This file is indexed.

/usr/lib/python2.7/dist-packages/neo/core/irregularlysampledsignal.py is in python-neo 0.3.3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# -*- coding: utf-8 -*-
'''
This module implements :class:`IrregularlySampledSignal` an analog signal with
samples taken at arbitrary time points.

:class:`IrregularlySampledSignal` derives from :class:`BaseNeo`, from
:module:`neo.core.baseneo`, and from :class:`quantites.Quantity`, which
inherits from :class:`numpy.array`.

Inheritance from :class:`numpy.array` is explained here:
http://docs.scipy.org/doc/numpy/user/basics.subclassing.html

In brief:
* Initialization of a new object from constructor happens in :meth:`__new__`.
This is where user-specified attributes are set.

* :meth:`__array_finalize__` is called for all new objects, including those
created by slicing. This is where attributes are copied over from
the old object.
'''

# needed for python 3 compatibility
from __future__ import absolute_import, division, print_function

import numpy as np
import quantities as pq

from neo.core.baseneo import BaseNeo


class IrregularlySampledSignal(BaseNeo, pq.Quantity):
    '''
    An analog signal with samples taken at arbitrary time points.

    A representation of a continuous, analog signal acquired at time
    :attr:`t_start` with a varying sampling interval.

    *Usage*::

        >>> from neo.core import IrregularlySampledSignal
        >>> from quantities import s, nA
        >>>
        >>> irsig0 = IrregularlySampledSignal([0.0, 1.23, 6.78], [1, 2, 3],
        ...                                   units='mV', time_units='ms')
        >>> irsig1 = IrregularlySampledSignal([0.01, 0.03, 0.12]*s,
        ...                                   [4, 5, 6]*nA)

    *Required attributes/properties*:
        :times: (quantity array 1D, numpy array 1D, or list) The data itself.
        :signal: (quantity array 1D, numpy array 1D, or list) The time of each
            data point. Must have the same size as :attr:`times`.
        :units: (quantity units) Required if the signal is a list or NumPy
            array, not if it is a :class:`Quantity`.
        :time_units: (quantity units) Required if :attr`times` is a list or
            NumPy array, not if it is a :class:`Quantity`.

    *Recommended attributes/properties*:.
        :name: (str) A label for the dataset
        :description: (str) Text description.
        :file_origin: (str) Filesystem path or URL of the original data file.

    *Optional attributes/properties*:
        :dtype: (numpy dtype or str) Override the dtype of the signal array.
            (times are always floats).
        :copy: (bool) True by default.

    Note: Any other additional arguments are assumed to be user-specific
            metadata and stored in :attr:`annotations`.

    *Properties available on this object*:
        :sampling_intervals: (quantity array 1D) Interval between each adjacent
            pair of samples.
            (:attr:`times[1:]` - :attr:`times`[:-1])
        :duration: (quantity scalar) Signal duration, read-only.
            (:attr:`times`[-1] - :attr:`times`[0])
        :t_start: (quantity scalar) Time when signal begins, read-only.
            (:attr:`times`[0])
        :t_stop: (quantity scalar) Time when signal ends, read-only.
            (:attr:`times`[-1])

    *Slicing*:
        :class:`IrregularlySampledSignal` objects can be sliced. When this
        occurs, a new :class:`IrregularlySampledSignal` (actually a view) is
        returned, with the same metadata, except that :attr:`times` is also
        sliced in the same way.

    *Operations available on this object*:
        == != + * /

    '''

    def __new__(cls, times, signal, units=None, time_units=None, dtype=None,
                copy=True, name=None, description=None, file_origin=None,
                **annotations):
        '''
        Construct a new :class:`IrregularlySampledSignal` instance.

        This is called whenever a new :class:`IrregularlySampledSignal` is
        created from the constructor, but not when slicing.
        '''
        if len(times) != len(signal):
            raise ValueError("times array and signal array must " +
                             "have same length")
        if units is None:
            if hasattr(signal, "units"):
                units = signal.units
            else:
                raise ValueError("Units must be specified")
        elif isinstance(signal, pq.Quantity):
             # could improve this test, what if units is a string?
            if units != signal.units:
                signal = signal.rescale(units)
        if time_units is None:
            if hasattr(times, "units"):
                time_units = times.units
            else:
                raise ValueError("Time units must be specified")
        elif isinstance(times, pq.Quantity):
            # could improve this test, what if units is a string?
            if time_units != times.units:
                times = times.rescale(time_units)
        # should check time units have correct dimensions
        obj = pq.Quantity.__new__(cls, signal, units=units,
                                  dtype=dtype, copy=copy)
        obj.times = pq.Quantity(times, units=time_units,
                                dtype=float, copy=copy)
        obj.segment = None
        obj.recordingchannel = None
        return obj

    def __init__(self, times, signal, units=None, time_units=None, dtype=None,
                 copy=True, name=None, description=None, file_origin=None,
                 **annotations):
        '''
        Initializes a newly constructed :class:`IrregularlySampledSignal`
        instance.
        '''
        BaseNeo.__init__(self, name=name, file_origin=file_origin,
                         description=description, **annotations)

    def __array_finalize__(self, obj):
        '''
        This is called every time a new :class:`IrregularlySampledSignal` is
        created.

        It is the appropriate place to set default values for attributes
        for :class:`IrregularlySampledSignal` constructed by slicing or
        viewing.

        User-specified values are only relevant for construction from
        constructor, and these are set in __new__. Then they are just
        copied over here.
        '''
        super(IrregularlySampledSignal, self).__array_finalize__(obj)
        self.times = getattr(obj, 'times', None)

        # The additional arguments
        self.annotations = getattr(obj, 'annotations', None)

        # Globally recommended attributes
        self.name = getattr(obj, 'name', None)
        self.file_origin = getattr(obj, 'file_origin', None)
        self.description = getattr(obj, 'description', None)

    def __repr__(self):
        '''
        Returns a string representing the :class:`IrregularlySampledSignal`.
        '''
        return '<%s(%s at times %s)>' % (self.__class__.__name__,
                                         super(IrregularlySampledSignal,
                                               self).__repr__(), self.times)

    def __getslice__(self, i, j):
        '''
        Get a slice from :attr:`i` to :attr:`j`.

        Doesn't get called in Python 3, :meth:`__getitem__` is called instead
        '''
        obj = super(IrregularlySampledSignal, self).__getslice__(i, j)
        obj.times = self.times.__getslice__(i, j)
        return obj

    def __getitem__(self, i):
        '''
        Get the item or slice :attr:`i`.
        '''
        obj = super(IrregularlySampledSignal, self).__getitem__(i)
        if isinstance(obj, IrregularlySampledSignal):
            obj.times = self.times.__getitem__(i)
        return obj

    @property
    def duration(self):
        '''
        Signal duration.

        (:attr:`times`[-1] - :attr:`times`[0])
        '''
        return self.times[-1] - self.times[0]

    @property
    def t_start(self):
        '''
        Time when signal begins.

        (:attr:`times`[0])
        '''
        return self.times[0]

    @property
    def t_stop(self):
        '''
        Time when signal ends.

        (:attr:`times`[-1])
        '''
        return self.times[-1]

    def __eq__(self, other):
        '''
        Equality test (==)
        '''
        return (super(IrregularlySampledSignal, self).__eq__(other).all() and
                (self.times == other.times).all())

    def __ne__(self, other):
        '''
        Non-equality test (!=)
        '''
        return not self.__eq__(other)

    def _apply_operator(self, other, op, *args):
        '''
        Handle copying metadata to the new :class:`IrregularlySampledSignal`
        after a mathematical operation.
        '''
        self._check_consistency(other)
        f = getattr(super(IrregularlySampledSignal, self), op)
        new_signal = f(other, *args)
        new_signal._copy_data_complement(self)
        return new_signal

    def _check_consistency(self, other):
        '''
        Check if the attributes of another :class:`IrregularlySampledSignal`
        are compatible with this one.
        '''
        # if not an array, then allow the calculation
        if not hasattr(other, 'ndim'):
            return
        # if a scalar array, then allow the calculation
        if not other.ndim:
            return
        # dimensionality should match
        if self.ndim != other.ndim:
            raise ValueError('Dimensionality does not match: %s vs %s' %
                             (self.ndim, other.ndim))
        # if if the other array does not have a times property,
        # then it should be okay to add it directly
        if not hasattr(other, 'times'):
            return

        # if there is a times property, the times need to be the same
        if not (self.times == other.times).all():
            raise ValueError('Times do not match: %s vs %s' %
                             (self.times, other.times))

    def _copy_data_complement(self, other):
        '''
        Copy the metadata from another :class:`IrregularlySampledSignal`.
        '''
        for attr in ("times", "name", "file_origin",
                     "description", "channel_index", "annotations"):
            setattr(self, attr, getattr(other, attr, None))

    def __add__(self, other, *args):
        '''
        Addition (+)
        '''
        return self._apply_operator(other, "__add__", *args)

    def __sub__(self, other, *args):
        '''
        Subtraction (-)
        '''
        return self._apply_operator(other, "__sub__", *args)

    def __mul__(self, other, *args):
        '''
        Multiplication (*)
        '''
        return self._apply_operator(other, "__mul__", *args)

    def __truediv__(self, other, *args):
        '''
        Float division (/)
        '''
        return self._apply_operator(other, "__truediv__", *args)

    def __div__(self, other, *args):
        '''
        Integer division (//)
        '''
        return self._apply_operator(other, "__div__", *args)

    __radd__ = __add__
    __rmul__ = __sub__

    def __rsub__(self, other, *args):
        '''
        Backwards subtraction (other-self)
        '''
        return self.__mul__(-1) + other

    @property
    def sampling_intervals(self):
        '''
        Interval between each adjacent pair of samples.

        (:attr:`times[1:]` - :attr:`times`[:-1])
        '''
        return self.times[1:] - self.times[:-1]

    def mean(self, interpolation=None):
        '''
        Calculates the mean, optionally using interpolation between sampling
        times.

        If :attr:`interpolation` is None, we assume that values change
        stepwise at sampling times.
        '''
        if interpolation is None:
            return (self[:-1]*self.sampling_intervals).sum()/self.duration
        else:
            raise NotImplementedError

    def resample(self, at=None, interpolation=None):
        '''
        Resample the signal, returning either an :class:`AnalogSignal` object
        or another :class:`IrregularlySampledSignal` object.

        Arguments:
            :at: either a :class:`Quantity` array containing the times at
                 which samples should be created (times must be within the
                 signal duration, there is no extrapolation), a sampling rate
                 with dimensions (1/Time) or a sampling interval
                 with dimensions (Time).
            :interpolation: one of: None, 'linear'
        '''
        # further interpolation methods could be added
        raise NotImplementedError

    def rescale(self, units):
        '''
        Return a copy of the :class:`IrregularlySampledSignal` converted to the
        specified units
        '''
        to_dims = pq.quantity.validate_dimensionality(units)
        if self.dimensionality == to_dims:
            to_u = self.units
            signal = np.array(self)
        else:
            to_u = pq.Quantity(1.0, to_dims)
            from_u = pq.Quantity(1.0, self.dimensionality)
            try:
                cf = pq.quantity.get_conversion_factor(from_u, to_u)
            except AssertionError:
                raise ValueError('Unable to convert between units of "%s" \
                                 and "%s"' % (from_u._dimensionality,
                                              to_u._dimensionality))
            signal = cf * self.magnitude
        new = self.__class__(times=self.times, signal=signal, units=to_u)
        new._copy_data_complement(self)
        new.annotations.update(self.annotations)
        return new