/usr/lib/python2.7/dist-packages/nibabel/affines.py is in python-nibabel 2.0.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
""" Utility routines for working with points and affine transforms
"""
import numpy as np
from .externals.six.moves import reduce
def apply_affine(aff, pts):
""" Apply affine matrix `aff` to points `pts`
Returns result of application of `aff` to the *right* of `pts`. The
coordinate dimension of `pts` should be the last.
For the 3D case, `aff` will be shape (4,4) and `pts` will have final axis
length 3 - maybe it will just be N by 3. The return value is the
transformed points, in this case::
res = np.dot(aff[:3,:3], pts.T) + aff[:3,3:4]
transformed_pts = res.T
This routine is more general than 3D, in that `aff` can have any shape
(N,N), and `pts` can have any shape, as long as the last dimension is for
the coordinates, and is therefore length N-1.
Parameters
----------
aff : (N, N) array-like
Homogenous affine, for 3D points, will be 4 by 4. Contrary to first
appearance, the affine will be applied on the left of `pts`.
pts : (..., N-1) array-like
Points, where the last dimension contains the coordinates of each
point. For 3D, the last dimension will be length 3.
Returns
-------
transformed_pts : (..., N-1) array
transformed points
Examples
--------
>>> aff = np.array([[0,2,0,10],[3,0,0,11],[0,0,4,12],[0,0,0,1]])
>>> pts = np.array([[1,2,3],[2,3,4],[4,5,6],[6,7,8]])
>>> apply_affine(aff, pts) #doctest: +ELLIPSIS
array([[14, 14, 24],
[16, 17, 28],
[20, 23, 36],
[24, 29, 44]]...)
Just to show that in the simple 3D case, it is equivalent to:
>>> (np.dot(aff[:3,:3], pts.T) + aff[:3,3:4]).T #doctest: +ELLIPSIS
array([[14, 14, 24],
[16, 17, 28],
[20, 23, 36],
[24, 29, 44]]...)
But `pts` can be a more complicated shape:
>>> pts = pts.reshape((2,2,3))
>>> apply_affine(aff, pts) #doctest: +ELLIPSIS
array([[[14, 14, 24],
[16, 17, 28]],
<BLANKLINE>
[[20, 23, 36],
[24, 29, 44]]]...)
"""
aff = np.asarray(aff)
pts = np.asarray(pts)
shape = pts.shape
pts = pts.reshape((-1, shape[-1]))
# rzs == rotations, zooms, shears
rzs = aff[:-1,:-1]
trans = aff[:-1,-1]
res = np.dot(pts, rzs.T) + trans[None,:]
return res.reshape(shape)
def to_matvec(transform):
"""Split a transform into its matrix and vector components.
The tranformation must be represented in homogeneous coordinates and is
split into its rotation matrix and translation vector components.
Parameters
----------
transform : array-like
NxM transform matrix in homogeneous coordinates representing an affine
transformation from an (N-1)-dimensional space to an (M-1)-dimensional
space. An example is a 4x4 transform representing rotations and
translations in 3 dimensions. A 4x3 matrix can represent a 2-dimensional
plane embedded in 3 dimensional space.
Returns
-------
matrix : (N-1, M-1) array
Matrix component of `transform`
vector : (M-1,) array
Vector compoent of `transform`
See Also
--------
from_matvec
Examples
--------
>>> aff = np.diag([2, 3, 4, 1])
>>> aff[:3,3] = [9, 10, 11]
>>> to_matvec(aff)
(array([[2, 0, 0],
[0, 3, 0],
[0, 0, 4]]), array([ 9, 10, 11]))
"""
transform = np.asarray(transform)
ndimin = transform.shape[0] - 1
ndimout = transform.shape[1] - 1
matrix = transform[0:ndimin, 0:ndimout]
vector = transform[0:ndimin, ndimout]
return matrix, vector
def from_matvec(matrix, vector=None):
""" Combine a matrix and vector into an homogeneous affine
Combine a rotation / scaling / shearing matrix and translation vector into a
transform in homogeneous coordinates.
Parameters
----------
matrix : array-like
An NxM array representing the the linear part of the transform.
A transform from an M-dimensional space to an N-dimensional space.
vector : None or array-like, optional
None or an (N,) array representing the translation. None corresponds to
an (N,) array of zeros.
Returns
-------
xform : array
An (N+1, M+1) homogenous transform matrix.
See Also
--------
to_matvec
Examples
--------
>>> from_matvec(np.diag([2, 3, 4]), [9, 10, 11])
array([[ 2, 0, 0, 9],
[ 0, 3, 0, 10],
[ 0, 0, 4, 11],
[ 0, 0, 0, 1]])
The `vector` argument is optional:
>>> from_matvec(np.diag([2, 3, 4]))
array([[2, 0, 0, 0],
[0, 3, 0, 0],
[0, 0, 4, 0],
[0, 0, 0, 1]])
"""
matrix = np.asarray(matrix)
nin, nout = matrix.shape
t = np.zeros((nin+1,nout+1), matrix.dtype)
t[0:nin, 0:nout] = matrix
t[nin, nout] = 1.
if not vector is None:
t[0:nin, nout] = vector
return t
def append_diag(aff, steps, starts=()):
""" Add diagonal elements `steps` and translations `starts` to affine
Typical use is in expanding 4x4 affines to larger dimensions. Nipy is the
main consumer because it uses NxM affines, whereas we generally only use 4x4
affines; the routine is here for convenience.
Parameters
----------
aff : 2D array
N by M affine matrix
steps : scalar or sequence
diagonal elements to append.
starts : scalar or sequence
elements to append to last column of `aff`, representing translations
corresponding to the `steps`. If empty, expands to a vector of zeros
of the same length as `steps`
Returns
-------
aff_plus : 2D array
Now P by Q where L = ``len(steps)`` and P == N+L, Q=N+L
Examples
--------
>>> aff = np.eye(4)
>>> aff[:3,:3] = np.arange(9).reshape((3,3))
>>> append_diag(aff, [9, 10], [99,100])
array([[ 0., 1., 2., 0., 0., 0.],
[ 3., 4., 5., 0., 0., 0.],
[ 6., 7., 8., 0., 0., 0.],
[ 0., 0., 0., 9., 0., 99.],
[ 0., 0., 0., 0., 10., 100.],
[ 0., 0., 0., 0., 0., 1.]])
"""
aff = np.asarray(aff)
steps = np.atleast_1d(steps)
starts = np.atleast_1d(starts)
n_steps = len(steps)
if len(starts) == 0:
starts = np.zeros(n_steps, dtype=steps.dtype)
elif len(starts) != n_steps:
raise ValueError('Steps should have same length as starts')
old_n_out, old_n_in = aff.shape[0]-1, aff.shape[1]-1
# make new affine
aff_plus = np.zeros((old_n_out + n_steps + 1,
old_n_in + n_steps + 1), dtype=aff.dtype)
# Get stuff from old affine
aff_plus[:old_n_out,:old_n_in] = aff[:old_n_out, :old_n_in]
aff_plus[:old_n_out,-1] = aff[:old_n_out,-1]
# Add new diagonal elements
for i, el in enumerate(steps):
aff_plus[old_n_out+i, old_n_in+i] = el
# Add translations for new affine, plus last 1
aff_plus[old_n_out:,-1] = list(starts) + [1]
return aff_plus
def dot_reduce(*args):
""" Apply numpy dot product function from right to left on arrays
For passed arrays :math:`A, B, C, ... Z` returns :math:`A \dot B \dot C ...
\dot Z` where "." is the numpy array dot product.
Parameters
----------
\*\*args : arrays
Arrays that can be passed to numpy ``dot`` function
Returns
-------
dot_product : array
If there are N arguments, result of ``arg[0].dot(arg[1].dot(arg[2].dot
... arg[N-2].dot(arg[N-1])))...``
"""
return reduce(lambda x, y: np.dot(y, x), args[::-1])
|