User's Manual</title>
<link rel="stylesheet" href="default.css" type="text/css" />
</head>
<body>
<div class="document" id="ocr-toolkit-user-s-manual">
<h1 class="title">OCR Toolkit User's Manual</h1>
<p><strong>Last modified</strong>:</p>
<div class="contents topic" id="contents">
<p class="topic-title first">Contents</p>
<ul class="simple">
<li><a class="reference internal" href="#overview" id="id5">Overview</a></li>
<li><a class="reference internal" href="#using-the-script-ocr4gamera-py" id="id6">Using the script <tt class="docutils literal">ocr4gamera.py</tt></a></li>
<li><a class="reference internal" href="#using-hocr-format-as-input-or-output" id="id7">Using hOCR format as input or output</a></li>
<li><a class="reference internal" href="#writing-custom-scripts" id="id8">Writing custom scripts</a></li>
</ul>
</div>
<p>This documentation is for those who want to use the toolkit
for OCR, but are not interested in extending the toolkit itself.</p>
<div class="section" id="overview">
<h1><a class="toc-backref" href="#id5">Overview</a></h1>
<p>The toolkit provides the functionality to segment an image page into
text lines, words and characters, to sort them in reading-order,
and to generate an output string.</p>
<p>Before you can use the OCR toolkit, you must first train characters
from sample pages, which will then be used by the toolkit for classifying
characters:</p>
<img alt="images/overview.png" src="images/overview.png" />
<p>Hence the proper use of this toolkit requires the following two steps:</p>
<ul class="simple">
<li>training of sample characters on representative document images.
This step is interactive and is done with the Gamera GUI, as described
in the <a class="reference external" href="http://gamera.sourceforge.net/doc/html/training_tutorial.html">Gamera training tutorial</a></li>
<li>recognition of documents with the aid of this training data.
This step usually runs automatically without user interaction.
For this purpose, the tools from the present toolkit can be used.</li>
</ul>
<p>There are two options to use this toolkit: you can either use the
script <tt class="docutils literal">ocr4gamera.py</tt> as provided by the toolkit, or you can build your
own recognition scripts with the aid of the python library functions
provided by the toolkit. Both alternatives are described below.</p>
</div>
<div class="section" id="using-the-script-ocr4gamera-py">
<h1><a class="toc-backref" href="#id6">Using the script <tt class="docutils literal">ocr4gamera.py</tt></a></h1>
<p>The <em>ocr4gamera.py</em> script takes an image and already trained data and
segments the picture into single glyphs. The training-data is used to
classify those glyphs and converts them into strings. The final text is
written to standard-out or can optionally be stored in a textfile. Also
a word by word correction can be performed on the recognized text.</p>
<p>The end user application <em>ocr4gamera.py</em> will be installed to <tt class="docutils literal">/usr/bin</tt>
unless you habe explicitly chosen a different location. It can be either
be applied to a <em>single</em> image with the following typical call:</p>
<pre class="literal-block">
ocr4gamera.py x <traindata> --deskew --automatic_group -o <outfile> <imagefile>
</pre>
<p>or simultaneously on <em>multiple</em> images with the following typical call:</p>
<pre class="literal-block">
ocr4gamera.py x <traindata> --deskew --automatic_group -od <outdir> <imagefile1> <imagefile2> ...
</pre>
<p>Note that in the latter case an output <em>directory</em> must be given, into which
the recognised texts will be written for each <em><imagefile></em> as
<em><outdir>/`basename <imagefile>`.txt</em>.
Strictly speaking, the call modus for multiple image files is redundant,
because the same result can be achieved by calling <em>ocr4gamera.py</em> for each
image file separately, but it can speed up the recognition because the
training data only needs to be loaded once.</p>
<p>The options <em>--deskew</em> and <em>--automatic_group</em> in the above examples
are optional, but useful in most cases (see below). The complete synopsis
of the script is:</p>
<pre class="literal-block">
ocr4gamera.py -x <trainingdata> [options] <imagefile>
</pre>
<p>Options can be in short (one dash, few characters) or long form (two dashes,
string). When called with <tt class="docutils literal"><span class="pre">-h</span></tt>, <tt class="docutils literal"><span class="pre">--help</span></tt> or an invalid option,
a usage message will be printed. The other options are:</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">-x</span></tt> <em>trainingdata</em>, <tt class="docutils literal"><span class="pre">--xml-file</span></tt>=<em>trainingdata</em></dt>
<dd>This option is required. <em>trainingdata</em> must be an xml file created
with <a class="reference external" href="http://gamera.sourceforge.net/doc/html/training_tutorial.html">Gamera's training dialog</a>.</dd>
</dl>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">-k</span></tt> <em>k</em>, <tt class="docutils literal"><span class="pre">--k=</span></tt>=<em>k</em></dt>
<dd>Number of neighbors used by kNN classifier (default is <em>k</em> = 1).</dd>
<dt><tt class="docutils literal"><span class="pre">-o</span></tt> <em>outfile</em>, <tt class="docutils literal"><span class="pre">--output</span></tt>=<em>outfile</em></dt>
<dd>Writes the output text to <em>outfile</em>. When not given, the result is
printed to stdout. Note that this option can anly be used when a
<em>single</em> image file is processed.</dd>
<dt><tt class="docutils literal"><span class="pre">-od</span></tt> <em>outdir</em>, <tt class="docutils literal"><span class="pre">--output_directory</span></tt>=<em>outdir</em></dt>
<dd>Writes for each input image <em>imgfile</em> the recognized text to
<em>outdir</em>/<em>imgfile</em>.txt. Note that this option cannot be used in
combination with <tt class="docutils literal"><span class="pre">-o</span></tt> (<tt class="docutils literal"><span class="pre">--outfile</span></tt>).</dd>
<dt><tt class="docutils literal"><span class="pre">-a</span></tt>, <tt class="docutils literal"><span class="pre">--automatic_group</span></tt></dt>
<dd>Uses Gamera's automatic grouping algorithm during classification.
This can be helpful when glyphs are broken.</dd>
<dt><tt class="docutils literal"><span class="pre">-d</span></tt>, <tt class="docutils literal"><span class="pre">--deskew</span></tt></dt>
<dd>Does a skew correction before page segmentation.</dd>
<dt><tt class="docutils literal"><span class="pre">-mf</span></tt> <em>windowsize</em>, <tt class="docutils literal"><span class="pre">--median_filter</span></tt>=<em>windowsize</em></dt>
<dd>Smooth the input image with a median filter with window size <em>windowsize</em>.
Default is <em>windowsize</em> = 0, which means no smoothing.</dd>
<dt><tt class="docutils literal"><span class="pre">-ds</span></tt> <em>size</em>, <tt class="docutils literal"><span class="pre">--despeckle</span></tt>=<em>size</em></dt>
<dd>Remove all speckles with size <= <em>size</em>.
Default is <em>size</em> = 0, which means no despeckling.</dd>
<dt><tt class="docutils literal"><span class="pre">-f</span></tt>, <tt class="docutils literal"><span class="pre">--filter</span></tt></dt>
<dd>Filter out connected components that are very big or very small.</dd>
<dt><tt class="docutils literal"><span class="pre">-D</span></tt>, <tt class="docutils literal"><span class="pre">--dictionary_correction</span></tt></dt>
<dd>Post-processing step called dictionary-check can be enabled here.
For using this, you must have a unix <tt class="docutils literal">spell</tt> tool installed: by default
<tt class="docutils literal">aspell</tt> is used; when this is not found, <tt class="docutils literal">ispell</tt> is tried instead.
Do not forget to install the needed language and turn it on by changing
the <tt class="docutils literal">LANG</tt> environment variable or set it with the <tt class="docutils literal"><span class="pre">-L</span></tt> option.</dd>
<dt><tt class="docutils literal"><span class="pre">-L</span></tt> <em>language</em>, <tt class="docutils literal"><span class="pre">--dictionary_language</span></tt>=<em>language</em></dt>
<dd>Sets the dictionary for the correcting-process. Otherwise the
locale-settings language (aspell) or the default language (ispell) is used.</dd>
<dt><tt class="docutils literal"><span class="pre">-e</span></tt> <em>number</em>, <tt class="docutils literal"><span class="pre">--edit_distance</span></tt>=<em>number</em></dt>
<dd>Sets the max. distance between two words, the recognized and the
corrected word. The actual distance is calculated by the gamera built in
function edit_distance. It has to be integer. The default value is 2.</dd>
<dt><tt class="docutils literal"><span class="pre">-c</span></tt> <em>csv-file</em>, <tt class="docutils literal"><span class="pre">--extra_chars_csvfile</span></tt>=<em>csv_file</em></dt>
<dd><p class="first">Use a user defined translation table of class names to character strings.
The <em>csv_file</em> must contain a list of comma separated
pairs (classname, output) one pair per line as in the following example
(the output string after the comma can be any string consisting of unicode
characters):</p>
<pre class="last literal-block">
latin.small.ligature.st,st
latin.small.ligature.ft,ft
latin.small.letter.long.s,s
</pre>
</dd>
<dt><tt class="docutils literal"><span class="pre">-R</span></tt> <em>rules</em>, <tt class="docutils literal"><span class="pre">--heuristic_rules</span></tt>=<em>rules</em></dt>
<dd>apply heuristic rules <em>rules</em> for disambiguation of some chars
<em>rules</em> can be <tt class="docutils literal">roman</tt> (default) or <tt class="docutils literal">none</tt> (for no rules)</dd>
<dt><tt class="docutils literal"><span class="pre">-v</span></tt> <em>level</em>, <tt class="docutils literal"><span class="pre">--information</span></tt>=<em>level</em></dt>
<dd>Set verbosity level to <em>level</em>. When one, debug information is printed
to stdout. When two, additionally three images are written to the
current directory: <tt class="docutils literal">debug_lines.png</tt> has the detected textlines marked,
<tt class="docutils literal">debug_chars.png</tt> has all segmentated characters marked,
and <tt class="docutils literal">debug_words.png</tt> has all words marked. This can be usefull to
identify segmentation errors.</dd>
</dl>
</div>
<div class="section" id="using-hocr-format-as-input-or-output">
<h1><a class="toc-backref" href="#id7">Using hOCR format as input or output</a></h1>
<p>In addition to plaintext output it is also possible to use the hOCR
format to also save segmentation information with the recognized text.
If the ''-ho'' option is selected, you have to make sure that their is an
output file or directory asigned in either the ''-o'' or ''-od'' option.
In addition to the text data, the hOCR file will contain the bounding box
information of the entire image, the textlines and words.
The file extension ''.html'' will be automaticly added.</p>
<p>If you want to use another textline algorithm that saves its data in the
hOCR format you can read the textline bounding box information by using
the hOCR-input optin ''-hi''. Even if there is more information given in
the hOCR file, only the information stored in the title of the class
''ocr_line'' will be used. This option only works on single images.</p>
<blockquote>
<p><tt class="docutils literal"><span class="pre">-ho</span></tt> changes output to hOCR format</p>
<p><tt class="docutils literal"><span class="pre">-hi</span></tt> <em>hocrfile</em> uses textline information of the given hOCR file</p>
</blockquote>
</div>
<div class="section" id="writing-custom-scripts">
<h1><a class="toc-backref" href="#id8">Writing custom scripts</a></h1>
<p>If you want to write your own scripts for recognition, you
can use <tt class="docutils literal">ocr4gamera.py</tt> as a good starting point.</p>
<p>In order to access the <em>OCR Toolkit</em> classes and functions, you must
import them at the beginning of your script:</p>
<div class="highlight"><pre><span class="kn">from</span> <span class="nn">gamera.toolkits.ocr.ocr_toolkit</span> <span class="kn">import</span> <span class="o">*</span>
<span class="kn">from</span> <span class="nn">gamera.toolkits.ocr.classes</span> <span class="kn">import</span> <span class="n">Textline</span><span class="p">,</span><span class="n">Page</span><span class="p">,</span><span class="n">ClassifyCCs</span>
</pre></div>
<p>After that you can segment an image with the <a class="reference external" href="gamera.toolkits.ocr.classes.Page.html">Page</a> class and its
method <em>segment()</em>:</p>
<div class="highlight"><pre><span class="n">img</span> <span class="o">=</span> <span class="n">load_image</span><span class="p">(</span><span class="s">"image.png"</span><span class="p">)</span>
<span class="k">if</span> <span class="n">img</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">pixel_type</span> <span class="o">!=</span> <span class="n">ONEBIT</span><span class="p">:</span>
<span class="n">img</span> <span class="o">=</span> <span class="n">img</span><span class="o">.</span><span class="n">to_onebit</span><span class="p">()</span>
<span class="n">result_page</span> <span class="o">=</span> <span class="n">Page</span><span class="p">(</span><span class="n">img</span><span class="p">)</span>
<span class="n">result_page</span><span class="o">.</span><span class="n">segment</span><span class="p">()</span>
</pre></div>
<p>The <tt class="docutils literal">Page</tt> object <em>result_page</em> now contains all segment information like
textlines, words and characters in reading order. You can then classify
the characters line-per-line with a knn classifier and print the document
text:</p>
<div class="highlight"><pre><span class="c"># load training data into classifier</span>
<span class="n">cknn</span> <span class="o">=</span> <span class="n">knn</span><span class="o">.</span><span class="n">kNNInteractive</span><span class="p">([],</span> \
<span class="p">[</span><span class="s">"aspect_ratio"</span><span class="p">,</span> <span class="s">"moments"</span><span class="p">,</span> <span class="s">"volume64regions"</span><span class="p">],</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">cknn</span><span class="o">.</span><span class="n">from_xml_filename</span><span class="p">(</span><span class="s">"trainingdata.xml"</span><span class="p">)</span>
<span class="c"># classify characters and create output text</span>
<span class="k">for</span> <span class="n">line</span> <span class="ow">in</span> <span class="n">page</span><span class="o">.</span><span class="n">textlines</span><span class="p">:</span>
<span class="n">line</span><span class="o">.</span><span class="n">glyphs</span> <span class="o">=</span> \
<span class="n">cknn</span><span class="o">.</span><span class="n">classify_and_update_list_automatic</span><span class="p">(</span><span class="n">line</span><span class="o">.</span><span class="n">glyphs</span><span class="p">)</span>
<span class="n">line</span><span class="o">.</span><span class="n">sort_glyphs</span><span class="p">()</span>
<span class="k">print</span> <span class="s">"Text of line"</span><span class="p">,</span> <span class="n">textline_to_string</span><span class="p">(</span><span class="n">line</span><span class="p">)</span>
</pre></div>
<p>Note that the function <a class="reference external" href="functions.html#textline-to-string">textline_to_string</a> is global and not bound to
a class instance. This function requires that class names for characters
have been chosen according to the <a class="reference external" href="http://www.unicode.org/charts/">standard unicode character names</a>,
as in the examples of the following table:</p>
<table border="1" class="docutils">
<colgroup>
<col width="16%" />
<col width="42%" />
<col width="42%" />
</colgroup>
<thead valign="bottom">
<tr><th class="head">Character</th>
<th class="head">Unicode Name</th>
<th class="head">Class Name</th>
</tr>
</thead>
<tbody valign="top">
<tr><td><tt class="docutils literal">!</tt></td>
<td><tt class="docutils literal">EXCLAMATION MARK</tt></td>
<td><tt class="docutils literal">exclamation.mark</tt></td>
</tr>
<tr><td><tt class="docutils literal">2</tt></td>
<td><tt class="docutils literal">DIGIT TWO</tt></td>
<td><tt class="docutils literal">digit.two</tt></td>
</tr>
<tr><td><tt class="docutils literal">A</tt></td>
<td><tt class="docutils literal">LATIN CAPITAL LETTER A</tt></td>
<td><tt class="docutils literal">latin.capital.letter.a</tt></td>
</tr>
<tr><td><tt class="docutils literal">a</tt></td>
<td><tt class="docutils literal">LATIN SMALL LETTER A</tt></td>
<td><tt class="docutils literal">latin.small.letter.a</tt></td>
</tr>
</tbody>
</table>
<p>For more information on how to fine control the segmentation process,
see the <a class="reference external" href="developermanual.html">developer's manual</a>.</p>
</div>
</div>
</body>
</html>
|