This file is indexed.

/usr/lib/python2.7/dist-packages/mpmath/rational.py is in python-mpmath 0.19-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import operator
import sys
from .libmp import int_types, mpf_hash, bitcount, from_man_exp, HASH_MODULUS

new = object.__new__

def create_reduced(p, q, _cache={}):
    key = p, q
    if key in _cache:
        return _cache[key]
    x, y = p, q
    while y:
        x, y = y, x % y
    if x != 1:
        p //= x
        q //= x
    v = new(mpq)
    v._mpq_ = p, q
    # Speedup integers, half-integers and other small fractions
    if q <= 4 and abs(key[0]) < 100:
        _cache[key] = v
    return v

class mpq(object):
    """
    Exact rational type, currently only intended for internal use.
    """

    __slots__ = ["_mpq_"]

    def __new__(cls, p, q=1):
        if type(p) is tuple:
            p, q = p
        elif hasattr(p, '_mpq_'):
            p, q = p._mpq_
        return create_reduced(p, q)

    def __repr__(s):
        return "mpq(%s,%s)" % s._mpq_

    def __str__(s):
        return "(%s/%s)" % s._mpq_

    def __int__(s):
        a, b = s._mpq_
        return a // b

    def __nonzero__(s):
        return bool(s._mpq_[0])

    __bool__ = __nonzero__

    def __hash__(s):
        a, b = s._mpq_
        if sys.version >= "3.2":
            inverse = pow(b, HASH_MODULUS-2, HASH_MODULUS)
            if not inverse:
                h = sys.hash_info.inf
            else:
                h = (abs(a) * inverse) % HASH_MODULUS
            if a < 0: h = -h
            if h == -1: h = -2
            return h
        else:
            if b == 1:
                return hash(a)
            # Power of two: mpf compatible hash
            if not (b & (b-1)):
                return mpf_hash(from_man_exp(a, 1-bitcount(b)))
            return hash((a,b))

    def __eq__(s, t):
        ttype = type(t)
        if ttype is mpq:
            return s._mpq_ == t._mpq_
        if ttype in int_types:
            a, b = s._mpq_
            if b != 1:
                return False
            return a == t
        return NotImplemented

    def __ne__(s, t):
        ttype = type(t)
        if ttype is mpq:
            return s._mpq_ != t._mpq_
        if ttype in int_types:
            a, b = s._mpq_
            if b != 1:
                return True
            return a != t
        return NotImplemented

    def _cmp(s, t, op):
        ttype = type(t)
        if ttype in int_types:
            a, b = s._mpq_
            return op(a, t*b)
        if ttype is mpq:
            a, b = s._mpq_
            c, d = t._mpq_
            return op(a*d, b*c)
        return NotImplementedError

    def __lt__(s, t): return s._cmp(t, operator.lt)
    def __le__(s, t): return s._cmp(t, operator.le)
    def __gt__(s, t): return s._cmp(t, operator.gt)
    def __ge__(s, t): return s._cmp(t, operator.ge)

    def __abs__(s):
        a, b = s._mpq_
        if a >= 0:
            return s
        v = new(mpq)
        v._mpq_ = -a, b
        return v

    def __neg__(s):
        a, b = s._mpq_
        v = new(mpq)
        v._mpq_ = -a, b
        return v

    def __pos__(s):
        return s

    def __add__(s, t):
        ttype = type(t)
        if ttype is mpq:
            a, b = s._mpq_
            c, d = t._mpq_
            return create_reduced(a*d+b*c, b*d)
        if ttype in int_types:
            a, b = s._mpq_
            v = new(mpq)
            v._mpq_ = a+b*t, b
            return v
        return NotImplemented

    __radd__ = __add__

    def __sub__(s, t):
        ttype = type(t)
        if ttype is mpq:
            a, b = s._mpq_
            c, d = t._mpq_
            return create_reduced(a*d-b*c, b*d)
        if ttype in int_types:
            a, b = s._mpq_
            v = new(mpq)
            v._mpq_ = a-b*t, b
            return v
        return NotImplemented

    def __rsub__(s, t):
        ttype = type(t)
        if ttype is mpq:
            a, b = s._mpq_
            c, d = t._mpq_
            return create_reduced(b*c-a*d, b*d)
        if ttype in int_types:
            a, b = s._mpq_
            v = new(mpq)
            v._mpq_ = b*t-a, b
            return v
        return NotImplemented

    def __mul__(s, t):
        ttype = type(t)
        if ttype is mpq:
            a, b = s._mpq_
            c, d = t._mpq_
            return create_reduced(a*c, b*d)
        if ttype in int_types:
            a, b = s._mpq_
            return create_reduced(a*t, b)
        return NotImplemented

    __rmul__ = __mul__

    def __div__(s, t):
        ttype = type(t)
        if ttype is mpq:
            a, b = s._mpq_
            c, d = t._mpq_
            return create_reduced(a*d, b*c)
        if ttype in int_types:
            a, b = s._mpq_
            return create_reduced(a, b*t)
        return NotImplemented

    def __rdiv__(s, t):
        ttype = type(t)
        if ttype is mpq:
            a, b = s._mpq_
            c, d = t._mpq_
            return create_reduced(b*c, a*d)
        if ttype in int_types:
            a, b = s._mpq_
            return create_reduced(b*t, a)
        return NotImplemented

    def __pow__(s, t):
        ttype = type(t)
        if ttype in int_types:
            a, b = s._mpq_
            if t:
                if t < 0:
                    a, b, t = b, a, -t
                v = new(mpq)
                v._mpq_ = a**t, b**t
                return v
            raise ZeroDivisionError
        return NotImplemented


mpq_1 = mpq((1,1))
mpq_0 = mpq((0,1))
mpq_1_2 = mpq((1,2))
mpq_3_2 = mpq((3,2))
mpq_1_4 = mpq((1,4))
mpq_1_16 = mpq((1,16))
mpq_3_16 = mpq((3,16))
mpq_5_2 = mpq((5,2))
mpq_3_4 = mpq((3,4))
mpq_7_4 = mpq((7,4))
mpq_5_4 = mpq((5,4))


# Register with "numbers" ABC
#     We do not subclass, hence we do not use the @abstractmethod checks. While
#     this is less invasive it may turn out that we do not actually support
#     parts of the expected interfaces.  See
#     http://docs.python.org/2/library/numbers.html for list of abstract
#     methods.
try:
    import numbers
    numbers.Rational.register(mpq)
except ImportError:
    pass