This file is indexed.

/usr/lib/python2.7/dist-packages/nibabel/trackvis.py is in python-nibabel 2.0.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
""" Read and write trackvis files
"""
from __future__ import division, print_function
import warnings
import struct
import itertools

import numpy as np
import numpy.linalg as npl

from .py3k import asstr
from .volumeutils import (native_code, swapped_code, endian_codes, rec2dict)
from .volumeutils import BinOpener
from .orientations import aff2axcodes
from .affines import apply_affine

try:
    basestring
except NameError:  # python 3
    basestring = str

# Definition of trackvis header structure.
# See http://www.trackvis.org/docs/?subsect=fileformat
# See https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html
header_1_dtd = [
    ('id_string', 'S6'),
    ('dim', 'h', 3),
    ('voxel_size', 'f4', 3),
    ('origin', 'f4', 3),
    ('n_scalars', 'h'),
    ('scalar_name', 'S20', 10),
    ('n_properties', 'h'),
    ('property_name', 'S20', 10),
    ('reserved', 'S508'),
    ('voxel_order', 'S4'),
    ('pad2', 'S4'),
    ('image_orientation_patient', 'f4', 6),
    ('pad1', 'S2'),
    ('invert_x', 'S1'),
    ('invert_y', 'S1'),
    ('invert_z', 'S1'),
    ('swap_xy', 'S1'),
    ('swap_yz', 'S1'),
    ('swap_zx', 'S1'),
    ('n_count', 'i4'),
    ('version', 'i4'),
    ('hdr_size', 'i4'),
    ]

# Version 2 adds a 4x4 matrix giving the affine transformtation going
# from voxel coordinates in the referenced 3D voxel matrix, to xyz
# coordinates (axes L->R, P->A, I->S).  IF (0 based) value [3, 3] from
# this matrix is 0, this means the matrix is not recorded.
header_2_dtd = [
    ('id_string', 'S6'),
    ('dim', 'h', 3),
    ('voxel_size', 'f4', 3),
    ('origin', 'f4', 3),
    ('n_scalars', 'h'),
    ('scalar_name', 'S20', 10),
    ('n_properties', 'h'),
    ('property_name', 'S20', 10),
    ('vox_to_ras', 'f4', (4,4)), # new field for version 2
    ('reserved', 'S444'),
    ('voxel_order', 'S4'),
    ('pad2', 'S4'),
    ('image_orientation_patient', 'f4', 6),
    ('pad1', 'S2'),
    ('invert_x', 'S1'),
    ('invert_y', 'S1'),
    ('invert_z', 'S1'),
    ('swap_xy', 'S1'),
    ('swap_yz', 'S1'),
    ('swap_zx', 'S1'),
    ('n_count', 'i4'),
    ('version', 'i4'),
    ('hdr_size', 'i4'),
    ]

# Full header numpy dtypes
header_1_dtype = np.dtype(header_1_dtd)
header_2_dtype = np.dtype(header_2_dtd)

# affine to go from DICOM LPS to MNI RAS space
DPCS_TO_TAL = np.diag([-1, -1, 1, 1])


class HeaderError(Exception):
    """ Error in trackvis header
    """


class DataError(Exception):
    """ Error in trackvis data
    """


def read(fileobj, as_generator=False, points_space=None):
    ''' Read trackvis file, return streamlines, header

    Parameters
    ----------
    fileobj : string or file-like object
       If string, a filename; otherwise an open file-like object
       pointing to trackvis file (and ready to read from the beginning
       of the trackvis header data)
    as_generator : bool, optional
       Whether to return tracks as sequence (False, default) or as a generator
       (True).
    points_space : {None, 'voxel', 'rasmm'}, optional
        The coordinates in which you want the points in the *output* streamlines
        expressed.  If None, then return the points exactly as they are stored
        in the trackvis file. The points will probably be in trackviz voxmm
        space - see Notes for ``write`` function.  If 'voxel', we convert the
        points to voxel space simply by dividing by the recorded voxel size.  If
        'rasmm' we'll convert the points to RAS mm space (real space). For
        'rasmm' we check if the affine is set and matches the voxel sizes and
        voxel order.

    Returns
    -------
    streamlines : sequence or generator
       Returns sequence if `as_generator` is False, generator if True.  Value is
       sequence or generator of 3 element sequences with elements:

       #. points : ndarray shape (N,3)
          where N is the number of points
       #. scalars : None or ndarray shape (N, M)
          where M is the number of scalars per point
       #. properties : None or ndarray shape (P,)
          where P is the number of properties

    hdr : structured array
       structured array with trackvis header fields

    Notes
    -----
    The endianness of the input data can be deduced from the endianness
    of the returned `hdr` or `streamlines`

    Points are in trackvis *voxel mm*.  Each track has N points, each with 3
    coordinates, ``x, y, z``, where ``x`` is the floating point voxel coordinate
    along the first image axis, multiplied by the voxel size for that axis.
    '''
    fileobj = BinOpener(fileobj)
    hdr_str = fileobj.read(header_2_dtype.itemsize)
    # try defaulting to version 2 format
    hdr = np.ndarray(shape=(),
                     dtype=header_2_dtype,
                     buffer=hdr_str)
    if np.asscalar(hdr['id_string'])[:5] != b'TRACK':
        raise HeaderError('Expecting TRACK as first '
                          '5 characters of id_string')
    if hdr['hdr_size'] == 1000:
        endianness = native_code
    else:
        hdr = hdr.newbyteorder()
        if hdr['hdr_size'] != 1000:
            raise HeaderError('Invalid hdr_size of %s'
                              % hdr['hdr_size'])
        endianness = swapped_code
    # Check version and adapt structure accordingly
    version = hdr['version']
    if version not in (1, 2):
        raise HeaderError('Reader only supports versions 1 and 2')
    if version == 1: # make a new header with the same data
        hdr = np.ndarray(shape=(),
                         dtype=header_1_dtype,
                         buffer=hdr_str)
        if endianness == swapped_code:
            hdr = hdr.newbyteorder()
    # Do points_space checks
    _check_hdr_points_space(hdr, points_space)
    # prepare transforms for later use
    if points_space == 'voxel':
        zooms = hdr['voxel_size'][None,:].astype('f4')
    elif points_space == 'rasmm':
        zooms = hdr['voxel_size']
        affine = hdr['vox_to_ras']
        tv2vx = np.diag((1. / zooms).tolist() + [1])
        tv2mm = np.dot(affine, tv2vx).astype('f4')
    n_s = hdr['n_scalars']
    n_p = hdr['n_properties']
    f4dt = np.dtype(endianness + 'f4')
    pt_cols = 3 + n_s
    pt_size = int(f4dt.itemsize * pt_cols)
    ps_size = int(f4dt.itemsize * n_p)
    i_fmt = endianness + 'i'
    stream_count = hdr['n_count']
    if stream_count < 0:
        raise HeaderError('Unexpected negative n_count')
    def track_gen():
        n_streams = 0
        # For case where there are no scalars or no properties
        scalars = None
        ps = None
        while True:
            n_str = fileobj.read(4)
            if len(n_str) < 4:
                if stream_count:
                    raise HeaderError(
                        'Expecting %s points, found only %s' % (
                                stream_count, n_streams))
                break
            n_pts = struct.unpack(i_fmt, n_str)[0]
            pts_str = fileobj.read(n_pts * pt_size)
            pts = np.ndarray(
                shape = (n_pts, pt_cols),
                dtype = f4dt,
                buffer = pts_str)
            if n_p:
                ps_str = fileobj.read(ps_size)
                ps = np.ndarray(
                    shape = (n_p,),
                    dtype = f4dt,
                    buffer = ps_str)
            xyz = pts[:,:3]
            if points_space == 'voxel':
                xyz = xyz / zooms
            elif points_space == 'rasmm':
                xyz = apply_affine(tv2mm, xyz)
            if n_s:
                scalars = pts[:,3:]
            yield (xyz, scalars, ps)
            n_streams += 1
            # deliberately misses case where stream_count is 0
            if n_streams == stream_count:
                fileobj.close_if_mine()
                raise StopIteration
        fileobj.close_if_mine()
    streamlines = track_gen()
    if not as_generator:
        streamlines = list(streamlines)
    return streamlines, hdr


def write(fileobj, streamlines,  hdr_mapping=None, endianness=None,
          points_space=None):
    ''' Write header and `streamlines` to trackvis file `fileobj`

    The parameters from the streamlines override conflicting parameters
    in the `hdr_mapping` information.  In particular, the number of
    streamlines, the number of scalars, and the number of properties are
    written according to `streamlines` rather than `hdr_mapping`.

    Parameters
    ----------
    fileobj : filename or file-like
       If filename, open file as 'wb', otherwise `fileobj` should be an
       open file-like object, with a ``write`` method.
    streamlines : iterable
       iterable returning 3 element sequences with elements:

       #. points : ndarray shape (N,3)
          where N is the number of points
       #. scalars : None or ndarray shape (N, M)
          where M is the number of scalars per point
       #. properties : None or ndarray shape (P,)
          where P is the number of properties

       If `streamlines` has a ``len`` (for example, it is a list or a tuple),
       then we can write the number of streamlines into the header.  Otherwise
       we write 0 for the number of streamlines (a valid trackvis header) and
       write streamlines into the file until the iterable is exhausted.
       M - the number of scalars - has to be the same for each streamline in
       `streamlines`.  Similarly for P. See `points_space` and Notes for more
       detail on the coordinate system for ``points`` above.
    hdr_mapping : None, ndarray or mapping, optional
       Information for filling header fields.  Can be something
       dict-like (implementing ``items``) or a structured numpy array
    endianness : {None, '<', '>'}, optional
       Endianness of file to be written.  '<' is little-endian, '>' is
       big-endian.  None (the default) is to use the endianness of the
       `streamlines` data.
    points_space : {None, 'voxel', 'rasmm'}, optional
        The coordinates in which the points in the input streamlines are
        expressed.  If None, then assume the points are as you want them
        (probably trackviz voxmm space - see Notes).  If 'voxel', the points are
        in voxel space, and we will transform them to trackviz voxmm space.  If
        'rasmm' the points are in RAS mm space (real space).  We transform them
        to trackvis voxmm space.  If 'voxel' or 'rasmm' we insist that the voxel
        sizes and ordering are set to non-default values.  If 'rasmm' we also
        check if the affine is set and matches the voxel sizes

    Returns
    -------
    None

    Examples
    --------
    >>> from io import BytesIO
    >>> file_obj = BytesIO()
    >>> pts0 = np.random.uniform(size=(10,3))
    >>> pts1 = np.random.uniform(size=(10,3))
    >>> streamlines = ([(pts0, None, None), (pts1, None, None)])
    >>> write(file_obj, streamlines)
    >>> _ = file_obj.seek(0) # returns 0 in python 3
    >>> streams, hdr = read(file_obj)
    >>> len(streams)
    2

    If there are too many streamlines to fit in memory, you can pass an iterable
    thing instead of a list

    >>> file_obj = BytesIO()
    >>> def gen():
    ...     yield (pts0, None, None)
    ...     yield (pts0, None, None)
    >>> write(file_obj, gen())
    >>> _ = file_obj.seek(0)
    >>> streams, hdr = read(file_obj)
    >>> len(streams)
    2

    Notes
    -----
    Trackvis (the application) expects the ``points`` in the streamlines be in
    what we call *trackviz voxmm* coordinates.  If we have a point (x, y, z) in
    voxmm coordinates, and ``voxel_size`` has the voxel sizes for each of the 3
    dimensions, then x, y, z refer to mm in voxel space. Thus if i, j, k is a
    point in voxel coordinates, then ``x = i * voxel_size[0]; y = j *
    voxel_size[1]; z = k * voxel_size[2]``.   The spatial direction of x, y and
    z are defined with the "voxel_order" field.  For example, if the original
    image had RAS voxel ordering then "voxel_order" would be "RAS".  RAS here
    refers to the spatial direction of the voxel axes: "R" means that moving
    along first voxel axis moves from left to right in space, "A" -> second axis
    goes from posterior to anterior, "S" -> inferior to superior.  If
    "voxel_order" is empty we assume "LPS".

    This information comes from some helpful replies on the trackviz forum about
    `interpreting point coordiantes
    <http://trackvis.org/blog/forum/diffusion-toolkit-usage/interpretation-of-track-point-coordinates>`_
    '''
    stream_iter = iter(streamlines)
    try:
        streams0 = next(stream_iter)
    except StopIteration: # empty sequence or iterable
        # write header without streams
        hdr = _hdr_from_mapping(None, hdr_mapping, endianness)
        with BinOpener(fileobj, 'wb') as fileobj:
            fileobj.write(hdr.tostring())
        return
    if endianness is None:
        endianness = endian_codes[streams0[0].dtype.byteorder]
    # fill in a new header from mapping-like
    hdr = _hdr_from_mapping(None, hdr_mapping, endianness)
    # Try and get number of streams from streamlines.  If this is an iterable,
    # we don't have a len, so we write 0 for length.  The 0 is a valid trackvis
    # value with meaning - keep reading until you run out of data.
    try:
        n_streams = len(streamlines)
    except TypeError: # iterable; we don't know the number of streams
        n_streams = 0
    hdr['n_count'] = n_streams
    # Get number of scalars and properties
    pts, scalars, props = streams0
    # calculate number of scalars
    if not scalars is None:
        n_s = scalars.shape[1]
    else:
        n_s = 0
    hdr['n_scalars'] = n_s
    # calculate number of properties
    if not props is None:
        n_p = props.size
        hdr['n_properties'] = n_p
    else:
        n_p = 0
    # do points_space checks
    _check_hdr_points_space(hdr, points_space)
    # prepare transforms for later use
    if points_space == 'voxel':
        zooms = hdr['voxel_size'][None,:].astype('f4')
    elif points_space == 'rasmm':
        zooms = hdr['voxel_size']
        affine = hdr['vox_to_ras']
        vx2tv = np.diag(zooms.tolist() + [1])
        mm2vx = npl.inv(affine)
        mm2tv = np.dot(vx2tv, mm2vx).astype('f4')
    # write header
    fileobj = BinOpener(fileobj, mode='wb')
    fileobj.write(hdr.tostring())
    # track preliminaries
    f4dt = np.dtype(endianness + 'f4')
    i_fmt = endianness + 'i'
    # Add back the read first streamline to the sequence
    for pts, scalars, props in itertools.chain([streams0], stream_iter):
        n_pts, n_coords = pts.shape
        if n_coords != 3:
            raise ValueError('pts should have 3 columns')
        fileobj.write(struct.pack(i_fmt, n_pts))
        if points_space == 'voxel':
            pts = pts * zooms
        elif points_space == 'rasmm':
            pts = apply_affine(mm2tv, pts)
        # This call ensures that the data are 32-bit floats, and that
        # the endianness is OK.
        if pts.dtype != f4dt:
            pts = pts.astype(f4dt)
        if n_s == 0:
            if not (scalars is None or len(scalars) == 0):
                raise DataError('Expecting 0 scalars per point')
        else:
            if scalars.shape != (n_pts, n_s):
                raise DataError('Scalars should be shape (%s, %s)'
                                 % (n_pts, n_s))
            if scalars.dtype != f4dt:
                scalars = scalars.astype(f4dt)
            pts = np.c_[pts, scalars]
        fileobj.write(pts.tostring())
        if n_p == 0:
            if not (props is None or len(props) == 0):
                raise DataError('Expecting 0 properties per point')
        else:
            if props.size != n_p:
                raise DataError('Properties should be size %s' % n_p)
            if props.dtype != f4dt:
                props = props.astype(f4dt)
            fileobj.write(props.tostring())
    fileobj.close_if_mine()


def _check_hdr_points_space(hdr, points_space):
    """ Check header `hdr` for consistency with transform `points_space`

    Parameters
    ----------
    hdr : ndarray
        trackvis header as structured ndarray
    points_space : {None, 'voxmm', 'voxel', 'rasmm'
        nature of transform that we will (elsewhere) apply to streamlines paired
        with `hdr`.  None or 'voxmm' means pass through with no futher checks.
        'voxel' checks for all ``hdr['voxel_sizes'] being <= zero (error) or any
        being zero (warning).  'rasmm' checks for presence of non-zeros affine
        in ``hdr['vox_to_ras']``, and that the affine therein corresponds to
        ``hdr['voxel_order']`` and ''hdr['voxe_sizes']`` - and raises an error
        otherwise.

    Returns
    -------
    None

    Notes
    -----
    """
    if points_space is None or points_space == 'voxmm':
        return
    if points_space == 'voxel':
        voxel_size = hdr['voxel_size']
        if np.any(voxel_size < 0):
            raise HeaderError('Negative voxel sizes %s not valid for voxel - '
                              'voxmm conversion' % voxel_size)
        if np.all(voxel_size == 0):
            raise HeaderError('Cannot convert between voxels and voxmm when '
                              '"voxel_sizes" all 0')
        if np.any(voxel_size == 0):
            warnings.warn('zero values in "voxel_size" - %s' % voxel_size)
        return
    elif points_space == 'rasmm':
        try:
            affine = hdr['vox_to_ras']
        except ValueError:
            raise HeaderError('Need "vox_to_ras" field to get '
                              'affine with which to convert points; '
                              'this is present for headers >= version 2')
        if np.all(affine == 0) or affine[3,3] == 0:
            raise HeaderError('Need non-zero affine to convert between '
                              'rasmm points and voxmm')
        zooms = hdr['voxel_size']
        aff_zooms = np.sqrt(np.sum(affine[:3,:3]**2,axis=0))
        if not np.allclose(aff_zooms, zooms):
            raise HeaderError('Affine zooms %s differ from voxel_size '
                              'field value %s' % (aff_zooms, zooms))
        aff_order = ''.join(aff2axcodes(affine))
        voxel_order = asstr(np.asscalar(hdr['voxel_order']))
        if voxel_order == '':
            voxel_order = 'LPS' # trackvis default
        if not voxel_order == aff_order:
            raise HeaderError('Affine implies voxel_order %s but '
                              'header voxel_order is %s' %
                              (aff_order, voxel_order))
    else:
        raise ValueError('Painfully confusing "points_space" value of "%s"'
                         % points_space)



def _hdr_from_mapping(hdr=None, mapping=None, endianness=native_code):
    ''' Fill `hdr` from mapping `mapping`, with given endianness '''
    if hdr is None:
        # passed a valid mapping as header?  Copy and return
        if isinstance(mapping, np.ndarray):
            test_dtype = mapping.dtype.newbyteorder('=')
            if test_dtype in (header_1_dtype, header_2_dtype):
                return mapping.copy()
        # otherwise make a new empty header.   If no version specified,
        # go for default (2)
        if mapping is None:
            version = 2
        else:
            version =  mapping.get('version', 2)
        hdr = empty_header(endianness, version)
    if mapping is None:
        return hdr
    if isinstance(mapping, np.ndarray):
        mapping = rec2dict(mapping)
    for key, value in mapping.items():
        hdr[key] = value
    # check header values
    if np.asscalar(hdr['id_string'])[:5] != b'TRACK':
        raise HeaderError('Expecting TRACK as first '
                          '5 characaters of id_string')
    if hdr['version'] not in (1, 2):
        raise HeaderError('Reader only supports version 1')
    if hdr['hdr_size'] != 1000:
        raise HeaderError('hdr_size should be 1000')
    return hdr


def empty_header(endianness=None, version=2):
    ''' Empty trackvis header

    Parameters
    ----------
    endianness : {'<','>'}, optional
       Endianness of empty header to return. Default is native endian.
    version : int, optional
       Header version.  1 or 2.  Default is 2

    Returns
    -------
    hdr : structured array
       structured array containing empty trackvis header

    Examples
    --------
    >>> hdr = empty_header()
    >>> print(hdr['version'])
    2
    >>> np.asscalar(hdr['id_string']) == b'TRACK'
    True
    >>> endian_codes[hdr['version'].dtype.byteorder] == native_code
    True
    >>> hdr = empty_header(swapped_code)
    >>> endian_codes[hdr['version'].dtype.byteorder] == swapped_code
    True
    >>> hdr = empty_header(version=1)
    >>> print(hdr['version'])
    1

    Notes
    -----
    The trackvis header can store enough information to give an affine
    mapping between voxel and world space.  Often this information is
    missing.  We make no attempt to fill it with sensible defaults on
    the basis that, if the information is missing, it is better to be
    explicit.
    '''
    if version == 1:
        dt = header_1_dtype
    elif version == 2:
        dt = header_2_dtype
    else:
        raise HeaderError('Header version should be 1 or 2')
    if endianness:
        dt = dt.newbyteorder(endianness)
    hdr = np.zeros((), dtype=dt)
    hdr['id_string'] = 'TRACK'
    hdr['version'] = version
    hdr['hdr_size'] = 1000
    return hdr


def aff_from_hdr(trk_hdr, atleast_v2=None):
    ''' Return voxel to mm affine from trackvis header

    Affine is mapping from voxel space to Nifti (RAS) output coordinate
    system convention; x: Left -> Right, y: Posterior -> Anterior, z:
    Inferior -> Superior.

    Parameters
    ----------
    trk_hdr : mapping
       Mapping with trackvis header keys ``version``. If ``version == 2``, we
       also expect ``vox_to_ras``.
    atleast_v2 : None or bool
        If None, currently defaults to False.  This will change to True in
        future versions.  If True, require that there is a valid 'vox_to_ras'
        affine, raise HeaderError otherwise.  If False, look for valid
        'vox_to_ras' affine, but fall back to best guess from version 1 fields
        otherwise.

    Returns
    -------
    aff : (4,4) array
       affine giving mapping from voxel coordinates (affine applied on
       the left to points on the right) to millimeter coordinates in the
       RAS coordinate system

    Notes
    -----
    Our initial idea was to try and work round the deficiencies of the version 1
    format by using the DICOM orientation fields to store the affine.  This
    proved difficult in practice because trackvis (the application) doesn't
    allow negative voxel sizes (needed for recording axis flips) and sets the
    origin field to 0. In future, we'll raise an error rather than try and
    estimate the affine from version 1 fields
    '''
    if atleast_v2 is None:
        warnings.warn('Defaulting to `atleast_v2` of False.  Future versions '
                      'will default to True',
                      FutureWarning,
                      stacklevel=2)
        atleast_v2 = False
    if trk_hdr['version'] == 2:
        aff = trk_hdr['vox_to_ras']
        if aff[3,3] != 0:
            return aff
        if atleast_v2:
            raise HeaderError('Requiring version 2 affine and this affine is '
                              'not valid')
    # Now we are in the dark world of the DICOM fields.  We might have made this
    # one ourselves, in which case the origin might be set, and it might have
    # negative voxel sizes
    aff = np.eye(4)
    # The IOP field has only two of the three columns we need
    iop = trk_hdr['image_orientation_patient'].reshape(2,3).T
    # R might be a rotation matrix (and so completed by the cross product of the
    # first two columns), or it might be an orthogonal matrix with negative
    # determinant. We try pure rotation first
    R = np.c_[iop, np.cross(*iop.T)]
    vox = trk_hdr['voxel_size']
    aff[:3,:3] = R * vox
    aff[:3,3] = trk_hdr['origin']
    aff = np.dot(DPCS_TO_TAL, aff)
    # Next we check against the 'voxel_order' field if present and not empty.
    try:
        voxel_order = asstr(np.asscalar(trk_hdr['voxel_order']))
    except (KeyError, ValueError):
        voxel_order = ''
    if voxel_order == '':
        return aff
    # If the voxel_order conflicts with the affine by one flip, this may have
    # been a negative determinant affine saved with positive voxel sizes
    exp_order = ''.join(aff2axcodes(aff))
    if voxel_order != exp_order:
        # If first pass doesn't match, try flipping the (estimated) third column
        aff[:,2] *= -1
        exp_order = ''.join(aff2axcodes(aff))
        if voxel_order != exp_order:
            raise HeaderError('Estimate of header affine does not match '
                              'voxel_order of %s' % exp_order)
    return aff


def aff_to_hdr(affine, trk_hdr, pos_vox=None, set_order=None):
    ''' Set affine `affine` into trackvis header `trk_hdr`

    Affine is mapping from voxel space to Nifti RAS) output coordinate
    system convention; x: Left -> Right, y: Posterior -> Anterior, z:
    Inferior -> Superior.  Sets affine if possible, and voxel sizes, and voxel
    axis ordering.

    Parameters
    ----------
    affine : (4,4) array-like
       Affine voxel to mm transformation
    trk_hdr : mapping
       Mapping implementing __setitem__
    pos_vos : None or bool
        If None, currently defaults to False - this will change in future
        versions of nibabel.  If False, allow negative voxel sizes in header to
        record axis flips.  Negative voxels cause problems for trackvis (the
        application).  If True, enforce positive voxel sizes.
    set_order : None or bool
        If None, currently defaults to False - this will change in future
        versions of nibabel.  If False, do not set ``voxel_order`` field in
        `trk_hdr`.  If True, calculcate ``voxel_order`` from `affine` and set
        into `trk_hdr`.

    Returns
    -------
    None

    Notes
    -----
    version 2 of the trackvis header has a dedicated field for the nifti RAS
    affine. In theory trackvis 1 has enough information to store an affine, with
    the fields 'origin', 'voxel_size' and 'image_orientation_patient'.
    Unfortunately, to be able to store any affine, we'd need to be able to set
    negative voxel sizes, to encode axis flips. This is because
    'image_orientation_patient' is only two columns of the 3x3 rotation matrix,
    and we need to know the number of flips to reconstruct the third column
    reliably.  It turns out that negative flips upset trackvis (the
    application).  The application also ignores the origin field, and may not
    use the 'image_orientation_patient' field.
    '''
    if pos_vox is None:
        warnings.warn('Default for ``pos_vox`` will change to True in '
                      'future versions of nibabel',
                      FutureWarning,
                      stacklevel=2)
        pos_vox = False
    if set_order is None:
        warnings.warn('Default for ``set_order`` will change to True in '
                      'future versions of nibabel',
                      FutureWarning,
                      stacklevel=2)
        set_order = False
    try:
        version = trk_hdr['version']
    except (KeyError, ValueError): # dict or structured array
        version = 2
    if version == 2:
        trk_hdr['vox_to_ras'] = affine
    if set_order:
        trk_hdr['voxel_order'] = ''.join(aff2axcodes(affine))
    # Now on dodgy ground with DICOM fields in header
    # RAS to DPCS output
    affine = np.dot(DPCS_TO_TAL, affine)
    trans = affine[:3, 3]
    # Get zooms
    RZS = affine[:3, :3]
    zooms = np.sqrt(np.sum(RZS * RZS, axis=0))
    RS = RZS / zooms
    # If you said we could, adjust zooms to make RS correspond (below) to a true
    # rotation matrix.  We need to set the sign of one of the zooms to deal with
    # this.  Trackvis (the application) doesn't like negative zooms at all, so
    # you might want to disallow this with the pos_vox option.
    if not pos_vox and npl.det(RS) < 0:
        zooms[0] *= -1
        RS[:,0] *= -1
    # retrieve rotation matrix from RS with polar decomposition.
    # Discard shears because we cannot store them.
    P, S, Qs = npl.svd(RS)
    R = np.dot(P, Qs)
    # it's an orthogonal matrix
    assert np.allclose(np.dot(R, R.T), np.eye(3))
    # set into header
    trk_hdr['origin'] = trans
    trk_hdr['voxel_size'] = zooms
    trk_hdr['image_orientation_patient'] = R[:,0:2].T.ravel()


class TrackvisFileError(Exception):
    """ Error from TrackvisFile class
    """


class TrackvisFile(object):
    ''' Convenience class to encapsulate trackvis file information

    Parameters
    ----------
    streamlines : sequence
       sequence of streamlines.  This object does not accept generic iterables
       as input because these can be consumed and make the object unusable.
       Please use the function interface to work with generators / iterables
    mapping : None or mapping
       Mapping defining header attributes
    endianness : {None, '<', '>'}
       Set here explicit endianness if required.  Endianness otherwise inferred
       from `streamlines`
    filename : None or str, optional
       filename
    points_space : {None, 'voxel', 'rasmm'}, optional
        Space in which streamline points are expressed in memory.  Default
        (None) means streamlines contain points in trackvis *voxmm* space (voxel
        positions * voxel sizes).  'voxel' means points are in voxel space (and
        need to be multiplied by voxel size for saving in file).  'rasmm' mean
        the points are expressed in mm space according to the affine.  See
        ``read`` and ``write`` function docstrings for more detail.
    affine : None or (4,4) ndarray, optional
        Affine expressing relationship of voxels in an image to mm in RAS mm
        space. If 'points_space' is not None, you can use this to give the
        relationship between voxels, rasmm and voxmm space (above).
    '''
    def __init__(self,
                 streamlines,
                 mapping=None,
                 endianness=None,
                 filename=None,
                 points_space=None,
                 affine = None,
                ):
        try:
            n_streams = len(streamlines)
        except TypeError:
            raise TrackvisFileError('Need sequence for streamlines input')
        self.streamlines = streamlines
        if endianness is None:
            if n_streams > 0:
                pts0 = streamlines[0][0]
                endianness = endian_codes[pts0.dtype.byteorder]
            else:
                endianness = native_code
        self.header = _hdr_from_mapping(None, mapping, endianness)
        self.endianness = endianness
        self.filename = filename
        self.points_space = points_space
        if not affine is None:
            self.set_affine(affine, pos_vox=True, set_order=True)

    @classmethod
    def from_file(klass, file_like, points_space=None):
        streamlines, header = read(file_like, points_space=points_space)
        filename = (file_like if isinstance(file_like, basestring)
                    else None)
        return klass(streamlines, header, None, filename, points_space)

    def to_file(self, file_like):
        write(file_like, self.streamlines, self.header, self.endianness,
              points_space=self.points_space)
        self.filename = (file_like if isinstance(file_like, basestring)
                         else None)

    def get_affine(self, atleast_v2=None):
        """ Get affine from header in object

        Returns
        -------
        aff : (4,4) ndarray
            affine from header
        atleast_v2 : None or bool, optional
            See ``aff_from_hdr`` docstring for detail.  If True, require valid
            affine in ``vox_to_ras`` field of header.

        Notes
        -----
        This method currently works for trackvis version 1 headers, but we
        consider it unsafe for version 1 headers, and in future versions of
        nibabel we will raise an error for trackvis headers < version 2.
        """
        if atleast_v2 is None:
            warnings.warn('Defaulting to `atleast_v2` of False.  Future versions '
                          'will default to True',
                          FutureWarning,
                          stacklevel=2)
            atleast_v2 = False
        return aff_from_hdr(self.header, atleast_v2)

    def set_affine(self, affine, pos_vox=None, set_order=None):
        """ Set affine `affine` into trackvis header

        Affine is mapping from voxel space to Nifti RAS) output coordinate
        system convention; x: Left -> Right, y: Posterior -> Anterior, z:
        Inferior -> Superior.  Sets affine if possible, and voxel sizes, and voxel
        axis ordering.

        Parameters
        ----------
        affine : (4,4) array-like
            Affine voxel to mm transformation
        pos_vos : None or bool, optional
            If None, currently defaults to False - this will change in future
            versions of nibabel.  If False, allow negative voxel sizes in header to
            record axis flips.  Negative voxels cause problems for trackvis (the
            application).  If True, enforce positive voxel sizes.
        set_order : None or bool, optional
            If None, currently defaults to False - this will change in future
            versions of nibabel.  If False, do not set ``voxel_order`` field in
            `trk_hdr`.  If True, calculcate ``voxel_order`` from `affine` and set
            into `trk_hdr`.

        Returns
        -------
        None
        """
        if pos_vox is None:
            warnings.warn('Default for ``pos_vox`` will change to True in '
                          'future versions of nibabel',
                          FutureWarning,
                          stacklevel=2)
            pos_vox = False
        if set_order is None:
            warnings.warn('Default for ``set_order`` will change to True in '
                          'future versions of nibabel',
                          FutureWarning,
                          stacklevel=2)
            set_order = False
        return aff_to_hdr(affine, self.header, pos_vox, set_order)