/usr/lib/python2.7/dist-packages/nibabel/funcs.py is in python-nibabel 2.0.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 | # emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the NiBabel package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
''' Processor functions for images '''
import numpy as np
from .orientations import (io_orientation, inv_ornt_aff,
apply_orientation, OrientationError)
from .loadsave import load
def squeeze_image(img):
''' Return image, remove axes length 1 at end of image shape
For example, an image may have shape (10,20,30,1,1). In this case
squeeze will result in an image with shape (10,20,30). See doctests
for further description of behavior.
Parameters
----------
img : ``SpatialImage``
Returns
-------
squeezed_img : ``SpatialImage``
Copy of img, such that data, and data shape have been squeezed,
for dimensions > 3rd, and at the end of the shape list
Examples
--------
>>> import nibabel as nf
>>> shape = (10,20,30,1,1)
>>> data = np.arange(np.prod(shape)).reshape(shape)
>>> affine = np.eye(4)
>>> img = nf.Nifti1Image(data, affine)
>>> img.shape == (10, 20, 30, 1, 1)
True
>>> img2 = squeeze_image(img)
>>> img2.shape == (10, 20, 30)
True
If the data are 3D then last dimensions of 1 are ignored
>>> shape = (10,1,1)
>>> data = np.arange(np.prod(shape)).reshape(shape)
>>> img = nf.ni1.Nifti1Image(data, affine)
>>> img.shape == (10, 1, 1)
True
>>> img2 = squeeze_image(img)
>>> img2.shape == (10, 1, 1)
True
Only *final* dimensions of 1 are squeezed
>>> shape = (1, 1, 5, 1, 2, 1, 1)
>>> data = data.reshape(shape)
>>> img = nf.ni1.Nifti1Image(data, affine)
>>> img.shape == (1, 1, 5, 1, 2, 1, 1)
True
>>> img2 = squeeze_image(img)
>>> img2.shape == (1, 1, 5, 1, 2)
True
'''
klass = img.__class__
shape = img.shape
slen = len(shape)
if slen < 4:
return klass.from_image(img)
for bdim in shape[3::][::-1]:
if bdim == 1:
slen -= 1
else:
break
if slen == len(shape):
return klass.from_image(img)
shape = shape[:slen]
data = img.get_data()
data = data.reshape(shape)
return klass(data,
img.affine,
img.header,
img.extra)
def concat_images(images, check_affines=True, axis=None):
''' Concatenate images in list to single image, along specified dimension
Parameters
----------
images : sequence
sequence of ``SpatialImage`` or filenames of the same dimensionality\s
check_affines : {True, False}, optional
If True, then check that all the affines for `images` are nearly
the same, raising a ``ValueError`` otherwise. Default is True
axis : None or int, optional
If None, concatenates on a new dimension. This requires all images to
be the same shape. If not None, concatenates on the specified
dimension. This requires all images to be the same shape, except on
the specified dimension.
Returns
-------
concat_img : ``SpatialImage``
New image resulting from concatenating `images` across last
dimension
'''
images = [load(img) if not hasattr(img, 'get_data')
else img for img in images]
n_imgs = len(images)
if n_imgs == 0:
raise ValueError("Cannot concatenate an empty list of images.")
img0 = images[0]
affine = img0.affine
header = img0.header
klass = img0.__class__
shape0 = img0.shape
n_dim = len(shape0)
if axis is None:
# collect images in output array for efficiency
out_shape = (n_imgs, ) + shape0
out_data = np.empty(out_shape)
else:
# collect images in list for use with np.concatenate
out_data = [None] * n_imgs
# Get part of shape we need to check inside loop
idx_mask = np.ones((n_dim,), dtype=bool)
if axis is not None:
idx_mask[axis] = False
masked_shape = np.array(shape0)[idx_mask]
for i, img in enumerate(images):
if len(img.shape) != n_dim:
raise ValueError(
'Image {0} has {1} dimensions, image 0 has {2}'.format(
i, len(img.shape), n_dim))
if not np.all(np.array(img.shape)[idx_mask] == masked_shape):
raise ValueError('shape {0} for image {1} not compatible with '
'first image shape {2} with axis == {0}'.format(
img.shape, i, shape0, axis))
if check_affines and not np.all(img.affine == affine):
raise ValueError('Affine for image {0} does not match affine '
'for first image'.format(i))
# Do not fill cache in image if it is empty
out_data[i] = img.get_data(caching='unchanged')
if axis is None:
out_data = np.rollaxis(out_data, 0, out_data.ndim)
else:
out_data = np.concatenate(out_data, axis=axis)
return klass(out_data, affine, header)
def four_to_three(img):
''' Create 3D images from 4D image by slicing over last axis
Parameters
----------
img : image
4D image instance of some class with methods ``get_data``,
``header`` and ``affine``, and a class constructor
allowing klass(data, affine, header)
Returns
-------
imgs : list
list of 3D images
'''
arr = img.get_data()
header = img.header
affine = img.affine
image_maker = img.__class__
if arr.ndim != 4:
raise ValueError('Expecting four dimensions')
imgs = []
for i in range(arr.shape[3]):
arr3d = arr[..., i]
img3d = image_maker(arr3d, affine, header)
imgs.append(img3d)
return imgs
def as_closest_canonical(img, enforce_diag=False):
''' Return `img` with data reordered to be closest to canonical
Canonical order is the ordering of the output axes.
Parameters
----------
img : ``spatialimage``
enforce_diag : {False, True}, optional
If True, before transforming image, check if the resulting image
affine will be close to diagonal, and if not, raise an error
Returns
-------
canonical_img : ``spatialimage``
Version of `img` where the underlying array may have been
reordered and / or flipped so that axes 0,1,2 are those axes in
the input data that are, respectively, closest to the output axis
orientation. We modify the affine accordingly. If `img` is
already has the correct data ordering, we just return `img`
unmodified.
'''
aff = img.affine
ornt = io_orientation(aff)
if np.all(ornt == [[0, 1],
[1,1],
[2,1]]): # canonical already
# however, the affine may not be diagonal
if enforce_diag and not _aff_is_diag(aff):
raise OrientationError('Transformed affine is not diagonal')
return img
shape = img.shape
t_aff = inv_ornt_aff(ornt, shape)
out_aff = np.dot(aff, t_aff)
# check if we are going to end up with something diagonal
if enforce_diag and not _aff_is_diag(aff):
raise OrientationError('Transformed affine is not diagonal')
# we need to transform the data
arr = img.get_data()
t_arr = apply_orientation(arr, ornt)
return img.__class__(t_arr, out_aff, img.header)
def _aff_is_diag(aff):
''' Utility function returning True if affine is nearly diagonal '''
rzs_aff = aff[:3, :3]
return np.allclose(rzs_aff, np.diag(np.diag(rzs_aff)))
|