This file is indexed.

/usr/lib/python2.7/dist-packages/nibabel/volumeutils.py is in python-nibabel 2.0.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
# emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the NiBabel package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
''' Utility functions for analyze-like formats '''
from __future__ import division, print_function

import sys
import warnings
import gzip
import bz2
from os.path import exists, splitext
from operator import mul
from functools import reduce

import numpy as np

from .casting import (shared_range, type_info, OK_FLOATS)
from .openers import Opener

sys_is_le = sys.byteorder == 'little'
native_code = sys_is_le and '<' or '>'
swapped_code = sys_is_le and '>' or '<'

endian_codes = (# numpy code, aliases
    ('<', 'little', 'l', 'le', 'L', 'LE'),
    ('>', 'big', 'BIG', 'b', 'be', 'B', 'BE'),
    (native_code, 'native', 'n', 'N', '=', '|', 'i', 'I'),
    (swapped_code, 'swapped', 's', 'S', '!'))
# We'll put these into the Recoder class after we define it

#: default compression level when writing gz and bz2 files
default_compresslevel = 1

#: file-like classes known to hold compressed data
COMPRESSED_FILE_LIKES = (gzip.GzipFile, bz2.BZ2File)

#: file-like classes known to return string values that are safe to modify
SAFE_STRINGERS = (gzip.GzipFile, bz2.BZ2File)


class Recoder(object):
    ''' class to return canonical code(s) from code or aliases

    The concept is a lot easier to read in the implementation and
    tests than it is to explain, so...

    >>> # If you have some codes, and several aliases, like this:
    >>> code1 = 1; aliases1=['one', 'first']
    >>> code2 = 2; aliases2=['two', 'second']
    >>> # You might want to do this:
    >>> codes = [[code1]+aliases1,[code2]+aliases2]
    >>> recodes = Recoder(codes)
    >>> recodes.code['one']
    1
    >>> recodes.code['second']
    2
    >>> recodes.code[2]
    2
    >>> # Or maybe you have a code, a label and some aliases
    >>> codes=((1,'label1','one', 'first'),(2,'label2','two'))
    >>> # you might want to get back the code or the label
    >>> recodes = Recoder(codes, fields=('code','label'))
    >>> recodes.code['first']
    1
    >>> recodes.code['label1']
    1
    >>> recodes.label[2]
    'label2'
    >>> # For convenience, you can get the first entered name by
    >>> # indexing the object directly
    >>> recodes[2]
    2
    '''
    def __init__(self, codes, fields=('code',), map_maker=dict):
        ''' Create recoder object

        ``codes`` give a sequence of code, alias sequences
        ``fields`` are names by which the entries in these sequences can be
        accessed.

        By default ``fields`` gives the first column the name
        "code".  The first column is the vector of first entries
        in each of the sequences found in ``codes``.  Thence you can
        get the equivalent first column value with ob.code[value],
        where value can be a first column value, or a value in any of
        the other columns in that sequence.

        You can give other columns names too, and access them in the
        same way - see the examples in the class docstring.

        Parameters
        ----------
        codes : seqence of sequences
            Each sequence defines values (codes) that are equivalent
        fields : {('code',) string sequence}, optional
            names by which elements in sequences can be accessed
        map_maker: callable, optional
            constructor for dict-like objects used to store key value pairs.
            Default is ``dict``.  ``map_maker()`` generates an empty mapping.
            The mapping need only implement ``__getitem__, __setitem__, keys,
            values``.
        '''
        self.fields = tuple(fields)
        self.field1 = {} # a placeholder for the check below
        for name in fields:
            if name in self.__dict__:
                raise KeyError('Input name %s already in object dict'
                               % name)
            self.__dict__[name] = map_maker()
        self.field1 = self.__dict__[fields[0]]
        self.add_codes(codes)

    def add_codes(self, code_syn_seqs):
        ''' Add codes to object

        Parameters
        ----------
        code_syn_seqs : sequence
            sequence of sequences, where each sequence ``S = code_syn_seqs[n]``
            for n in 0..len(code_syn_seqs), is a sequence giving values in the
            same order as ``self.fields``.  Each S should be at least of the
            same length as ``self.fields``.  After this call, if ``self.fields
            == ['field1', 'field2'], then ``self.field1[S[n]] == S[0]`` for all
            n in 0..len(S) and ``self.field2[S[n]] == S[1]`` for all n in
            0..len(S).

        Examples
        --------
        >>> code_syn_seqs = ((1, 'one'), (2, 'two'))
        >>> rc = Recoder(code_syn_seqs)
        >>> rc.value_set() == set((1,2))
        True
        >>> rc.add_codes(((3, 'three'), (1, 'first')))
        >>> rc.value_set() == set((1,2,3))
        True
        '''
        for code_syns in code_syn_seqs:
            # Add all the aliases
            for alias in code_syns:
                # For all defined fields, make every value in the sequence be an
                # entry to return matching index value.
                for field_ind, field_name in enumerate(self.fields):
                    self.__dict__[field_name][alias] = code_syns[field_ind]

    def __getitem__(self, key):
        ''' Return value from field1 dictionary (first column of values)

        Returns same value as ``obj.field1[key]`` and, with the
        default initializing ``fields`` argument of fields=('code',),
        this will return the same as ``obj.code[key]``

        >>> codes = ((1, 'one'), (2, 'two'))
        >>> Recoder(codes)['two']
        2
        '''
        return self.field1[key]

    def __contains__(self, key):
        """ True if field1 in recoder contains `key`
        """
        try:
            self.field1[key]
        except KeyError:
            return False
        return True

    def keys(self):
        ''' Return all available code and alias values

        Returns same value as ``obj.field1.keys()`` and, with the
        default initializing ``fields`` argument of fields=('code',),
        this will return the same as ``obj.code.keys()``

        >>> codes = ((1, 'one'), (2, 'two'), (1, 'repeat value'))
        >>> k = Recoder(codes).keys()
        >>> set(k) == set([1, 2, 'one', 'repeat value', 'two'])
        True
        '''
        return self.field1.keys()

    def value_set(self, name=None):
        ''' Return set of possible returned values for column

        By default, the column is the first column.

        Returns same values as ``set(obj.field1.values())`` and,
        with the default initializing``fields`` argument of
        fields=('code',), this will return the same as
        ``set(obj.code.values())``

        Parameters
        ----------
        name : {None, string}
            Where default of none gives result for first column

        >>> codes = ((1, 'one'), (2, 'two'), (1, 'repeat value'))
        >>> vs = Recoder(codes).value_set()
        >>> vs == set([1, 2]) # Sets are not ordered, hence this test
        True
        >>> rc = Recoder(codes, fields=('code', 'label'))
        >>> rc.value_set('label') == set(('one', 'two', 'repeat value'))
        True
        '''
        if name is None:
            d = self.field1
        else:
            d = self.__dict__[name]
        return set(d.values())


# Endian code aliases
endian_codes = Recoder(endian_codes)


class DtypeMapper(object):
    """ Specialized mapper for numpy dtypes

    We pass this mapper into the Recoder class to deal with numpy dtype hashing.

    The hashing problem is that dtypes that compare equal may not have the same
    hash.  This is true for numpys up to the current at time of writing (1.6.0).
    For numpy 1.2.1 at least, even dtypes that look exactly the same in terms of
    fields don't always have the same hash.  This makes dtypes difficult to use
    as keys in a dictionary.

    This class wraps a dictionary in order to implement a __getitem__ to deal
    with dtype hashing. If the key doesn't appear to be in the mapping, and it
    is a dtype, we compare (using ==) all known dtype keys to the input key, and
    return any matching values for the matching key.
    """
    def __init__(self):
        self._dict = {}
        self._dtype_keys = []

    def keys(self):
        return self._dict.keys()

    def values(self):
        return self._dict.values()

    def __setitem__(self, key, value):
        """ Set item into mapping, checking for dtype keys

        Cache dtype keys for comparison test in __getitem__
        """
        self._dict[key] = value
        if hasattr(key, 'subdtype'):
            self._dtype_keys.append(key)

    def __getitem__(self, key):
        """ Get item from mapping, checking for dtype keys

        First do simple hash lookup, then check for a dtype key that has failed
        the hash lookup.  Look then for any known dtype keys that compare equal
        to `key`.
        """
        try:
            return self._dict[key]
        except KeyError:
            pass
        if hasattr(key, 'subdtype'):
            for dt in self._dtype_keys:
                if key == dt:
                    return self._dict[dt]
        raise KeyError(key)


def pretty_mapping(mapping, getterfunc=None):
    ''' Make pretty string from mapping

    Adjusts text column to print values on basis of longest key.
    Probably only sensible if keys are mainly strings.

    You can pass in a callable that does clever things to get the values
    out of the mapping, given the names.  By default, we just use
    ``__getitem__``

    Parameters
    ----------
    mapping : mapping
       implementing iterator returning keys and .items()
    getterfunc : None or callable
       callable taking two arguments, ``obj`` and ``key`` where ``obj``
       is the passed mapping.  If None, just use ``lambda obj, key:
       obj[key]``

    Returns
    -------
    str : string

    Examples
    --------
    >>> d = {'a key': 'a value'}
    >>> print(pretty_mapping(d))
    a key  : a value
    >>> class C(object): # to control ordering, show get_ method
    ...     def __iter__(self):
    ...         return iter(('short_field','longer_field'))
    ...     def __getitem__(self, key):
    ...         if key == 'short_field':
    ...             return 0
    ...         if key == 'longer_field':
    ...             return 'str'
    ...     def get_longer_field(self):
    ...         return 'method string'
    >>> def getter(obj, key):
    ...     # Look for any 'get_<name>' methods
    ...     try:
    ...         return obj.__getattribute__('get_' + key)()
    ...     except AttributeError:
    ...         return obj[key]
    >>> print(pretty_mapping(C(), getter))
    short_field   : 0
    longer_field  : method string
    '''
    if getterfunc is None:
        getterfunc = lambda obj, key: obj[key]
    lens = [len(str(name)) for name in mapping]
    mxlen = np.max(lens)
    fmt = '%%-%ds  : %%s' % mxlen
    out = []
    for name in mapping:
        value = getterfunc(mapping, name)
        out.append(fmt % (name, value))
    return '\n'.join(out)


def make_dt_codes(codes_seqs):
    ''' Create full dt codes Recoder instance from datatype codes

    Include created numpy dtype (from numpy type) and opposite endian
    numpy dtype

    Parameters
    ----------
    codes_seqs : sequence of sequences
       contained sequences make be length 3 or 4, but must all be the same
       length. Elements are data type code, data type name, and numpy
       type (such as ``np.float32``).  The fourth element is the nifti string
       representation of the code (e.g. "NIFTI_TYPE_FLOAT32")

    Returns
    -------
    rec : ``Recoder`` instance
       Recoder that, by default, returns ``code`` when indexed with any
       of the corresponding code, name, type, dtype, or swapped dtype.
       You can also index with ``niistring`` values if codes_seqs had sequences
       of length 4 instead of 3.
    '''
    fields=['code', 'label', 'type']
    len0 = len(codes_seqs[0])
    if not len0 in (3,4):
        raise ValueError('Sequences must be length 3 or 4')
    if len0 == 4:
        fields.append('niistring')
    dt_codes = []
    for seq in codes_seqs:
        if len(seq) != len0:
            raise ValueError('Sequences must all have the same length')
        np_type = seq[2]
        this_dt = np.dtype(np_type)
        # Add swapped dtype to synonyms
        code_syns = list(seq) + [this_dt, this_dt.newbyteorder(swapped_code)]
        dt_codes.append(code_syns)
    return Recoder(dt_codes, fields + ['dtype', 'sw_dtype'], DtypeMapper)


@np.deprecate_with_doc('Please use arraywriter classes instead')
def can_cast(in_type, out_type, has_intercept=False, has_slope=False):
    ''' Return True if we can safely cast ``in_type`` to ``out_type``

    Parameters
    ----------
    in_type : numpy type
       type of data we will case from
    out_dtype : numpy type
       type that we want to cast to
    has_intercept : bool, optional
       Whether we can subtract a constant from the data (before scaling)
       before casting to ``out_dtype``.  Default is False
    has_slope : bool, optional
       Whether we can use a scaling factor to adjust slope of
       relationship of data to data in cast array.  Default is False

    Returns
    -------
    tf : bool
       True if we can safely cast, False otherwise

    Examples
    --------
    >>> can_cast(np.float64, np.float32)
    True
    >>> can_cast(np.complex128, np.float32)
    False
    >>> can_cast(np.int64, np.float32)
    True
    >>> can_cast(np.float32, np.int16)
    False
    >>> can_cast(np.float32, np.int16, False, True)
    True
    >>> can_cast(np.int16, np.uint8)
    False

    Whether we can actually cast int to uint when we don't have an intercept
    depends on the data.  That's why this function isn't very useful. But we
    assume that an integer is using its full range, and check whether scaling
    works in that situation.

    Here we need an intercept to scale the full range of an int to a uint

    >>> can_cast(np.int16, np.uint8, False, True)
    False
    >>> can_cast(np.int16, np.uint8, True, True)
    True
    '''
    in_dtype = np.dtype(in_type)
    # Whether we can cast depends on the data, and we've only got the type.
    # Let's assume integers use all of their range but floats etc not
    if in_dtype.kind in 'iu':
        info = np.iinfo(in_dtype)
        data = np.array([info.min, info.max], dtype=in_dtype)
    else: # Float or complex or something. Any old thing will do
        data = np.ones((1,), in_type)
    from .arraywriters import make_array_writer, WriterError
    try:
        _ = make_array_writer(data, out_type, has_slope, has_intercept)
    except WriterError:
        return False
    return True


def _is_compressed_fobj(fobj):
    """ Return True if fobj represents a compressed data file-like object
    """
    return isinstance(fobj, COMPRESSED_FILE_LIKES)


def array_from_file(shape, in_dtype, infile, offset=0, order='F', mmap=True):
    ''' Get array from file with specified shape, dtype and file offset

    Parameters
    ----------
    shape : sequence
        sequence specifying output array shape
    in_dtype : numpy dtype
        fully specified numpy dtype, including correct endianness
    infile : file-like
        open file-like object implementing at least read() and seek()
    offset : int, optional
        offset in bytes into `infile` to start reading array data. Default is 0
    order : {'F', 'C'} string
        order in which to write data.  Default is 'F' (fortran order).
    mmap : {True, False, 'c', 'r', 'r+'}
        `mmap` controls the use of numpy memory mapping for reading data.  If
        False, do not try numpy ``memmap`` for data array.  If one of {'c', 'r',
        'r+'}, try numpy memmap with ``mode=mmap``.  A `mmap` value of True
        gives the same behavior as ``mmap='c'``.  If `infile` cannot be
        memory-mapped, ignore `mmap` value and read array from file.

    Returns
    -------
    arr : array-like
        array like object that can be sliced, containing data

    Examples
    --------
    >>> from io import BytesIO
    >>> bio = BytesIO()
    >>> arr = np.arange(6).reshape(1,2,3)
    >>> _ = bio.write(arr.tostring('F')) # outputs int in python3
    >>> arr2 = array_from_file((1,2,3), arr.dtype, bio)
    >>> np.all(arr == arr2)
    True
    >>> bio = BytesIO()
    >>> _ = bio.write(b' ' * 10)
    >>> _ = bio.write(arr.tostring('F'))
    >>> arr2 = array_from_file((1,2,3), arr.dtype, bio, 10)
    >>> np.all(arr == arr2)
    True
    '''
    if not mmap in (True, False, 'c', 'r', 'r+'):
        raise ValueError("mmap value should be one of True, False, 'c', "
                         "'r', 'r+'")
    if mmap == True:
        mmap = 'c'
    in_dtype = np.dtype(in_dtype)
    # Get file-like object from Opener instance
    infile = getattr(infile, 'fobj', infile)
    if mmap and not _is_compressed_fobj(infile):
        try: # Try memmapping file on disk
            return np.memmap(infile,
                             in_dtype,
                             mode=mmap,
                             shape=shape,
                             order=order,
                             offset=offset)
            # The error raised by memmap, for different file types, has
            # changed in different incarnations of the numpy routine
        except (AttributeError, TypeError, ValueError):
            pass
    if len(shape) == 0:
        return np.array([])
    # Use reduce and mul to work around numpy integer overflow
    n_bytes = reduce(mul, shape) * in_dtype.itemsize
    if n_bytes == 0:
        return np.array([])
    # Read data from file
    infile.seek(offset)
    if hasattr(infile, 'readinto'):
        data_bytes = bytearray(n_bytes)
        n_read = infile.readinto(data_bytes)
        needs_copy = False
    else:
        data_bytes = infile.read(n_bytes)
        n_read = len(data_bytes)
        needs_copy = not isinstance(infile, SAFE_STRINGERS)
    if n_bytes != n_read:
        raise IOError('Expected {0} bytes, got {1} bytes from {2}\n'
                      ' - could the file be damaged?'.format(
                          n_bytes,
                          n_read,
                          getattr(infile, 'name', 'object')))
    arr = np.ndarray(shape, in_dtype, buffer=data_bytes, order=order)
    if needs_copy:
        return arr.copy()
    arr.flags.writeable = True
    return arr


def array_to_file(data, fileobj, out_dtype=None, offset=0,
                  intercept=0.0, divslope=1.0,
                  mn=None, mx=None, order='F', nan2zero=True):
    ''' Helper function for writing arrays to file objects

    Writes arrays as scaled by `intercept` and `divslope`, and clipped
    at (prescaling) `mn` minimum, and `mx` maximum.

    * Clip `data` array at min `mn`, max `max` where there are not None ->
      ``clipped`` (this is *pre scale clipping*)
    * Scale ``clipped`` with ``clipped_scaled = (clipped - intercept) /
      divslope``
    * Clip ``clipped_scaled`` to fit into range of `out_dtype` (*post scale
      clipping*) -> ``clipped_scaled_clipped``
    * If converting to integer `out_dtype` and `nan2zero` is True, set NaN
      values in ``clipped_scaled_clipped`` to 0
    * Write ``clipped_scaled_clipped_n2z`` to fileobj `fileobj` starting at
      offset `offset` in memory layout `order`

    Parameters
    ----------
    data : array-like
        array or array-like to write.
    fileobj : file-like
        file-like object implementing ``write`` method.
    out_dtype : None or dtype, optional
        dtype to write array as.  Data array will be coerced to this dtype
        before writing. If None (default) then use input data type.
    offset : None or int, optional
        offset into fileobj at which to start writing data. Default is 0. None
        means start at current file position
    intercept : scalar, optional
        scalar to subtract from data, before dividing by ``divslope``.  Default
        is 0.0
    divslope : None or scalar, optional
        scalefactor to *divide* data by before writing.  Default is 1.0. If
        None, there is no valid data, we write zeros.
    mn : scalar, optional
        minimum threshold in (unscaled) data, such that all data below this
        value are set to this value. Default is None (no threshold). The typical
        use is to set -np.inf in the data to have this value (which might be the
        minimum non-finite value in the data).
    mx : scalar, optional
        maximum threshold in (unscaled) data, such that all data above this
        value are set to this value. Default is None (no threshold). The typical
        use is to set np.inf in the data to have this value (which might be the
        maximum non-finite value in the data).
    order : {'F', 'C'}, optional
        memory order to write array.  Default is 'F'
    nan2zero : {True, False}, optional
        Whether to set NaN values to 0 when writing integer output.  Defaults to
        True.  If False, NaNs will be represented as numpy does when casting;
        this depends on the underlying C library and is undefined. In practice
        `nan2zero` == False might be a good choice when you completely sure
        there will be no NaNs in the data. This value ignored for float ouptut
        types.  NaNs are treated as zero *before* applying `intercept` and
        `divslope` - so an array ``[np.nan]`` with an `intercept` of 10 becomes
        ``[-10]`` after conversion to integer `out_dtype` with `nan2zero` set.
        That is because you will likely apply `divslope` and `intercept` in
        reverse order when reading the data back, returning the zero you
        probably expected from the input NaN.

    Examples
    --------
    >>> from io import BytesIO
    >>> sio = BytesIO()
    >>> data = np.arange(10, dtype=np.float)
    >>> array_to_file(data, sio, np.float)
    >>> sio.getvalue() == data.tostring('F')
    True
    >>> _ = sio.truncate(0); _ = sio.seek(0) # outputs 0 in python 3
    >>> array_to_file(data, sio, np.int16)
    >>> sio.getvalue() == data.astype(np.int16).tostring()
    True
    >>> _ = sio.truncate(0); _ = sio.seek(0)
    >>> array_to_file(data.byteswap(), sio, np.float)
    >>> sio.getvalue() == data.byteswap().tostring('F')
    True
    >>> _ = sio.truncate(0); _ = sio.seek(0)
    >>> array_to_file(data, sio, np.float, order='C')
    >>> sio.getvalue() == data.tostring('C')
    True
    '''
    # Shield special case
    div_none = divslope is None
    if not np.all(
            np.isfinite((intercept, 1.0 if div_none else divslope))):
        raise ValueError('divslope and intercept must be finite')
    if divslope == 0:
        raise ValueError('divslope cannot be zero')
    data = np.asanyarray(data)
    in_dtype = data.dtype
    if out_dtype is None:
        out_dtype = in_dtype
    else:
        out_dtype = np.dtype(out_dtype)
    if offset is not None:
        seek_tell(fileobj, offset)
    if (div_none or
        (mn, mx) == (0, 0) or
        ((mn is not None and mx is not None) and mx < mn)):
        write_zeros(fileobj, data.size * out_dtype.itemsize)
        return
    if order not in 'FC':
        raise ValueError('Order should be one of F or C')
    # Simple cases
    pre_clips = None if (mn is None and mx is None) else (mn, mx)
    null_scaling = (intercept == 0 and divslope == 1)
    if in_dtype.type == np.void:
        if not null_scaling:
            raise ValueError('Cannot scale non-numeric types')
        if pre_clips is not None:
            raise ValueError('Cannot clip non-numeric types')
        return _write_data(data, fileobj, out_dtype, order)
    if pre_clips is not None:
        pre_clips = _dt_min_max(in_dtype, *pre_clips)
    if null_scaling and np.can_cast(in_dtype, out_dtype):
        return _write_data(data, fileobj, out_dtype, order,
                           pre_clips=pre_clips)
    # Force upcasting for floats by making atleast_1d.
    slope, inter = [np.atleast_1d(v) for v in (divslope, intercept)]
    # Default working point type for applying slope / inter
    if slope.dtype.kind in 'iu':
        slope = slope.astype(float)
    if inter.dtype.kind in 'iu':
        inter = inter.astype(float)
    in_kind = in_dtype.kind
    out_kind = out_dtype.kind
    if out_kind in 'fc':
        return _write_data(data, fileobj, out_dtype, order,
                           slope=slope,
                           inter=inter,
                           pre_clips=pre_clips)
    assert out_kind in 'iu'
    if in_kind in 'iu':
        if null_scaling:
            # Must be large int to small int conversion; add clipping to
            # pre scale thresholds
            mn, mx = _dt_min_max(in_dtype, mn, mx)
            mn_out, mx_out = _dt_min_max(out_dtype)
            pre_clips = max(mn, mn_out), min(mx, mx_out)
            return _write_data(data, fileobj, out_dtype, order,
                               pre_clips=pre_clips)
        # In any case, we do not want to check for nans beause we've already
        # disallowed scaling that generates nans
        nan2zero = False
    # We are either scaling into c/floats or starting with c/floats, then we're
    # going to integers
    # Because we're going to integers, complex inter and slope will only slow us
    # down, cast to float
    slope, inter = [v.astype(_matching_float(v.dtype)) for v in (slope, inter)]
    # We'll do the thresholding on the scaled data, so turn off the thresholding
    # on the unscaled data
    pre_clips = None
    # We may need to cast the original array to another type
    cast_in_dtype = in_dtype
    if in_kind == 'c':
        # Cast to floats before anything else
        cast_in_dtype = np.dtype(_matching_float(in_dtype))
    elif in_kind == 'f' and in_dtype.itemsize == 2:
        # Make sure we don't use float16 as a working type
        cast_in_dtype = np.dtype(np.float32)
    w_type = working_type(cast_in_dtype, slope, inter)
    dt_mnmx = _dt_min_max(cast_in_dtype, mn, mx)
    # We explore for a good precision to avoid infs and clipping
    # Find smallest float type equal or larger than the current working
    # type, that can contain range of extremes after scaling, without going
    # to +-inf
    extremes = np.array(dt_mnmx, dtype=cast_in_dtype)
    w_type = best_write_scale_ftype(extremes, slope, inter, w_type)
    # Push up precision by casting the slope, inter
    slope, inter = [v.astype(w_type) for v in (slope, inter)]
    # We need to know the result of applying slope and inter to the min and
    # max of the array, in order to clip the output array, after applying
    # the slope and inter.  Otherwise we'd need to clip twice, once before
    # applying (slope, inter), and again after, to ensure we have not hit
    # over- or under-flow. For the same reason we need to know the result of
    # applying slope, inter to 0, in order to fill in the nan output value
    # after scaling etc. We could fill with 0 before scaling, but then we'd
    # have to do an extra copy before filling nans with 0, to avoid
    # overwriting the input array
    # Run min, max, 0 through scaling / rint
    specials = np.array(dt_mnmx + (0,), dtype=w_type)
    if inter != 0.0:
        specials = specials - inter
    if slope != 1.0:
        specials = specials / slope
    assert specials.dtype.type == w_type
    post_mn, post_mx, nan_fill = np.rint(specials)
    if post_mn > post_mx:  # slope could be negative
        post_mn, post_mx = post_mx, post_mn
    # Make sure that the thresholds exclude any value that will get badly cast
    # to the integer type.  This is not the same as using the maximumum of the
    # output dtype as thresholds, because these may not be exactly represented
    # in the float type.
    #
    # The thresholds assume that the data are in `wtype` dtype after applying
    # the slope and intercept.
    both_mn, both_mx = shared_range(w_type, out_dtype)
    # Check that nan2zero output value is in range
    if nan2zero and not both_mn <= nan_fill <= both_mx:
        # Estimated error for (0 - inter) / slope is 2 * eps * abs(inter /
        # slope).  Assume errors are for working float type. Round for integer
        # rounding
        est_err = np.round(2 * np.finfo(w_type).eps * abs(inter / slope))
        if ((nan_fill < both_mn and abs(nan_fill - both_mn) < est_err) or
                (nan_fill > both_mx and abs(nan_fill - both_mx) < est_err)):
            # nan_fill can be (just) outside clip range
            nan_fill = np.clip(nan_fill, both_mn, both_mx)
        else:
            raise ValueError("nan_fill == {0}, outside safe int range "
                             "({1}-{2}); change scaling or "
                             "set nan2zero=False?".format(
                                 nan_fill, int(both_mn), int(both_mx)))
    # Make sure non-nan output clipped to shared range
    post_mn = np.max([post_mn, both_mn])
    post_mx = np.min([post_mx, both_mx])
    in_cast = None if cast_in_dtype == in_dtype else cast_in_dtype
    return _write_data(data, fileobj, out_dtype, order,
                       in_cast=in_cast,
                       pre_clips=pre_clips,
                       inter=inter,
                       slope=slope,
                       post_clips=(post_mn, post_mx),
                       nan_fill=nan_fill if nan2zero else None)


def _write_data(data,
                fileobj,
                out_dtype,
                order,
                in_cast=None,
                pre_clips=None,
                inter=0.,
                slope=1.,
                post_clips=None,
                nan_fill=None):
    """ Write array `data` to `fileobj` as `out_dtype` type, layout `order`

    Does not modify `data` in-place.

    Parameters
    ----------
    data : ndarray
    fileobj : object
        implementing ``obj.write``
    out_dtype : numpy type
        Type to which to cast output data just before writing
    order : {'F', 'C'}
        memory layout of array in fileobj after writing
    in_cast : None or numpy type, optional
        If not None, inital cast to do on `data` slices before further
        processing
    pre_clips : None or 2-sequence, optional
        If not None, minimum and maximum of input values at which to clip.
    inter : scalar or array, optional
        Intercept to subtract before writing ``out = data - inter``
    slope : scalar or array, optional
        Slope by which to divide before writing ``out2 = out / slope``
    post_clips : None or 2-sequence, optional
        If not None, minimum and maximum of scaled values at which to clip.
    nan_fill : None or scalar, optional
        If not None, values that were NaN in `data` will receive `nan_fill`
        in array as output to disk (after scaling).
    """
    data = np.squeeze(data)
    if data.ndim < 2: # Trick to allow loop over rows for 1D arrays
        data = np.atleast_2d(data)
    elif order == 'F':
        data = data.T
    nan_need_copy = ((pre_clips, in_cast, inter, slope, post_clips) ==
                     (None, None, 0, 1, None))
    for dslice in data: # cycle over first dimension to save memory
        if not pre_clips is None:
            dslice = np.clip(dslice, *pre_clips)
        if not in_cast is None:
            dslice = dslice.astype(in_cast)
        if inter != 0.0:
            dslice = dslice - inter
        if slope != 1.0:
            dslice = dslice / slope
        if not post_clips is None:
            dslice = np.clip(np.rint(dslice), *post_clips)
        if not nan_fill is None:
            nans = np.isnan(dslice)
            if np.any(nans):
                if nan_need_copy:
                    dslice = dslice.copy()
                dslice[nans] = nan_fill
        if dslice.dtype != out_dtype:
            dslice = dslice.astype(out_dtype)
        fileobj.write(dslice.tostring())


def _dt_min_max(dtype_like, mn=None, mx=None):
    dt = np.dtype(dtype_like)
    if dt.kind in 'fc':
        dt_mn, dt_mx = (-np.inf, np.inf)
    elif dt.kind in 'iu':
        info = np.iinfo(dt)
        dt_mn, dt_mx = (info.min, info.max)
    else:
        raise ValueError("unknown dtype")
    return dt_mn if mn is None else mn, dt_mx if mx is None else mx


_CSIZE2FLOAT = {
    8: np.float32,
    16: np.float64,
    24: np.longdouble,
    32: np.longdouble}

def _matching_float(np_type):
    """ Return floating point type matching `np_type`
    """
    dtype = np.dtype(np_type)
    if dtype.kind not in 'cf':
        raise ValueError('Expecting float or complex type as input')
    if dtype.kind in 'f':
        return dtype.type
    return _CSIZE2FLOAT[dtype.itemsize]


def write_zeros(fileobj, count, block_size=8194):
    """ Write `count` zero bytes to `fileobj`

    Parameters
    ----------
    fileobj : file-like object
        with ``write`` method
    count : int
        number of bytes to write
    block_size : int, optional
        largest continuous block to write.
    """
    nblocks = int(count // block_size)
    rem = count % block_size
    blk = b'\x00' * block_size
    for bno in range(nblocks):
        fileobj.write(blk)
    fileobj.write(b'\x00' * rem)


def seek_tell(fileobj, offset, write0=False):
    """ Seek in `fileobj` or check we're in the right place already

    Parameters
    ----------
    fileobj : file-like
        object implementing ``seek`` and (if seek raises an IOError) ``tell``
    offset : int
        position in file to which to seek
    write0 : {False, True}, optional
        If True, and standard seek fails, try to write zeros to the file to
        reach `offset`.  This can be useful when writing bz2 files, that cannot
        do write seeks.
    """
    try:
        fileobj.seek(offset)
    except IOError as e:
        # This can be a negative seek in write mode for gz file object or any
        # seek in write mode for a bz2 file object
        pos = fileobj.tell()
        if pos == offset:
            return
        if not write0:
            raise IOError(str(e))
        if pos > offset:
            raise IOError("Can't write to seek backwards")
        fileobj.write(b'\x00' * (offset - pos))
        assert fileobj.tell() == offset


def apply_read_scaling(arr, slope=None, inter=None):
    """ Apply scaling in `slope` and `inter` to array `arr`

    This is for loading the array from a file (as opposed to the reverse
    scaling when saving an array to file)

    Return data will be ``arr * slope + inter``. The trick is that we have to
    find a good precision to use for applying the scaling.  The heuristic is
    that the data is always upcast to the higher of the types from `arr,
    `slope`, `inter` if `slope` and / or `inter` are not default values. If the
    dtype of `arr` is an integer, then we assume the data more or less fills
    the integer range, and upcast to a type such that the min, max of
    ``arr.dtype`` * scale + inter, will be finite.

    Parameters
    ----------
    arr : array-like
    slope : None or float, optional
        slope value to apply to `arr` (``arr * slope + inter``).  None
        corresponds to a value of 1.0
    inter : None or float, optional
        intercept value to apply to `arr` (``arr * slope + inter``).  None
        corresponds to a value of 0.0

    Returns
    -------
    ret : array
        array with scaling applied.  Maybe upcast in order to give room for the
        scaling. If scaling is default (1, 0), then `ret` may be `arr` ``ret is
        arr``.
    """
    if slope is None:
        slope = 1.0
    if inter is None:
        inter = 0.0
    if (slope, inter) == (1, 0):
        return arr
    shape = arr.shape
    # Force float / float upcasting by promoting to arrays
    arr, slope, inter = [np.atleast_1d(v) for v in (arr, slope, inter)]
    if arr.dtype.kind in 'iu':
        # int to float; get enough precision to avoid infs
        # Find floating point type for which scaling does not overflow,
        # starting at given type
        default = (slope.dtype.type if slope.dtype.kind == 'f'
                    else np.float64)
        ftype = int_scinter_ftype(arr.dtype, slope, inter, default)
        slope = slope.astype(ftype)
        inter = inter.astype(ftype)
    if slope != 1.0:
        arr = arr * slope
    if inter != 0.0:
        arr = arr + inter
    return arr.reshape(shape)


def working_type(in_type, slope=1.0, inter=0.0):
    """ Return array type from applying `slope`, `inter` to array of `in_type`

    Numpy type that results from an array of type `in_type` being combined with
    `slope` and `inter`. It returns something like the dtype type of
    ``((np.zeros((2,), dtype=in_type) - inter) / slope)``, but ignoring the
    actual values of `slope` and `inter`.

    Note that you would not necessarily get the same type by applying slope and
    inter the other way round.  Also, you'll see that the order in which slope
    and inter are applied is the opposite of the order in which they are passed.

    Parameters
    ----------
    in_type : numpy type specifier
        Numpy type of input array.  Any valid input for ``np.dtype()``
    slope : scalar, optional
        slope to apply to array.  If 1.0 (default), ignore this value and its
        type.
    inter : scalar, optional
        intercept to apply to array.  If 0.0 (default), ignore this value and
        its type.

    Returns
    -------
    wtype: numpy type
        Numpy type resulting from applying `inter` and `slope` to array of type
        `in_type`.
    """
    val = np.array([1], dtype=in_type)
    slope = np.array(slope)
    inter = np.array(inter)
    # Don't use real values to avoid overflows.  Promote to 1D to avoid scalar
    # casting rules.  Don't use ones_like, zeros_like because of a bug in numpy
    # <= 1.5.1 in converting complex192 / complex256 scalars.
    if inter != 0:
        val = val + np.array([0], dtype=inter.dtype)
    if slope != 1:
        val = val / np.array([1], dtype=slope.dtype)
    return val.dtype.type


@np.deprecate_with_doc('Please use arraywriter classes instead')
def calculate_scale(data, out_dtype, allow_intercept):
    ''' Calculate scaling and optional intercept for data

    Parameters
    ----------
    data : array
    out_dtype : dtype
       output data type in some form understood by ``np.dtype``
    allow_intercept : bool
       If True allow non-zero intercept

    Returns
    -------
    scaling : None or float
       scalefactor to divide into data.  None if no valid data
    intercept : None or float
       intercept to subtract from data.  None if no valid data
    mn : None or float
       minimum of finite value in data or None if this will not
       be used to threshold data
    mx : None or float
       minimum of finite value in data, or None if this will not
       be used to threshold data
    '''
    # Code here is a compatibility shell around arraywriters refactor
    in_dtype = data.dtype
    out_dtype = np.dtype(out_dtype)
    if np.can_cast(in_dtype, out_dtype):
        return 1.0, 0.0, None, None
    from .arraywriters import make_array_writer, WriterError, get_slope_inter
    try:
        writer = make_array_writer(data, out_dtype, True, allow_intercept)
    except WriterError as e:
        raise ValueError(str(e))
    if out_dtype.kind in 'fc':
        return (1.0, 0.0, None, None)
    mn, mx = writer.finite_range()
    if (mn, mx) == (np.inf, -np.inf): # No valid data
        return (None, None, None, None)
    if not in_dtype.kind in 'fc':
        mn, mx = (None, None)
    return get_slope_inter(writer) + (mn, mx)


@np.deprecate_with_doc('Please use arraywriter classes instead')
def scale_min_max(mn, mx, out_type, allow_intercept):
    ''' Return scaling and intercept min, max of data, given output type

    Returns ``scalefactor`` and ``intercept`` to best fit data with
    given ``mn`` and ``mx`` min and max values into range of data type
    with ``type_min`` and ``type_max`` min and max values for type.

    The calculated scaling is therefore::

        scaled_data = (data-intercept) / scalefactor

    Parameters
    ----------
    mn : scalar
       data minimum value
    mx : scalar
       data maximum value
    out_type : numpy type
       numpy type of output
    allow_intercept : bool
       If true, allow calculation of non-zero intercept.  Otherwise,
       returned intercept is always 0.0

    Returns
    -------
    scalefactor : numpy scalar, dtype=np.maximum_sctype(np.float)
       scalefactor by which to divide data after subtracting intercept
    intercept : numpy scalar, dtype=np.maximum_sctype(np.float)
       value to subtract from data before dividing by scalefactor

    Examples
    --------
    >>> scale_min_max(0, 255, np.uint8, False)
    (1.0, 0.0)
    >>> scale_min_max(-128, 127, np.int8, False)
    (1.0, 0.0)
    >>> scale_min_max(0, 127, np.int8, False)
    (1.0, 0.0)
    >>> scaling, intercept = scale_min_max(0, 127, np.int8,  True)
    >>> np.allclose((0 - intercept) / scaling, -128)
    True
    >>> np.allclose((127 - intercept) / scaling, 127)
    True
    >>> scaling, intercept = scale_min_max(-10, -1, np.int8, True)
    >>> np.allclose((-10 - intercept) / scaling, -128)
    True
    >>> np.allclose((-1 - intercept) / scaling, 127)
    True
    >>> scaling, intercept = scale_min_max(1, 10, np.int8, True)
    >>> np.allclose((1 - intercept) / scaling, -128)
    True
    >>> np.allclose((10 - intercept) / scaling, 127)
    True

    Notes
    -----
    We don't use this function anywhere in nibabel now, it's here for API
    compatibility only.

    The large integers lead to python long types as max / min for type.
    To contain the rounding error, we need to use the maximum numpy
    float types when casting to float.
    '''
    if mn > mx:
        raise ValueError('min value > max value')
    info = type_info(out_type)
    mn, mx, type_min, type_max = np.array(
        [mn, mx, info['min'], info['max']], np.maximum_sctype(np.float))
    # with intercept
    if allow_intercept:
        data_range = mx-mn
        if data_range == 0:
            return 1.0, mn
        type_range = type_max - type_min
        scaling = data_range / type_range
        intercept = mn - type_min * scaling
        return scaling, intercept
    # without intercept
    if mx == 0 and mn == 0:
        return 1.0, 0.0
    if type_min == 0: # uint
        if mn < 0 and mx > 0:
            raise ValueError('Cannot scale negative and positive '
                             'numbers to uint without intercept')
        if mx < 0:
            scaling = mn / type_max
        else:
            scaling = mx / type_max
    else: # int
        if abs(mx) >= abs(mn):
            scaling = mx / type_max
        else:
            scaling = mn / type_min
    return scaling, 0.0


def int_scinter_ftype(ifmt, slope=1.0, inter=0.0, default=np.float32):
    """ float type containing int type `ifmt` * `slope` + `inter`

    Return float type that can represent the max and the min of the `ifmt` type
    after multiplication with `slope` and addition of `inter` with something
    like ``np.array([imin, imax], dtype=ifmt) * slope + inter``.

    Note that ``slope`` and ``inter`` get promoted to 1D arrays for this purpose
    to avoid the numpy scalar casting rules, which prevent scalars upcasting the
    array.

    Parameters
    ----------
    ifmt : object
        numpy integer type (e.g. np.int32)
    slope : float, optional
        slope, default 1.0
    inter : float, optional
        intercept, default 0.0
    default_out : object, optional
        numpy floating point type, default is ``np.float32``

    Returns
    -------
    ftype : object
        numpy floating point type

    Examples
    --------
    >>> int_scinter_ftype(np.int8, 1.0, 0.0) == np.float32
    True
    >>> int_scinter_ftype(np.int8, 1e38, 0.0) == np.float64
    True

    Notes
    -----
    It is difficult to make floats overflow with just addition because the
    deltas are so large at the extremes of floating point.  For example::

        >>> arr = np.array([np.finfo(np.float32).max], dtype=np.float32)
        >>> res = arr + np.iinfo(np.int16).max
        >>> arr == res
        array([ True], dtype=bool)
    """
    ii = np.iinfo(ifmt)
    tst_arr = np.array([ii.min, ii.max], dtype=ifmt)
    try:
        return _ftype4scaled_finite(tst_arr, slope, inter, 'read', default)
    except ValueError:
        raise ValueError('Overflow using highest floating point type')


def best_write_scale_ftype(arr, slope = 1.0, inter = 0.0, default=np.float32):
    """ Smallest float type to contain range of ``arr`` after scaling

    Scaling that will be applied to ``arr`` is ``(arr - inter) / slope``.

    Note that ``slope`` and ``inter`` get promoted to 1D arrays for this purpose
    to avoid the numpy scalar casting rules, which prevent scalars upcasting the
    array.

    Parameters
    ----------
    arr : array-like
        array that will be scaled
    slope : array-like, optional
        scalar such that output array will be ``(arr - inter) / slope``.
    inter : array-like, optional
        scalar such that output array will be ``(arr - inter) / slope``
    default : numpy type, optional
        minimum float type to return

    Returns
    -------
    ftype : numpy type
        Best floating point type for scaling.  If no floating point type
        prevents overflow, return the top floating point type.  If the input
        array ``arr`` already contains inf values, return the greater of the
        input type and the default type.

    Examples
    --------
    >>> arr = np.array([0, 1, 2], dtype=np.int16)
    >>> best_write_scale_ftype(arr, 1, 0) is np.float32
    True

    Specify higher default return value

    >>> best_write_scale_ftype(arr, 1, 0, default=np.float64) is np.float64
    True

    Even large values that don't overflow don't change output

    >>> arr = np.array([0, np.finfo(np.float32).max], dtype=np.float32)
    >>> best_write_scale_ftype(arr, 1, 0) is np.float32
    True

    Scaling > 1 reduces output values, so no upcast needed

    >>> best_write_scale_ftype(arr, np.float32(2), 0) is np.float32
    True

    Scaling < 1 increases values, so upcast may be needed (and is here)

    >>> best_write_scale_ftype(arr, np.float32(0.5), 0) is np.float64
    True
    """
    default = better_float_of(arr.dtype.type, default)
    if not np.all(np.isfinite(arr)):
        return default
    try:
        return _ftype4scaled_finite(arr, slope, inter, 'write', default)
    except ValueError:
        return OK_FLOATS[-1]


def better_float_of(first, second, default=np.float32):
    """ Return more capable float type of `first` and `second`

    Return `default` if neither of `first` or `second` is a float

    Parameters
    ----------
    first : numpy type specifier
        Any valid input to `np.dtype()``
    second : numpy type specifier
        Any valid input to `np.dtype()``
    default : numpy type specifier, optional
        Any valid input to `np.dtype()``

    Returns
    -------
    better_type : numpy type
        More capable of `first` or `second` if both are floats; if only one is
        a float return that, otherwise return `default`.

    Examples
    --------
    >>> better_float_of(np.float32, np.float64) is np.float64
    True
    >>> better_float_of(np.float32, 'i4') is np.float32
    True
    >>> better_float_of('i2', 'u4') is np.float32
    True
    >>> better_float_of('i2', 'u4', np.float64) is np.float64
    True
    """
    first = np.dtype(first)
    second = np.dtype(second)
    default = np.dtype(default).type
    kinds = (first.kind, second.kind)
    if not 'f' in kinds:
        return default
    if kinds == ('f', 'f'):
        if first.itemsize >= second.itemsize:
            return first.type
        return second.type
    if first.kind == 'f':
        return first.type
    return second.type


def _ftype4scaled_finite(tst_arr, slope, inter, direction='read',
                         default=np.float32):
    """ Smallest float type for scaling of `tst_arr` that does not overflow
    """
    assert direction in ('read', 'write')
    if not default in OK_FLOATS and default is np.longdouble:
        # Omitted longdouble
        return default
    def_ind = OK_FLOATS.index(default)
    # promote to arrays to avoid numpy scalar casting rules
    tst_arr = np.atleast_1d(tst_arr)
    slope = np.atleast_1d(slope)
    inter = np.atleast_1d(inter)
    warnings.filterwarnings('ignore', '.*overflow.*', RuntimeWarning)
    try:
        for ftype in OK_FLOATS[def_ind:]:
            tst_trans = tst_arr.copy()
            slope = slope.astype(ftype)
            inter = inter.astype(ftype)
            if direction == 'read': # as in reading of image from disk
                if slope != 1.0:
                    tst_trans = tst_trans * slope
                if inter != 0.0:
                    tst_trans = tst_trans + inter
            elif direction == 'write':
                if inter != 0.0:
                    tst_trans = tst_trans - inter
                if slope != 1.0:
                    tst_trans = tst_trans / slope
            if np.all(np.isfinite(tst_trans)):
                return ftype
    finally:
        warnings.filters.pop(0)
    raise ValueError('Overflow using highest floating point type')


def finite_range(arr, check_nan=False):
    ''' Return range (min, max) or range and flag (min, max, has_nan) from `arr`

    Parameters
    ----------
    arr : array-like
    check_nan : {False, True}, optional
        Whether to return third output, a bool signaling whether there are NaN
        values in `arr`

    Returns
    -------
    mn : scalar
       minimum of values in (flattened) array
    mx : scalar
       maximum of values in (flattened) array
    has_nan : bool
       Returned if `check_nan` is True. `has_nan` is True if there are one or
       more NaN values in `arr`

    Examples
    --------
    >>> a = np.array([[-1, 0, 1],[np.inf, np.nan, -np.inf]])
    >>> finite_range(a)
    (-1.0, 1.0)
    >>> a = np.array([[-1, 0, 1],[np.inf, np.nan, -np.inf]])
    >>> finite_range(a, check_nan=True)
    (-1.0, 1.0, True)
    >>> a = np.array([[np.nan],[np.nan]])
    >>> finite_range(a) == (np.inf, -np.inf)
    True
    >>> a = np.array([[-3, 0, 1],[2,-1,4]], dtype=np.int)
    >>> finite_range(a)
    (-3, 4)
    >>> a = np.array([[1, 0, 1],[2,3,4]], dtype=np.uint)
    >>> finite_range(a)
    (0, 4)
    >>> a = a + 1j
    >>> finite_range(a)
    (1j, (4+1j))
    >>> a = np.zeros((2,), dtype=[('f1', 'i2')])
    >>> finite_range(a)
    Traceback (most recent call last):
       ...
    TypeError: Can only handle numeric types
    '''
    arr = np.asarray(arr)
    if arr.size == 0:
        return (np.inf, -np.inf) + (False,) * check_nan
    # Resort array to slowest->fastest memory change indices
    stride_order = np.argsort(arr.strides)[::-1]
    sarr = arr.transpose(stride_order)
    kind = sarr.dtype.kind
    if kind in 'iu':
        if check_nan:
            return np.min(sarr), np.max(sarr), False
        return np.min(sarr), np.max(sarr)
    if kind not in 'cf':
        raise TypeError('Can only handle numeric types')
    # Deal with 1D arrays in loop below
    sarr = np.atleast_2d(sarr)
    # Loop to avoid big temporary arrays
    t_info = np.finfo(sarr.dtype)
    t_mn, t_mx = t_info.min, t_info.max
    has_nan = False
    n_slices = sarr.shape[0]
    maxes = np.zeros(n_slices, dtype=sarr.dtype) - np.inf
    mins = np.zeros(n_slices, dtype=sarr.dtype) + np.inf
    for s in range(n_slices):
        this_slice = sarr[s] # view
        if not has_nan:
            maxes[s] = np.max(this_slice)
            # May have a non-nan non-inf max before we trip on min. If so,
            # record so we don't recalculate
            max_good = False
            if np.isnan(maxes[s]):
                has_nan = True
            elif maxes[s] != np.inf:
                max_good = True
                mins[s] = np.min(this_slice)
                if mins[s] != -np.inf:
                    # Only case where we escape the default np.isfinite
                    # algorithm
                    continue
        tmp = this_slice[np.isfinite(this_slice)]
        if tmp.size == 0: # No finite values
            # Reset max, min in case set in tests above
            maxes[s] = -np.inf
            mins[s] = np.inf
            continue
        if not max_good:
            maxes[s] = np.max(tmp)
        mins[s] = np.min(tmp)
    if check_nan:
        return np.nanmin(mins), np.nanmax(maxes), has_nan
    return np.nanmin(mins), np.nanmax(maxes)


def shape_zoom_affine(shape, zooms, x_flip=True):
    ''' Get affine implied by given shape and zooms

    We get the translations from the center of the image (implied by
    `shape`).

    Parameters
    ----------
    shape : (N,) array-like
       shape of image data. ``N`` is the number of dimensions
    zooms : (N,) array-like
       zooms (voxel sizes) of the image
    x_flip : {True, False}
       whether to flip the X row of the affine.  Corresponds to
       radiological storage on disk.

    Returns
    -------
    aff : (4,4) array
       affine giving correspondance of voxel coordinates to mm
       coordinates, taking the center of the image as origin

    Examples
    --------
    >>> shape = (3, 5, 7)
    >>> zooms = (3, 2, 1)
    >>> shape_zoom_affine((3, 5, 7), (3, 2, 1))
    array([[-3.,  0.,  0.,  3.],
           [ 0.,  2.,  0., -4.],
           [ 0.,  0.,  1., -3.],
           [ 0.,  0.,  0.,  1.]])
    >>> shape_zoom_affine((3, 5, 7), (3, 2, 1), False)
    array([[ 3.,  0.,  0., -3.],
           [ 0.,  2.,  0., -4.],
           [ 0.,  0.,  1., -3.],
           [ 0.,  0.,  0.,  1.]])
    '''
    shape = np.asarray(shape)
    zooms = np.array(zooms) # copy because of flip below
    ndims = len(shape)
    if ndims != len(zooms):
        raise ValueError('Should be same length of zooms and shape')
    if ndims >= 3:
        shape = shape[:3]
        zooms = zooms[:3]
    else:
        full_shape = np.ones((3,))
        full_zooms = np.ones((3,))
        full_shape[:ndims] = shape[:]
        full_zooms[:ndims] = zooms[:]
        shape = full_shape
        zooms = full_zooms
    if x_flip:
        zooms[0] *= -1
    # Get translations from center of image
    origin = (shape-1) / 2.0
    aff = np.eye(4)
    aff[:3, :3] = np.diag(zooms)
    aff[:3, -1] = -origin * zooms
    return aff


def rec2dict(rec):
    ''' Convert recarray to dictionary

    Also converts scalar values to scalars

    Parameters
    ----------
    rec : ndarray
       structured ndarray

    Returns
    -------
    dct : dict
       dict with key, value pairs as for `rec`

    Examples
    --------
    >>> r = np.zeros((), dtype = [('x', 'i4'), ('s', 'S10')])
    >>> d = rec2dict(r)
    >>> d == {'x': 0, 's': b''}
    True
    '''
    dct = {}
    for key in rec.dtype.fields:
        val = rec[key]
        try:
            val = np.asscalar(val)
        except ValueError:
            pass
        dct[key] = val
    return dct


class BinOpener(Opener):
    # Adds .mgz as gzipped file name type
    __doc__ = Opener.__doc__
    compress_ext_map = Opener.compress_ext_map.copy()
    compress_ext_map['.mgz'] = Opener.gz_def


def fname_ext_ul_case(fname):
    """ `fname` with ext changed to upper / lower case if file exists

    Check for existence of `fname`.  If it does exist, return unmodified.  If
    it doesn't, check for existence of `fname` with case changed from lower to
    upper, or upper to lower.  Return this modified `fname` if it exists.
    Otherwise return `fname` unmodified

    Parameters
    ----------
    fname : str
        filename.

    Returns
    -------
    mod_fname : str
        filename, maybe with extension of opposite case
    """
    if exists(fname):
        return fname
    froot, ext = splitext(fname)
    if ext == ext.lower():
        mod_fname = froot + ext.upper()
        if exists(mod_fname):
            return mod_fname
    elif ext == ext.upper():
        mod_fname = froot + ext.lower()
        if exists(mod_fname):
            return mod_fname
    return fname


def allopen(fileish, *args, **kwargs):
    """ Compatibility wrapper for old ``allopen`` function

    Wraps creation of ``BinOpener`` instance, while picking up module global
    ``default_compresslevel``.

    Please see docstring for ``BinOpener`` and ``Opener`` for details.
    """
    warnings.warn("Please use BinOpener class instead of this function",
                  DeprecationWarning,
                  stacklevel=2)
    class MyOpener(BinOpener):
        default_compresslevel = default_compresslevel
    return MyOpener(fileish, *args, **kwargs)