This file is indexed.

/usr/lib/python2.7/dist-packages/neo/core/analogsignalarray.py is in python-neo 0.3.3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# -*- coding: utf-8 -*-
'''
This module implements :class:`AnalogSignalArray`, an array of analog signals.

:class:`AnalogSignalArray` derives from :class:`BaseAnalogSignal`, from
:module:`neo.core.analogsignal`.

:class:`BaseAnalogSignal` inherits from :class:`quantites.Quantity`, which
inherits from :class:`numpy.array`.
Inheritance from :class:`numpy.array` is explained here:
http://docs.scipy.org/doc/numpy/user/basics.subclassing.html

In brief:
* Initialization of a new object from constructor happens in :meth:`__new__`.
This is where user-specified attributes are set.

* :meth:`__array_finalize__` is called for all new objects, including those
created by slicing. This is where attributes are copied over from
the old object.
'''

# needed for python 3 compatibility
from __future__ import absolute_import, division, print_function

import logging

import numpy as np
import quantities as pq

from neo.core.analogsignal import (BaseAnalogSignal, AnalogSignal,
                                   _get_sampling_rate)
from neo.core.baseneo import BaseNeo, merge_annotations

logger = logging.getLogger("Neo")


class AnalogSignalArray(BaseAnalogSignal):
    '''
    Several continuous analog signals

    A representation of several continuous, analog signals that
    have the same duration, sampling rate and start time.
    Basically, it is a 2D array like AnalogSignal: dim 0 is time, dim 1 is
    channel index

    Inherits from :class:`quantities.Quantity`, which in turn inherits from
    :class:`numpy.ndarray`.

    *Usage*::

        >>> from neo.core import AnalogSignalArray
        >>> import quantities as pq
        >>>
        >>> sigarr = AnalogSignalArray([[1, 2, 3], [4, 5, 6]], units='V',
        ...                            sampling_rate=1*pq.Hz)
        >>>
        >>> sigarr
        <AnalogSignalArray(array([[1, 2, 3],
              [4, 5, 6]]) * mV, [0.0 s, 2.0 s], sampling rate: 1.0 Hz)>
        >>> sigarr[:,1]
        <AnalogSignal(array([2, 5]) * V, [0.0 s, 2.0 s],
            sampling rate: 1.0 Hz)>
        >>> sigarr[1, 1]
        array(5) * V

    *Required attributes/properties*:
        :signal: (quantity array 2D, numpy array 2D, or list (data, chanel))
            The data itself.
        :units: (quantity units) Required if the signal is a list or NumPy
                array, not if it is a :class:`Quantity`
        :t_start: (quantity scalar) Time when signal begins
        :sampling_rate: *or* :sampling_period: (quantity scalar) Number of
                                               samples per unit time or
                                               interval between two samples.
                                               If both are specified, they are
                                               checked for consistency.

    *Recommended attributes/properties*:
        :name: (str) A label for the dataset.
        :description: (str) Text description.
        :file_origin: (str) Filesystem path or URL of the original data file.
        :channel_index: (numpy array 1D dtype='i') You can use this to order
            the columns of the signal in any way you want. It should have the
            same number of elements as the signal has columns.
            :class:`AnalogSignal` and :class:`Unit` objects can be given
            indexes as well so related objects can be linked together.

    *Optional attributes/properties*:
        :dtype: (numpy dtype or str) Override the dtype of the signal array.
        :copy: (bool) True by default.

    Note: Any other additional arguments are assumed to be user-specific
            metadata and stored in :attr:`annotations`.

    *Properties available on this object*:
        :sampling_rate: (quantity scalar) Number of samples per unit time.
            (1/:attr:`sampling_period`)
        :sampling_period: (quantity scalar) Interval between two samples.
            (1/:attr:`quantity scalar`)
        :duration: (Quantity) Signal duration, read-only.
            (size * :attr:`sampling_period`)
        :t_stop: (quantity scalar) Time when signal ends, read-only.
            (:attr:`t_start` + :attr:`duration`)
        :times: (quantity 1D) The time points of each sample of the signal,
            read-only.
            (:attr:`t_start` + arange(:attr:`shape`[0])/:attr:`sampling_rate`)
        :channel_indexes: (numpy array 1D dtype='i') The same as
            :attr:`channel_index`, read-only.

    *Slicing*:
        :class:`AnalogSignalArray` objects can be sliced. When taking a single
        row (dimension 1, e.g. [:, 0]), a :class:`AnalogSignal` is returned.
        When taking a single element, a :class:`~quantities.Quantity` is
        returned.  Otherwise a :class:`AnalogSignalArray` (actually a view) is
        returned, with the same metadata, except that :attr:`t_start`
        is changed if the start index along dimension 1 is greater than 1.
        Getting a single item returns a :class:`~quantity.Quantity` scalar.

    *Operations available on this object*:
        == != + * /

    '''

    def __new__(cls, signal, units=None, dtype=None, copy=True,
                t_start=0 * pq.s, sampling_rate=None, sampling_period=None,
                name=None, file_origin=None, description=None,
                channel_index=None, **annotations):
        '''
        Constructs new :class:`AnalogSignalArray` from data.

        This is called whenever a new class:`AnalogSignalArray` is created from
        the constructor, but not when slicing.
        '''
        if (isinstance(signal, pq.Quantity)
                and units is not None
                and units != signal.units):
            signal = signal.rescale(units)
        if not units and hasattr(signal, "units"):
            units = signal.units
        obj = pq.Quantity.__new__(cls, signal, units=units, dtype=dtype,
                                  copy=copy)

        obj.t_start = t_start
        obj.sampling_rate = _get_sampling_rate(sampling_rate, sampling_period)

        obj.channel_index = channel_index
        obj.segment = None
        obj.recordingchannelgroup = None

        return obj

    def __init__(self, signal, units=None, dtype=None, copy=True,
                 t_start=0 * pq.s, sampling_rate=None, sampling_period=None,
                 name=None, file_origin=None, description=None,
                 channel_index=None, **annotations):
        '''
        Initializes a newly constructed :class:`AnalogSignalArray` instance.
        '''
        BaseNeo.__init__(self, name=name, file_origin=file_origin,
                         description=description, **annotations)

    @property
    def channel_indexes(self):
        '''
        The same as :attr:`channel_index`.
        '''
        return self.channel_index

    def __getslice__(self, i, j):
        '''
        Get a slice from :attr:`i` to :attr:`j`.

        Doesn't get called in Python 3, :meth:`__getitem__` is called instead
        '''
        return self.__getitem__(slice(i, j))

    def __getitem__(self, i):
        '''
        Get the item or slice :attr:`i`.
        '''
        obj = super(BaseAnalogSignal, self).__getitem__(i)
        if isinstance(i, int):
            return obj
        elif isinstance(i, tuple):
            j, k = i
            if isinstance(k, int):
                if isinstance(j, slice):  # extract an AnalogSignal
                    obj = AnalogSignal(obj, sampling_rate=self.sampling_rate)
                    if j.start:
                        obj.t_start = (self.t_start +
                                       j.start * self.sampling_period)
                # return a Quantity (for some reason quantities does not
                # return a Quantity in this case)
                elif isinstance(j, int):
                    obj = pq.Quantity(obj, units=self.units)
                return obj
            elif isinstance(j, int):  # extract a quantity array
                # should be a better way to do this
                obj = pq.Quantity(np.array(obj), units=obj.units)
                return obj
            else:
                return obj
        elif isinstance(i, slice):
            if i.start:
                obj.t_start = self.t_start + i.start * self.sampling_period
            return obj
        else:
            raise IndexError("index should be an integer, tuple or slice")

    def time_slice(self, t_start, t_stop):
        '''
        Creates a new AnalogSignal corresponding to the time slice of the
        original AnalogSignal between times t_start, t_stop. Note, that for
        numerical stability reasons if t_start, t_stop do not fall exactly on
        the time bins defined by the sampling_period they will be rounded to
        the nearest sampling bins.
        '''

        t_start = t_start.rescale(self.sampling_period.units)
        t_stop = t_stop.rescale(self.sampling_period.units)
        i = (t_start - self.t_start) / self.sampling_period
        j = (t_stop - self.t_start) / self.sampling_period
        i = int(np.rint(i.magnitude))
        j = int(np.rint(j.magnitude))

        if (i < 0) or (j > len(self)):
            raise ValueError('t_start, t_stop have to be withing the analog \
                              signal duration')

        # we're going to send the list of indicies so that we get *copy* of the
        # sliced data
        obj = super(BaseAnalogSignal, self).__getitem__(np.arange(i, j, 1))
        obj.t_start = self.t_start + i * self.sampling_period

        return obj

    def merge(self, other):
        '''
        Merge the another :class:`AnalogSignalArray` into this one.

        The :class:`AnalogSignalArray` objects are concatenated horizontally
        (column-wise, :func:`np.hstack`).

        If the attributes of the two :class:`AnalogSignalArray` are not
        compatible, and Exception is raised.
        '''
        assert self.sampling_rate == other.sampling_rate
        assert self.t_start == other.t_start
        other.units = self.units
        stack = np.hstack(map(np.array, (self, other)))
        kwargs = {}
        for name in ("name", "description", "file_origin"):
            attr_self = getattr(self, name)
            attr_other = getattr(other, name)
            if attr_self == attr_other:
                kwargs[name] = attr_self
            else:
                kwargs[name] = "merge(%s, %s)" % (attr_self, attr_other)
        if self.channel_index is None:
            channel_index = other.channel_index
        elif other.channel_index is None:
            channel_index = self.channel_index
        else:
            channel_index = np.append(self.channel_index,
                                      other.channel_index)
        merged_annotations = merge_annotations(self.annotations,
                                               other.annotations)
        kwargs.update(merged_annotations)
        return AnalogSignalArray(stack, units=self.units, dtype=self.dtype,
                                 copy=False, t_start=self.t_start,
                                 sampling_rate=self.sampling_rate,
                                 channel_index=channel_index,
                                 **kwargs)