This file is indexed.

/usr/lib/python2.7/dist-packages/nibabel/affines.py is in python-nibabel 2.0.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
""" Utility routines for working with points and affine transforms
"""

import numpy as np

from .externals.six.moves import reduce


def apply_affine(aff, pts):
    """ Apply affine matrix `aff` to points `pts`

    Returns result of application of `aff` to the *right* of `pts`.  The
    coordinate dimension of `pts` should be the last.

    For the 3D case, `aff` will be shape (4,4) and `pts` will have final axis
    length 3 - maybe it will just be N by 3. The return value is the
    transformed points, in this case::

        res = np.dot(aff[:3,:3], pts.T) + aff[:3,3:4]
        transformed_pts = res.T

    This routine is more general than 3D, in that `aff` can have any shape
    (N,N), and `pts` can have any shape, as long as the last dimension is for
    the coordinates, and is therefore length N-1.

    Parameters
    ----------
    aff : (N, N) array-like
        Homogenous affine, for 3D points, will be 4 by 4. Contrary to first
        appearance, the affine will be applied on the left of `pts`.
    pts : (..., N-1) array-like
        Points, where the last dimension contains the coordinates of each
        point.  For 3D, the last dimension will be length 3.

    Returns
    -------
    transformed_pts : (..., N-1) array
        transformed points

    Examples
    --------
    >>> aff = np.array([[0,2,0,10],[3,0,0,11],[0,0,4,12],[0,0,0,1]])
    >>> pts = np.array([[1,2,3],[2,3,4],[4,5,6],[6,7,8]])
    >>> apply_affine(aff, pts) #doctest: +ELLIPSIS
    array([[14, 14, 24],
           [16, 17, 28],
           [20, 23, 36],
           [24, 29, 44]]...)

    Just to show that in the simple 3D case, it is equivalent to:

    >>> (np.dot(aff[:3,:3], pts.T) + aff[:3,3:4]).T #doctest: +ELLIPSIS
    array([[14, 14, 24],
           [16, 17, 28],
           [20, 23, 36],
           [24, 29, 44]]...)

    But `pts` can be a more complicated shape:

    >>> pts = pts.reshape((2,2,3))
    >>> apply_affine(aff, pts) #doctest: +ELLIPSIS
    array([[[14, 14, 24],
            [16, 17, 28]],
    <BLANKLINE>
           [[20, 23, 36],
            [24, 29, 44]]]...)
    """
    aff = np.asarray(aff)
    pts = np.asarray(pts)
    shape = pts.shape
    pts = pts.reshape((-1, shape[-1]))
    # rzs == rotations, zooms, shears
    rzs = aff[:-1,:-1]
    trans = aff[:-1,-1]
    res = np.dot(pts, rzs.T) + trans[None,:]
    return res.reshape(shape)


def to_matvec(transform):
    """Split a transform into its matrix and vector components.

    The tranformation must be represented in homogeneous coordinates and is
    split into its rotation matrix and translation vector components.

    Parameters
    ----------
    transform : array-like
        NxM transform matrix in homogeneous coordinates representing an affine
        transformation from an (N-1)-dimensional space to an (M-1)-dimensional
        space. An example is a 4x4 transform representing rotations and
        translations in 3 dimensions. A 4x3 matrix can represent a 2-dimensional
        plane embedded in 3 dimensional space.

    Returns
    -------
    matrix : (N-1, M-1) array
        Matrix component of `transform`
    vector : (M-1,) array
        Vector compoent of `transform`

    See Also
    --------
    from_matvec

    Examples
    --------
    >>> aff = np.diag([2, 3, 4, 1])
    >>> aff[:3,3] = [9, 10, 11]
    >>> to_matvec(aff)
    (array([[2, 0, 0],
           [0, 3, 0],
           [0, 0, 4]]), array([ 9, 10, 11]))
    """
    transform = np.asarray(transform)
    ndimin = transform.shape[0] - 1
    ndimout = transform.shape[1] - 1
    matrix = transform[0:ndimin, 0:ndimout]
    vector = transform[0:ndimin, ndimout]
    return matrix, vector


def from_matvec(matrix, vector=None):
    """ Combine a matrix and vector into an homogeneous affine

    Combine a rotation / scaling / shearing matrix and translation vector into a
    transform in homogeneous coordinates.

    Parameters
    ----------
    matrix : array-like
        An NxM array representing the the linear part of the transform.
        A transform from an M-dimensional space to an N-dimensional space.
    vector : None or array-like, optional
        None or an (N,) array representing the translation. None corresponds to
        an (N,) array of zeros.

    Returns
    -------
    xform : array
        An (N+1, M+1) homogenous transform matrix.

    See Also
    --------
    to_matvec

    Examples
    --------
    >>> from_matvec(np.diag([2, 3, 4]), [9, 10, 11])
    array([[ 2,  0,  0,  9],
           [ 0,  3,  0, 10],
           [ 0,  0,  4, 11],
           [ 0,  0,  0,  1]])

    The `vector` argument is optional:

    >>> from_matvec(np.diag([2, 3, 4]))
    array([[2, 0, 0, 0],
           [0, 3, 0, 0],
           [0, 0, 4, 0],
           [0, 0, 0, 1]])
    """
    matrix = np.asarray(matrix)
    nin, nout = matrix.shape
    t = np.zeros((nin+1,nout+1), matrix.dtype)
    t[0:nin, 0:nout] = matrix
    t[nin, nout] = 1.
    if not vector is None:
        t[0:nin, nout] = vector
    return t


def append_diag(aff, steps, starts=()):
    """ Add diagonal elements `steps` and translations `starts` to affine

    Typical use is in expanding 4x4 affines to larger dimensions.  Nipy is the
    main consumer because it uses NxM affines, whereas we generally only use 4x4
    affines; the routine is here for convenience.

    Parameters
    ----------
    aff : 2D array
        N by M affine matrix
    steps : scalar or sequence
        diagonal elements to append.
    starts : scalar or sequence
        elements to append to last column of `aff`, representing translations
        corresponding to the `steps`. If empty, expands to a vector of zeros
        of the same length as `steps`

    Returns
    -------
    aff_plus : 2D array
        Now P by Q where L = ``len(steps)`` and P == N+L, Q=N+L

    Examples
    --------
    >>> aff = np.eye(4)
    >>> aff[:3,:3] = np.arange(9).reshape((3,3))
    >>> append_diag(aff, [9, 10], [99,100])
    array([[   0.,    1.,    2.,    0.,    0.,    0.],
           [   3.,    4.,    5.,    0.,    0.,    0.],
           [   6.,    7.,    8.,    0.,    0.,    0.],
           [   0.,    0.,    0.,    9.,    0.,   99.],
           [   0.,    0.,    0.,    0.,   10.,  100.],
           [   0.,    0.,    0.,    0.,    0.,    1.]])
    """
    aff = np.asarray(aff)
    steps = np.atleast_1d(steps)
    starts = np.atleast_1d(starts)
    n_steps = len(steps)
    if len(starts) == 0:
        starts = np.zeros(n_steps, dtype=steps.dtype)
    elif len(starts) != n_steps:
        raise ValueError('Steps should have same length as starts')
    old_n_out, old_n_in = aff.shape[0]-1, aff.shape[1]-1
    # make new affine
    aff_plus = np.zeros((old_n_out + n_steps + 1,
                         old_n_in + n_steps + 1), dtype=aff.dtype)
    # Get stuff from old affine
    aff_plus[:old_n_out,:old_n_in] = aff[:old_n_out, :old_n_in]
    aff_plus[:old_n_out,-1] = aff[:old_n_out,-1]
    # Add new diagonal elements
    for i, el in enumerate(steps):
        aff_plus[old_n_out+i, old_n_in+i] = el
    # Add translations for new affine, plus last 1
    aff_plus[old_n_out:,-1] = list(starts) + [1]
    return aff_plus


def dot_reduce(*args):
    """ Apply numpy dot product function from right to left on arrays

    For passed arrays :math:`A, B, C, ... Z` returns :math:`A \dot B \dot C ...
    \dot Z` where "." is the numpy array dot product.

    Parameters
    ----------
    \*\*args : arrays
        Arrays that can be passed to numpy ``dot`` function

    Returns
    -------
    dot_product : array
        If there are N arguments, result of ``arg[0].dot(arg[1].dot(arg[2].dot
        ...  arg[N-2].dot(arg[N-1])))...``
    """
    return reduce(lambda x, y: np.dot(y, x), args[::-1])