/usr/lib/python2.7/dist-packages/nibabel/parrec.py is in python-nibabel 2.0.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 | # emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the NiBabel package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Read images in PAR/REC format.
This is yet another MRI image format generated by Philips scanners. It is an
ASCII header (PAR) plus a binary blob (REC).
This implementation aims to read version 4 and 4.2 of this format. Other
versions could probably be supported, but we need example images to test
against. If you want us to support another version, and have an image we can
add to the test suite, let us know. You would make us very happy by submitting
a pull request.
###############
PAR file format
###############
The PAR format appears to have two sections:
General information
###################
This is a set of lines each giving one key : value pair, examples::
. EPI factor <0,1=no EPI> : 39
. Dynamic scan <0=no 1=yes> ? : 1
. Diffusion <0=no 1=yes> ? : 0
(from nibabe/tests/data/phantom_EPI_asc_CLEAR_2_1.PAR)
Image information
#################
There is a ``#`` prefixed list of fields under the heading "IMAGE INFORMATION
DEFINITION". From the same file, here is the start of this list::
# === IMAGE INFORMATION DEFINITION =============================================
# The rest of this file contains ONE line per image, this line contains the following information:
#
# slice number (integer)
# echo number (integer)
# dynamic scan number (integer)
There follows a space separated table with values for these fields, each row
containing all the named values. Here's the first few lines from the example
file above::
# === IMAGE INFORMATION ==========================================================
# sl ec dyn ph ty idx pix scan% rec size (re)scale window angulation offcentre thick gap info spacing echo dtime ttime diff avg flip freq RR-int turbo delay b grad cont anis diffusion L.ty
1 1 1 1 0 2 0 16 62 64 64 0.00000 1.29035 4.28404e-003 1070 1860 -13.26 -0.00 -0.00 2.51 -0.81 -8.69 6.000 2.000 0 1 0 2 3.750 3.750 30.00 0.00 0.00 0.00 0 90.00 0 0 0 39 0.0 1 1 8 0 0.000 0.000 0.000 1
2 1 1 1 0 2 1 16 62 64 64 0.00000 1.29035 4.28404e-003 1122 1951 -13.26 -0.00 -0.00 2.51 6.98 -10.53 6.000 2.000 0 1 0 2 3.750 3.750 30.00 0.00 0.00 0.00 0 90.00 0 0 0 39 0.0 1 1 8 0 0.000 0.000 0.000 1
3 1 1 1 0 2 2 16 62 64 64 0.00000 1.29035 4.28404e-003 1137 1977 -13.26 -0.00 -0.00 2.51 14.77 -12.36 6.000 2.000 0 1 0 2 3.750 3.750 30.00 0.00 0.00 0.00 0 90.00 0 0 0 39 0.0 1 1 8 0 0.000 0.000 0.000 1
###########
Orientation
###########
PAR files refer to orientations "ap", "fh" and "rl".
Nibabel's required affine output axes are RAS (left to Right, posterior to
Anterior, inferior to Superior). The correspondence of the PAR file's axes to
RAS axes is:
* ap = anterior -> posterior = negative A in RAS
* fh = foot -> head = S in RAS
* rl = right -> left = negative R in RAS
The orientation of the PAR file axes corresponds to DICOM's LPS coordinate
system (right to Left, anterior to Posterior, inferior to Superior), but in a
different order.
We call the PAR file's axis system "PSL" (Posterior, Superior, Left)
#########
Data type
#########
It seems that everyone agrees that Philips stores REC data in little-endian
format - see https://github.com/nipy/nibabel/issues/274
Philips XML header files, and some previous experience, suggest that the REC
data is always stored as 8 or 16 bit unsigned integers - see
https://github.com/nipy/nibabel/issues/275
"""
from __future__ import print_function, division
import warnings
import numpy as np
from copy import deepcopy
import re
from .keywordonly import kw_only_meth
from .spatialimages import SpatialImage, Header
from .eulerangles import euler2mat
from .volumeutils import Recoder, array_from_file, BinOpener
from .affines import from_matvec, dot_reduce, apply_affine
from .nifti1 import unit_codes
from .fileslice import fileslice, strided_scalar
# PSL to RAS affine
PSL_TO_RAS = np.array([[0, 0, -1, 0], # L -> R
[-1, 0, 0, 0], # P -> A
[0, 1, 0, 0], # S -> S
[0, 0, 0, 1]])
# Acquisition (tra/sag/cor) to PSL axes
# These come from looking at transverse, sagittal, coronal datasets where we
# can see the LR, PA, SI orientation of the slice axes from the scanned object
ACQ_TO_PSL = dict(
transverse=np.array([[0, 1, 0, 0], # P
[0, 0, 1, 0], # S
[1, 0, 0, 0], # L
[0, 0, 0, 1]]),
sagittal=np.diag([1, -1, -1, 1]),
coronal=np.array([[0, 0, 1, 0], # P
[0, -1, 0, 0], # S
[1, 0, 0, 0], # L
[0, 0, 0, 1]])
)
# General information dict definitions
# assign props to PAR header entries
# values are: (shortname[, dtype[, shape]])
_hdr_key_dict = {
'Patient name': ('patient_name',),
'Examination name': ('exam_name',),
'Protocol name': ('protocol_name',),
'Examination date/time': ('exam_date',),
'Series Type': ('series_type',),
'Acquisition nr': ('acq_nr', int),
'Reconstruction nr': ('recon_nr', int),
'Scan Duration [sec]': ('scan_duration', float),
'Max. number of cardiac phases': ('max_cardiac_phases', int),
'Max. number of echoes': ('max_echoes', int),
'Max. number of slices/locations': ('max_slices', int),
'Max. number of dynamics': ('max_dynamics', int),
'Max. number of mixes': ('max_mixes', int),
'Patient position': ('patient_position',),
'Preparation direction': ('prep_direction',),
'Technique': ('tech',),
'Scan resolution (x, y)': ('scan_resolution', int, (2,)),
'Scan mode': ('scan_mode',),
'Repetition time [ms]': ('repetition_time', float),
'FOV (ap,fh,rl) [mm]': ('fov', float, (3,)),
'Water Fat shift [pixels]': ('water_fat_shift', float),
'Angulation midslice(ap,fh,rl)[degr]': ('angulation', float, (3,)),
'Off Centre midslice(ap,fh,rl) [mm]': ('off_center', float, (3,)),
'Flow compensation <0=no 1=yes> ?': ('flow_compensation', int),
'Presaturation <0=no 1=yes> ?': ('presaturation', int),
'Phase encoding velocity [cm/sec]': ('phase_enc_velocity', float, (3,)),
'MTC <0=no 1=yes> ?': ('mtc', int),
'SPIR <0=no 1=yes> ?': ('spir', int),
'EPI factor <0,1=no EPI>': ('epi_factor', int),
'Dynamic scan <0=no 1=yes> ?': ('dyn_scan', int),
'Diffusion <0=no 1=yes> ?': ('diffusion', int),
'Diffusion echo time [ms]': ('diffusion_echo_time', float),
# Lines below added for par / rec versions > 4
'Max. number of diffusion values': ('max_diffusion_values', int),
'Max. number of gradient orients': ('max_gradient_orient', int),
# Line below added for par / rec version > 4.1
'Number of label types <0=no ASL>': ('nr_label_types', int),
}
# Image information as coded into a numpy structured array
# header items order per image definition line
image_def_dtds = {}
image_def_dtds['V4'] = [
('slice number', int),
('echo number', int,),
('dynamic scan number', int,),
('cardiac phase number', int,),
('image_type_mr', int,),
('scanning sequence', int,),
('index in REC file', int,),
('image pixel size', int,),
('scan percentage', int,),
('recon resolution', int, (2,)),
('rescale intercept', float),
('rescale slope', float),
('scale slope', float),
# Window center, width recorded as integer but can be float
('window center', float,),
('window width', float,),
('image angulation', float, (3,)),
('image offcentre', float, (3,)),
('slice thickness', float),
('slice gap', float),
('image_display_orientation', int,),
('slice orientation', int,),
('fmri_status_indication', int,),
('image_type_ed_es', int,),
('pixel spacing', float, (2,)),
('echo_time', float),
('dyn_scan_begin_time', float),
('trigger_time', float),
('diffusion_b_factor', float),
('number of averages', int,),
('image_flip_angle', float),
('cardiac frequency', int,),
('minimum RR-interval', int,),
('maximum RR-interval', int,),
('TURBO factor', int,),
('Inversion delay', float)]
# Extra image def fields for 4.1 compared to 4
image_def_dtds['V4.1'] = image_def_dtds['V4'] + [
('diffusion b value number', int,), # (imagekey!)
('gradient orientation number', int,), # (imagekey!)
('contrast type', 'S30'), # XXX might be too short?
('diffusion anisotropy type', 'S30'), # XXX might be too short?
('diffusion', float, (3,)),
]
# Extra image def fields for 4.2 compared to 4.1
image_def_dtds['V4.2'] = image_def_dtds['V4.1'] + [
('label type', int,), # (imagekey!)
]
#: PAR header versions we claim to understand
supported_versions = list(image_def_dtds.keys())
#: Deprecated; please don't use
image_def_dtype = np.dtype(image_def_dtds['V4.2'])
#: slice orientation codes
slice_orientation_codes = Recoder(( # code, label
(1, 'transverse'),
(2, 'sagittal'),
(3, 'coronal')), fields=('code', 'label'))
class PARRECError(Exception):
"""Exception for PAR/REC format related problems.
To be raised whenever PAR/REC is not happy, or we are not happy with
PAR/REC.
"""
pass
# Value after colon may be absent
GEN_RE = re.compile(r".\s+(.*?)\s*:\s*(.*)")
def _split_header(fobj):
""" Split header into `version`, `gen_dict`, `image_lines` """
version = None
gen_dict = {}
image_lines = []
# Small state-machine
state = 'top-header'
for line in fobj:
line = line.strip()
if line == '':
continue
if state == 'top-header':
if not line.startswith('#'):
state = 'general-info'
elif 'image export tool' in line:
version = line.split()[-1]
if state == 'general-info':
if not line.startswith('.'):
state = 'comment-block'
else: # Let match raise error for unexpected field format
key, value = GEN_RE.match(line).groups()
gen_dict[key] = value
if state == 'comment-block':
if not line.startswith('#'):
state = 'image-info'
if state == 'image-info':
if line.startswith('#'):
break
image_lines.append(line)
return version, gen_dict, image_lines
def _process_gen_dict(gen_dict):
""" Process `gen_dict` key, values into `general_info`
"""
general_info = {}
for key, value in gen_dict.items():
# get props for this hdr field
props = _hdr_key_dict[key]
# turn values into meaningful dtype
if len(props) == 2:
# only dtype spec and no shape
value = props[1](value)
elif len(props) == 3:
# array with dtype and shape
value = np.fromstring(value, props[1], sep=' ')
value.shape = props[2]
general_info[props[0]] = value
return general_info
def _process_image_lines(image_lines, version):
""" Process image information definition lines according to `version`
"""
# postproc image def props
image_def_dtd = image_def_dtds[version]
# create an array for all image defs
image_defs = np.zeros(len(image_lines), dtype=image_def_dtd)
# for every image definition
for i, line in enumerate(image_lines):
items = line.split()
item_counter = 0
# for all image properties we know about
for props in image_def_dtd:
if len(props) == 2:
name, np_type = props
value = items[item_counter]
if not np.dtype(np_type).kind == 'S':
value = np_type(value)
item_counter += 1
elif len(props) == 3:
name, np_type, shape = props
nelements = np.prod(shape)
value = items[item_counter:item_counter + nelements]
value = [np_type(v) for v in value]
item_counter += nelements
image_defs[name][i] = value
return image_defs
def vol_numbers(slice_nos):
""" Calculate volume numbers inferred from slice numbers `slice_nos`
The volume number for each slice is the number of times this slice has
occurred previously in the `slice_nos` sequence
Parameters
----------
slice_nos : sequence
Sequence of slice numbers, e.g. ``[1, 2, 3, 4, 1, 2, 3, 4]``.
Returns
-------
vol_nos : list
A list, the same length of `slice_nos` giving the volume number for
each corresponding slice number.
"""
counter = {}
vol_nos = []
for s_no in slice_nos:
count = counter.setdefault(s_no, 0)
vol_nos.append(count)
counter[s_no] += 1
return vol_nos
def vol_is_full(slice_nos, slice_max, slice_min=1):
""" Vector with True for slices in complete volume, False otherwise
Parameters
----------
slice_nos : sequence
Sequence of slice numbers, e.g. ``[1, 2, 3, 4, 1, 2, 3, 4]``.
slice_max : int
Highest slice number for a full slice set. Slice set will be
``range(slice_min, slice_max+1)``.
slice_min : int
Lowest slice number for full slice set.
Returns
-------
is_full : array
Bool vector with True for slices in full volumes, False for slices in
partial volumes. A full volume is a volume with all slices in the
``slice set`` as defined above.
Raises
------
ValueError
if any `slice_nos` value is outside slice set.
"""
slice_set = set(range(slice_min, slice_max + 1))
if not slice_set.issuperset(slice_nos):
raise ValueError(
'Slice numbers outside inclusive range {0} to {1}'.format(
slice_min, slice_max))
vol_nos = np.array(vol_numbers(slice_nos))
slice_nos = np.asarray(slice_nos)
is_full = np.ones(slice_nos.shape, dtype=bool)
for vol_no in set(vol_nos):
ours = vol_nos == vol_no
if not set(slice_nos[ours]) == slice_set:
is_full[ours] = False
return is_full
def _truncation_checks(general_info, image_defs, permit_truncated):
""" Check for presence of truncation in PAR file parameters
Raise error if truncation present and `permit_truncated` is False.
"""
def _err_or_warn(msg):
if not permit_truncated:
raise PARRECError(msg)
warnings.warn(msg)
def _chk_trunc(idef_name, gdef_max_name):
if not gdef_max_name in general_info:
return
id_values = image_defs[idef_name + ' number']
n_have = len(set(id_values))
n_expected = general_info[gdef_max_name]
if n_have != n_expected:
_err_or_warn(
"Header inconsistency: Found {0} {1} values, "
"but expected {2}".format(n_have, idef_name, n_expected))
_chk_trunc('slice', 'max_slices')
_chk_trunc('echo', 'max_echoes')
_chk_trunc('dynamic scan', 'max_dynamics')
_chk_trunc('diffusion b value', 'max_diffusion_values')
_chk_trunc('gradient orientation', 'max_gradient_orient')
# Final check for partial volumes
if not np.all(vol_is_full(image_defs['slice number'],
general_info['max_slices'])):
_err_or_warn("Found one or more partial volume(s)")
def one_line(long_str):
""" Make maybe mutli-line `long_str` into one long line """
return ' '.join(line.strip() for line in long_str.splitlines())
def parse_PAR_header(fobj):
"""Parse a PAR header and aggregate all information into useful containers.
Parameters
----------
fobj : file-object
The PAR header file object.
Returns
-------
general_info : dict
Contains all "General Information" from the header file
image_info : ndarray
Structured array with fields giving all "Image information" in the
header
"""
# single pass through the header
version, gen_dict, image_lines = _split_header(fobj)
if version not in supported_versions:
warnings.warn(one_line(
""" PAR/REC version '{0}' is currently not supported -- making an
attempt to read nevertheless. Please email the NiBabel mailing
list, if you are interested in adding support for this version.
""".format(version)))
general_info = _process_gen_dict(gen_dict)
image_defs = _process_image_lines(image_lines, version)
return general_info, image_defs
def _data_from_rec(rec_fileobj, in_shape, dtype, slice_indices, out_shape,
scalings=None, mmap=True):
"""Get data from REC file
Parameters
----------
rec_fileobj : file-like
The file to process.
in_shape : tuple
The input shape inferred from the PAR file.
dtype : dtype
The datatype.
slice_indices : array of int
The indices used to re-index the resulting array properly.
out_shape : tuple
The output shape.
scalings : {None, sequence}, optional
Scalings to use. If not None, a length 2 sequence giving (``slope``,
``intercept``), where ``slope`` and ``intercept`` are arrays that can
be broadcast to `out_shape`.
mmap : {True, False, 'c', 'r', 'r+'}, optional
`mmap` controls the use of numpy memory mapping for reading data. If
False, do not try numpy ``memmap`` for data array. If one of {'c', 'r',
'r+'}, try numpy memmap with ``mode=mmap``. A `mmap` value of True
gives the same behavior as ``mmap='c'``. If `rec_fileobj` cannot be
memory-mapped, ignore `mmap` value and read array from file.
Returns
-------
data : array
The scaled and sorted array.
"""
rec_data = array_from_file(in_shape, dtype, rec_fileobj, mmap=mmap)
rec_data = rec_data[..., slice_indices]
rec_data = rec_data.reshape(out_shape, order='F')
if scalings is not None:
# Don't do in-place b/c this goes int16 -> float64
rec_data = rec_data * scalings[0] + scalings[1]
return rec_data
class PARRECArrayProxy(object):
@kw_only_meth(2)
def __init__(self, file_like, header, mmap=True, scaling='dv'):
""" Initialize PARREC array proxy
Parameters
----------
file_like : file-like object
Filename or object implementing ``read, seek, tell``
header : PARRECHeader instance
Implementing ``get_data_shape, get_data_dtype``,
``get_sorted_slice_indices``, ``get_data_scaling``,
``get_rec_shape``.
mmap : {True, False, 'c', 'r'}, optional, keyword only
`mmap` controls the use of numpy memory mapping for reading data.
If False, do not try numpy ``memmap`` for data array. If one of
{'c', 'r'}, try numpy memmap with ``mode=mmap``. A `mmap` value of
True gives the same behavior as ``mmap='c'``. If `file_like`
cannot be memory-mapped, ignore `mmap` value and read array from
file.
scaling : {'fp', 'dv'}, optional, keyword only
Type of scaling to use - see header ``get_data_scaling`` method.
"""
if mmap not in (True, False, 'c', 'r'):
raise ValueError("mmap should be one of {True, False, 'c', 'r'}")
self.file_like = file_like
# Copies of values needed to read array
self._shape = header.get_data_shape()
self._dtype = header.get_data_dtype()
self._slice_indices = header.get_sorted_slice_indices()
self._mmap=mmap
self._slice_scaling = header.get_data_scaling(scaling)
self._rec_shape = header.get_rec_shape()
@property
def shape(self):
return self._shape
@property
def dtype(self):
return self._dtype
@property
def is_proxy(self):
return True
def get_unscaled(self):
with BinOpener(self.file_like) as fileobj:
return _data_from_rec(fileobj, self._rec_shape, self._dtype,
self._slice_indices, self._shape,
mmap=self._mmap)
def __array__(self):
with BinOpener(self.file_like) as fileobj:
return _data_from_rec(fileobj,
self._rec_shape,
self._dtype,
self._slice_indices,
self._shape,
scalings=self._slice_scaling,
mmap=self._mmap)
def __getitem__(self, slicer):
indices = self._slice_indices
if indices[0] != 0 or np.any(np.diff(indices) != 1):
# We can't load direct from REC file, use inefficient slicing
return np.asanyarray(self)[slicer]
# Slices all sequential from zero, can use fileslice
# This gives more efficient volume by volume loading, for example
with BinOpener(self.file_like) as fileobj:
raw_data = fileslice(fileobj, slicer, self._shape, self._dtype, 0, 'F')
# Broadcast scaling to shape of original data
slopes, inters = self._slice_scaling
fake_data = strided_scalar(self._shape)
_, slopes, inters = np.broadcast_arrays(fake_data, slopes, inters)
# Slice scaling to give output shape
return raw_data * slopes[slicer] + inters[slicer]
class PARRECHeader(Header):
"""PAR/REC header"""
def __init__(self, info, image_defs, permit_truncated=False):
"""
Parameters
----------
info : dict
"General information" from the PAR file (as returned by
`parse_PAR_header()`).
image_defs : array
Structured array with image definitions from the PAR file (as
returned by `parse_PAR_header()`).
permit_truncated : bool, optional
If True, a warning is emitted instead of an error when a truncated
recording is detected.
"""
self.general_info = info.copy()
self.image_defs = image_defs.copy()
self.permit_truncated = permit_truncated
_truncation_checks(info, image_defs, permit_truncated)
# charge with basic properties to be able to use base class
# functionality
# dtype
bitpix = self._get_unique_image_prop('image pixel size')
if bitpix not in (8, 16):
raise PARRECError('Only 8- and 16-bit data supported (not %s)'
'please report this to the nibabel developers'
% bitpix)
# REC data always little endian
dt = np.dtype('uint' + str(bitpix)).newbyteorder('<')
Header.__init__(self,
data_dtype=dt,
shape=self._calc_data_shape(),
zooms=self._calc_zooms())
@classmethod
def from_header(klass, header=None):
if header is None:
raise PARRECError('Cannot create PARRECHeader from air.')
if type(header) == klass:
return header.copy()
raise PARRECError('Cannot create PARREC header from '
'non-PARREC header.')
@classmethod
def from_fileobj(klass, fileobj, permit_truncated=False):
info, image_defs = parse_PAR_header(fileobj)
return klass(info, image_defs, permit_truncated)
def copy(self):
return PARRECHeader(deepcopy(self.general_info),
self.image_defs.copy(),
self.permit_truncated)
def as_analyze_map(self):
"""Convert PAR parameters to NIFTI1 format"""
# Entries in the dict correspond to the parameters found in
# the NIfTI1 header, specifically in nifti1.py `header_dtd` defs.
# Here we set the parameters we can to simplify PAR/REC
# to NIfTI conversion.
descr = ("%s;%s;%s;%s"
% (self.general_info['exam_name'],
self.general_info['patient_name'],
self.general_info['exam_date'].replace(' ', ''),
self.general_info['protocol_name']))[:80] # max len
is_fmri = (self.general_info['max_dynamics'] > 1)
t = 'msec' if is_fmri else 'unknown'
xyzt_units = unit_codes['mm'] + unit_codes[t]
return dict(descr=descr, xyzt_units=xyzt_units) # , pixdim=pixdim)
def get_water_fat_shift(self):
"""Water fat shift, in pixels"""
return self.general_info['water_fat_shift']
def get_echo_train_length(self):
"""Echo train length of the recording"""
return self.general_info['epi_factor']
def get_q_vectors(self):
"""Get Q vectors from the data
Returns
-------
q_vectors : None or array
Array of q vectors (bvals * bvecs), or None if not a diffusion
acquisition.
"""
bvals, bvecs = self.get_bvals_bvecs()
if bvals is None and bvecs is None:
return None
return bvecs * bvals[:, np.newaxis]
def get_bvals_bvecs(self):
"""Get bvals and bvecs from data
Returns
-------
b_vals : None or array
Array of b values, shape (n_directions,), or None if not a
diffusion acquisition.
b_vectors : None or array
Array of b vectors, shape (n_directions, 3), or None if not a
diffusion acquisition.
"""
if self.general_info['diffusion'] == 0:
return None, None
reorder = self.get_sorted_slice_indices()
n_slices, n_vols = self.get_data_shape()[-2:]
bvals = self.image_defs['diffusion_b_factor'][reorder].reshape(
(n_slices, n_vols), order='F')
# All bvals within volume should be the same
assert not np.any(np.diff(bvals, axis=0))
bvals = bvals[0]
bvecs = self.image_defs['diffusion'][reorder].reshape(
(n_slices, n_vols, 3), order='F')
# All 3 values of bvecs should be same within volume
assert not np.any(np.diff(bvecs, axis=0))
bvecs = bvecs[0]
# rotate bvecs to match stored image orientation
permute_to_psl = ACQ_TO_PSL[self.get_slice_orientation()]
bvecs = apply_affine(np.linalg.inv(permute_to_psl), bvecs)
return bvals, bvecs
def _get_unique_image_prop(self, name):
""" Scan image definitions and return unique value of a property.
* Get array for named field of ``self.image_defs``;
* Check that all rows in the array are the same and raise error
otherwise;
* Return the row.
Parameters
----------
name : str
Name of the property in ``self.image_defs``
Returns
-------
unique_value : scalar or array
Raises
------
PARRECError
if the rows of ``self.image_defs[name]`` do not all compare equal.
"""
props = self.image_defs[name]
if np.any(np.diff(props, axis=0)):
raise PARRECError('Varying {0} in image sequence ({1}). This is '
'not suppported.'.format(name, props))
return props[0]
def get_voxel_size(self):
"""Returns the spatial extent of a voxel.
Does not include the slice gap in the slice extent.
This function is deprecated and we will remove it in future versions of
nibabel. Please use ``get_zooms`` instead. If you need the slice
thickness not including the slice gap, use ``self.image_defs['slice
thickness']``.
Returns
-------
vox_size: shape (3,) ndarray
"""
warnings.warn('Please use "get_zooms" instead of "get_voxel_size"',
DeprecationWarning,
stacklevel=2)
# slice orientation for the whole image series
slice_thickness = self._get_unique_image_prop('slice thickness')
voxsize_inplane = self._get_unique_image_prop('pixel spacing')
voxsize = np.array((voxsize_inplane[0],
voxsize_inplane[1],
slice_thickness))
return voxsize
def get_data_offset(self):
""" PAR header always has 0 data offset (into REC file) """
return 0
def set_data_offset(self, offset):
""" PAR header always has 0 data offset (into REC file) """
if offset != 0:
raise PARRECError("PAR header assumes offset 0")
def _calc_zooms(self):
"""Compute image zooms from header data.
Spatial axis are first three.
Returns
-------
zooms : array
Length 3 array for 3D image, length 4 array for 4D image.
Notes
-----
This routine called in ``__init__``, so may not be able to use
some attributes available in the fully initalized object.
"""
# slice orientation for the whole image series
slice_gap = self._get_unique_image_prop('slice gap')
# scaling per image axis
n_dim = 4 if self._get_n_vols() > 1 else 3
zooms = np.ones(n_dim)
# spatial sizes are inplane X mm, inplane Y mm + inter slice gap
zooms[:2] = self._get_unique_image_prop('pixel spacing')
slice_thickness = self._get_unique_image_prop('slice thickness')
zooms[2] = slice_thickness + slice_gap
# If 4D dynamic scan, convert time from milliseconds to seconds
if len(zooms) > 3 and self.general_info['dyn_scan']:
zooms[3] = self.general_info['repetition_time'] / 1000.
return zooms
def get_affine(self, origin='scanner'):
"""Compute affine transformation into scanner space.
The method only considers global rotation and offset settings in the
header and ignores potentially deviating information in the image
definitions.
Parameters
----------
origin : {'scanner', 'fov'}
Transformation origin. By default the transformation is computed
relative to the scanner's iso center. If 'fov' is requested the
transformation origin will be the center of the field of view
instead.
Returns
-------
aff : (4, 4) array
4x4 array, with output axis order corresponding to RAS or (x,y,z)
or (lr, pa, fh).
Notes
-----
Transformations appear to be specified in (ap, fh, rl) axes. The
orientation of data is recorded in the "slice orientation" field of the
PAR header "General Information".
We need to:
* translate to coordinates in terms of the center of the FOV
* apply voxel size scaling
* reorder / flip the data to Philips' PSL axes
* apply the rotations
* apply any isocenter scaling offset if `origin` == "scanner"
* reorder and flip to RAS axes
"""
# shape, zooms in original data ordering (ijk ordering)
ijk_shape = np.array(self.get_data_shape()[:3])
to_center = from_matvec(np.eye(3), -(ijk_shape - 1) / 2.)
zoomer = np.diag(list(self.get_zooms()[:3]) + [1])
slice_orientation = self.get_slice_orientation()
permute_to_psl = ACQ_TO_PSL.get(slice_orientation)
if permute_to_psl is None:
raise PARRECError(
"Unknown slice orientation ({0}).".format(slice_orientation))
# hdr has deg, we need radians
# Order is [ap, fh, rl]
ang_rad = self.general_info['angulation'] * np.pi / 180.0
# euler2mat accepts z, y, x angles and does rotation around z, y, x
# axes in that order. It's possible that PAR assumes rotation in a
# different order, we still need some relevant data to test this
rot = from_matvec(euler2mat(*ang_rad[::-1]), [0, 0, 0])
# compose the PSL affine
psl_aff = dot_reduce(rot, permute_to_psl, zoomer, to_center)
if origin == 'scanner':
# offset to scanner's isocenter (in ap, fh, rl)
iso_offset = self.general_info['off_center']
psl_aff[:3, 3] += iso_offset
# Currently in PSL; apply PSL -> RAS
return np.dot(PSL_TO_RAS, psl_aff)
def _get_n_slices(self):
""" Get number of slices for output data """
return len(set(self.image_defs['slice number']))
def _get_n_vols(self):
""" Get number of volumes for output data """
slice_nos = self.image_defs['slice number']
vol_nos = vol_numbers(slice_nos)
is_full = vol_is_full(slice_nos, self.general_info['max_slices'])
return len(set(np.array(vol_nos)[is_full]))
def _calc_data_shape(self):
""" Calculate the output shape of the image data
Returns length 3 tuple for 3D image, length 4 tuple for 4D.
Returns
-------
n_inplaneX : int
number of voxels in X direction.
n_inplaneY : int
number of voxels in Y direction.
n_slices : int
number of slices.
n_vols : int
number of volumes or absent for 3D image.
Notes
-----
This routine called in ``__init__``, so may not be able to use
some attributes available in the fully initalized object.
"""
inplane_shape = tuple(self._get_unique_image_prop('recon resolution'))
shape = inplane_shape + (self._get_n_slices(),)
n_vols = self._get_n_vols()
return shape + (n_vols,) if n_vols > 1 else shape
def get_data_scaling(self, method="dv"):
"""Returns scaling slope and intercept.
Parameters
----------
method : {'fp', 'dv'}
Scaling settings to be reported -- see notes below.
Returns
-------
slope : array
scaling slope
intercept : array
scaling intercept
Notes
-----
The PAR header contains two different scaling settings: 'dv' (value on
console) and 'fp' (floating point value). Here is how they are defined:
PV: value in REC
RS: rescale slope
RI: rescale intercept
SS: scale slope
DV = PV * RS + RI
FP = DV / (RS * SS)
"""
# These will be 3D or 4D
scale_slope = self.image_defs['scale slope']
rescale_slope = self.image_defs['rescale slope']
rescale_intercept = self.image_defs['rescale intercept']
if method == 'dv':
slope, intercept = rescale_slope, rescale_intercept
elif method == 'fp':
slope = 1.0 / scale_slope
intercept = rescale_intercept / (rescale_slope * scale_slope)
else:
raise ValueError("Unknown scaling method '%s'." % method)
reorder = self.get_sorted_slice_indices()
slope = slope[reorder]
intercept = intercept[reorder]
shape = (1, 1) + self.get_data_shape()[2:]
slope = slope.reshape(shape, order='F')
intercept = intercept.reshape(shape, order='F')
return slope, intercept
def get_slice_orientation(self):
"""Returns the slice orientation label.
Returns
-------
orientation : {'transverse', 'sagittal', 'coronal'}
"""
lab = self._get_unique_image_prop('slice orientation')
return slice_orientation_codes.label[lab]
def get_rec_shape(self):
inplane_shape = tuple(self._get_unique_image_prop('recon resolution'))
return inplane_shape + (len(self.image_defs),)
def get_sorted_slice_indices(self):
"""Indices to sort (and maybe discard) slices in REC file
Returns list for indexing into the last (third) dimension of the REC
data array, and (equivalently) the only dimension of
``self.image_defs``.
If the recording is truncated, the returned indices take care of
discarding any indices that are not meant to be used.
"""
slice_nos = self.image_defs['slice number']
is_full = vol_is_full(slice_nos, self.general_info['max_slices'])
keys = (slice_nos, vol_numbers(slice_nos), np.logical_not(is_full))
# Figure out how many we need to remove from the end, and trim them
# Based on our sorting, they should always be last
n_used = np.prod(self.get_data_shape()[2:])
return np.lexsort(keys)[:n_used]
class PARRECImage(SpatialImage):
"""PAR/REC image"""
header_class = PARRECHeader
files_types = (('image', '.rec'), ('header', '.par'))
ImageArrayProxy = PARRECArrayProxy
@classmethod
@kw_only_meth(1)
def from_file_map(klass, file_map, mmap=True, permit_truncated=False,
scaling='dv'):
""" Create PARREC image from file map `file_map`
Parameters
----------
file_map : dict
dict with keys ``image, header`` and values being fileholder
objects for the respective REC and PAR files.
mmap : {True, False, 'c', 'r'}, optional, keyword only
`mmap` controls the use of numpy memory mapping for reading image
array data. If False, do not try numpy ``memmap`` for data array.
If one of {'c', 'r'}, try numpy memmap with ``mode=mmap``. A `mmap`
value of True gives the same behavior as ``mmap='c'``. If image
data file cannot be memory-mapped, ignore `mmap` value and read
array from file.
permit_truncated : {False, True}, optional, keyword-only
If False, raise an error for an image where the header shows signs
that fewer slices / volumes were recorded than were expected.
scaling : {'dv', 'fp'}, optional, keyword-only
Scaling method to apply to data (see
:meth:`PARRECHeader.get_data_scaling`).
"""
with file_map['header'].get_prepare_fileobj('rt') as hdr_fobj:
hdr = klass.header_class.from_fileobj(
hdr_fobj,
permit_truncated=permit_truncated)
rec_fobj = file_map['image'].get_prepare_fileobj()
data = klass.ImageArrayProxy(rec_fobj, hdr,
mmap=mmap, scaling=scaling)
return klass(data, hdr.get_affine(), header=hdr, extra=None,
file_map=file_map)
@classmethod
@kw_only_meth(1)
def from_filename(klass, filename, mmap=True, permit_truncated=False,
scaling='dv'):
""" Create PARREC image from filename `filename`
Parameters
----------
filename : str
Filename of "PAR" or "REC" file
mmap : {True, False, 'c', 'r'}, optional, keyword only
`mmap` controls the use of numpy memory mapping for reading image
array data. If False, do not try numpy ``memmap`` for data array.
If one of {'c', 'r'}, try numpy memmap with ``mode=mmap``. A `mmap`
value of True gives the same behavior as ``mmap='c'``. If image
data file cannot be memory-mapped, ignore `mmap` value and read
array from file.
permit_truncated : {False, True}, optional, keyword-only
If False, raise an error for an image where the header shows signs
that fewer slices / volumes were recorded than were expected.
scaling : {'dv', 'fp'}, optional, keyword-only
Scaling method to apply to data (see
:meth:`PARRECHeader.get_data_scaling`).
"""
file_map = klass.filespec_to_file_map(filename)
return klass.from_file_map(file_map,
mmap=mmap,
permit_truncated=permit_truncated,
scaling=scaling)
load = from_filename
load = PARRECImage.load
|