This file is indexed.

/usr/lib/python2.7/dist-packages/nibabel/minc2.py is in python-nibabel 2.0.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the NiBabel package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
""" Preliminary MINC2 support

Use with care; I haven't tested this against a wide range of MINC files.

If you have a file that isn't read correctly, please send an example.

Test reading with something like::

    import nibabel as nib
    img = nib.load('my_funny.mnc')
    data = img.get_data()
    print(data.mean())
    print(data.max())
    print(data.min())

and compare against command line output of::

    mincstats my_funny.mnc
"""
import numpy as np

from .optpkg import optional_package
h5py, have_h5py, setup_module = optional_package('h5py')

from .minc1 import Minc1File, Minc1Image, MincError


class Hdf5Bunch(object):
    """ Make object for accessing attributes of variable
    """
    def __init__(self, var):
        for name, value in var.attrs.items():
            setattr(self, name, value)


class Minc2File(Minc1File):
    ''' Class to wrap MINC2 format file

    Although it has some of the same methods as a ``Header``, we use
    this only when reading a MINC2 file, to pull out useful header
    information, and for the method of reading the data out
    '''
    def __init__(self, mincfile):
        self._mincfile = mincfile
        minc_part = mincfile['minc-2.0']
        # The whole image is the first of the entries in 'image'
        image = minc_part['image']['0']
        self._image = image['image']
        self._dim_names = self._get_dimensions(self._image)
        dimensions = minc_part['dimensions']
        self._dims = [Hdf5Bunch(dimensions[s]) for s in self._dim_names]
        # We don't currently support irregular spacing
        # https://en.wikibooks.org/wiki/MINC/Reference/MINC2.0_File_Format_Reference#Dimension_variable_attributes
        for dim in self._dims:
            if dim.spacing != b'regular__':
                raise ValueError('Irregular spacing not supported')
        self._spatial_dims = [name for name in self._dim_names
                              if name.endswith('space')]
        self._image_max = image['image-max']
        self._image_min = image['image-min']

    def _get_dimensions(self, var):
        # Dimensions for a particular variable
        # Differs for MINC1 and MINC2 - see:
        # https://en.wikibooks.org/wiki/MINC/Reference/MINC2.0_File_Format_Reference#Associating_HDF5_dataspaces_with_MINC_dimensions
        try:
            dimorder = var.attrs['dimorder'].decode()
        except KeyError: # No specified dimensions
            return []
        return dimorder.split(',')

    def get_data_dtype(self):
        return self._image.dtype

    def get_data_shape(self):
        return self._image.shape

    def _get_valid_range(self):
        ''' Return valid range for image data

        The valid range can come from the image 'valid_range' or
        failing that, from the data type range
        '''
        ddt = self.get_data_dtype()
        info = np.iinfo(ddt.type)
        try:
            valid_range = self._image.attrs['valid_range']
        except AttributeError:
            valid_range = [info.min, info.max]
        else:
            if valid_range[0] < info.min or valid_range[1] > info.max:
                raise ValueError('Valid range outside input '
                                 'data type range')
        return np.asarray(valid_range, dtype=np.float)

    def _get_scalar(self, var):
        """ Get scalar value from HDF5 scalar """
        return var.value

    def _get_array(self, var):
        """ Get array from HDF5 array """
        return np.asanyarray(var)

    def get_scaled_data(self, sliceobj=()):
        """ Return scaled data for slice definition `sliceobj`

        Parameters
        ----------
        sliceobj : tuple, optional
            slice definition. If not specified, return whole array

        Returns
        -------
        scaled_arr : array
            array from minc file with scaling applied
        """
        if sliceobj == ():
            raw_data = np.asanyarray(self._image)
        else: # Try slicing into the HDF array (maybe it's possible)
            try:
                raw_data = self._image[sliceobj]
            except (ValueError, TypeError):
                raw_data = np.asanyarray(self._image)[sliceobj]
            else:
                raw_data = np.asanyarray(raw_data)
        return self._normalize(raw_data, sliceobj)


class Minc2Image(Minc1Image):
    ''' Class for MINC2 images

    The MINC2 image class uses the default header type, rather than a
    specific MINC header type - and reads the relevant information from
    the MINC file on load.
    '''
    # MINC2 does not do compressed whole files
    _compressed_exts = ()

    @classmethod
    def from_file_map(klass, file_map):
        holder = file_map['image']
        if holder.filename is None:
            raise MincError('MINC2 needs filename for load')
        minc_file = Minc2File(h5py.File(holder.filename, 'r'))
        affine = minc_file.get_affine()
        if affine.shape != (4, 4):
            raise MincError('Image does not have 3 spatial dimensions')
        data_dtype = minc_file.get_data_dtype()
        shape = minc_file.get_data_shape()
        zooms = minc_file.get_zooms()
        header = klass.header_class(data_dtype, shape, zooms)
        data = klass.ImageArrayProxy(minc_file)
        return klass(data, affine, header, extra=None, file_map=file_map)


load = Minc2Image.load