This file is indexed.

/usr/lib/python2.7/dist-packages/nitime/utils.py is in python-nitime 0.6-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
"""Miscellaneous utilities for time series analysis.

"""
from __future__ import print_function
import warnings
import numpy as np
from nitime.lazy import scipy_linalg as linalg
from nitime.lazy import scipy_signal as sig
from nitime.lazy import scipy_fftpack as fftpack
from nitime.lazy import scipy_signal_signaltools as signaltools


#-----------------------------------------------------------------------------
# Spectral estimation testing utilities
#-----------------------------------------------------------------------------
def square_window_spectrum(N, Fs):
    r"""
    Calculate the analytical spectrum of a square window

    Parameters
    ----------
    N : int
       the size of the window

    Fs : float
       The sampling rate

    Returns
    -------
    float array - the frequency bands, given N and FS
    complex array: the power in the spectrum of the square window in the
    frequency bands

    Notes
    -----
    This is equation 21c in Harris (1978):

    .. math::

      W(\theta) = exp(-j \frac{N-1}{2} \theta) \frac{sin \frac{N\theta}{2}} {sin\frac{\theta}{2}}

    F.J. Harris (1978). On the use of windows for harmonic analysis with the
    discrete Fourier transform. Proceedings of the IEEE, 66:51-83
    """
    f = get_freqs(Fs, N - 1)
    j = 0 + 1j
    a = -j * (N - 1) * f / 2
    b = np.sin(N * f / 2.0)
    c = np.sin(f / 2.0)
    make = np.exp(a) * b / c

    return f,  make[1:] / make[1]


def hanning_window_spectrum(N, Fs):
    r"""
    Calculate the analytical spectrum of a Hanning window

    Parameters
    ----------
    N : int
       The size of the window

    Fs : float
       The sampling rate

    Returns
    -------
    float array - the frequency bands, given N and FS
    complex array: the power in the spectrum of the square window in the
    frequency bands

    Notes
    -----
    This is equation 28b in Harris (1978):

    .. math::

      W(\theta) = 0.5 D(\theta) + 0.25 (D(\theta - \frac{2\pi}{N}) +
                D(\theta + \frac{2\pi}{N}) ),

    where:

    .. math::

      D(\theta) = exp(j\frac{\theta}{2})
                  \frac{sin\frac{N\theta}{2}}{sin\frac{\theta}{2}}

    F.J. Harris (1978). On the use of windows for harmonic analysis with the
    discrete Fourier transform. Proceedings of the IEEE, 66:51-83
    """
    #A helper function
    D = lambda theta, n: (
        np.exp((0 + 1j) * theta / 2) * ((np.sin(n * theta / 2)) / (theta / 2)))

    f = get_freqs(Fs, N)

    make = 0.5 * D(f, N) + 0.25 * (D((f - (2 * np.pi / N)), N) +
                                   D((f + (2 * np.pi / N)), N))
    return f, make[1:] / make[1]


def ar_generator(N=512, sigma=1., coefs=None, drop_transients=0, v=None):
    """
    This generates a signal u(n) = a1*u(n-1) + a2*u(n-2) + ... + v(n)
    where v(n) is a stationary stochastic process with zero mean
    and variance = sigma. XXX: confusing variance notation

    Parameters
    ----------

    N : int
      sequence length
    sigma : float
      power of the white noise driving process
    coefs : sequence
      AR coefficients for k = 1, 2, ..., P
    drop_transients : int
      number of initial IIR filter transient terms to drop
    v : ndarray
      custom noise process

    Parameters
    ----------

    N : float
       The number of points in the AR process generated. Default: 512
    sigma : float
       The variance of the noise in the AR process. Default: 1
    coefs : list or array of floats
       The AR model coefficients. Default: [2.7607, -3.8106, 2.6535, -0.9238],
       which is a sequence shown to be well-estimated by an order 8 AR system.
    drop_transients : float
       How many samples to drop from the beginning of the sequence (the
       transient phases of the process), so that the process can be considered
       stationary.
    v : float array
       Optionally, input a specific sequence of noise samples (this over-rides
       the sigma parameter). Default: None

    Returns
    -------

    u : ndarray
       the AR sequence
    v : ndarray
       the unit-variance innovations sequence
    coefs : ndarray
       feedback coefficients from k=1,len(coefs)

    The form of the feedback coefficients is a little different than
    the normal linear constant-coefficient difference equation. Therefore
    the transfer function implemented in this method is

    H(z) = sigma**0.5 / ( 1 - sum_k coefs(k)z**(-k) )    1 <= k <= P

    Examples
    --------

    >>> import nitime.algorithms as alg
    >>> ar_seq, nz, alpha = ar_generator()
    >>> fgrid, hz = alg.freq_response(1.0, a=np.r_[1, -alpha])
    >>> sdf_ar = (hz * hz.conj()).real

    """
    if coefs is None:
        # this sequence is shown to be estimated well by an order 8 AR system
        coefs = np.array([2.7607, -3.8106, 2.6535, -0.9238])
    else:
        coefs = np.asarray(coefs)

    # The number of terms we generate must include the dropped transients, and
    # then at the end we cut those out of the returned array.
    N += drop_transients

    # Typically uses just pass sigma in, but optionally they can provide their
    # own noise vector, case in which we use it
    if v is None:
        v = np.random.normal(size=N)
        v -= v[drop_transients:].mean()

    b = [sigma ** 0.5]
    a = np.r_[1, -coefs]
    u = sig.lfilter(b, a, v)

    # Only return the data after the drop_transients terms
    return u[drop_transients:], v[drop_transients:], coefs


def circularize(x, bottom=0, top=2 * np.pi, deg=False):
    """Maps the input into the continuous interval (bottom, top) where
    bottom defaults to 0 and top defaults to 2*pi

    Parameters
    ----------

    x : ndarray - the input array

    bottom : float, optional (defaults to 0).
        If you want to set the bottom of the interval into which you
        modulu to something else than 0.

    top : float, optional (defaults to 2*pi).
        If you want to set the top of the interval into which you
        modulu to something else than 2*pi

    Returns
    -------
    The input array, mapped into the interval (bottom,top)

    """
    x = np.asarray([x])

    if  (np.all(x[np.isfinite(x)] >= bottom) and
         np.all(x[np.isfinite(x)] <= top)):
        return np.squeeze(x)
    else:
        x[np.where(x < 0)] += top
        x[np.where(x > top)] -= top

    return np.squeeze(circularize(x, bottom=bottom, top=top))


def dB(x, power=True):
    """Convert the values in x to decibels.
    If the values in x are in 'power'-like units, then set the power
    flag accordingly

    1) dB(x) = 10log10(x)                     (if power==True)
    2) dB(x) = 10log10(|x|^2) = 20log10(|x|)  (if power==False)
    """
    if not power:
        return 20 * np.log10(np.abs(x))
    return 10 * np.log10(np.abs(x))


#-----------------------------------------------------------------------------
# Stats utils
#-----------------------------------------------------------------------------

def normalize_coherence(x, dof, copy=True):
    """
    The generally accepted choice to transform coherence measures into
    a more normal distribution

    Parameters
    ----------
    x : ndarray, real
       square-root of magnitude-square coherence measures
    dof : int
       number of degrees of freedom in the multitaper model
    copy : bool
        Copy or return inplace modified x.

    Returns
    -------
    y : ndarray, real
        The transformed array.
    """
    if copy:
        x = x.copy()
    np.arctanh(x, x)
    x *= np.sqrt(dof)
    return x


def normal_coherence_to_unit(y, dof, out=None):
    """
    The inverse transform of the above normalization
    """
    if out is None:
        x = y / np.sqrt(dof)
    else:
        y /= np.sqrt(dof)
        x = y
    np.tanh(x, x)
    return x


def expected_jk_variance(K):
    """Compute the expected value of the jackknife variance estimate
    over K windows below. This expected value formula is based on the
    asymptotic expansion of the trigamma function derived in
    [Thompson_1994]

    Paramters
    ---------

    K : int
      Number of tapers used in the multitaper method

    Returns
    -------

    evar : float
      Expected value of the jackknife variance estimator

    """

    kf = float(K)
    return ((1 / kf) * (kf - 1) / (kf - 0.5) *
            ((kf - 1) / (kf - 2)) ** 2 * (kf - 3) / (kf - 2))


def jackknifed_sdf_variance(yk, eigvals, sides='onesided', adaptive=True):
    r"""
    Returns the variance of the log-sdf estimated through jack-knifing
    a group of independent sdf estimates.

    Parameters
    ----------

    yk : ndarray (K, L)
       The K DFTs of the tapered sequences
    eigvals : ndarray (K,)
       The eigenvalues corresponding to the K DPSS tapers
    sides : str, optional
       Compute the jackknife pseudovalues over as one-sided or
       two-sided spectra
    adpative : bool, optional
       Compute the adaptive weighting for each jackknife pseudovalue

    Returns
    -------

    var : The estimate for log-sdf variance

    Notes
    -----

    The jackknifed mean estimate is distributed about the true mean as
    a Student's t-distribution with (K-1) degrees of freedom, and
    standard error equal to sqrt(var). However, Thompson and Chave [1]
    point out that this variance better describes the sample mean.


    [1] Thomson D J, Chave A D (1991) Advances in Spectrum Analysis and Array
    Processing (Prentice-Hall, Englewood Cliffs, NJ), 1, pp 58-113.
    """
    K = yk.shape[0]

    from nitime.algorithms import mtm_cross_spectrum

    # the samples {S_k} are defined, with or without weights, as
    # S_k = | x_k |**2
    # | x_k |**2 = | y_k * d_k |**2          (with adaptive weights)
    # | x_k |**2 = | y_k * sqrt(eig_k) |**2  (without adaptive weights)

    all_orders = set(range(K))
    jk_sdf = []
    # get the leave-one-out estimates -- ideally, weights are recomputed
    # for each leave-one-out. This is now the case.
    for i in range(K):
        items = list(all_orders.difference([i]))
        spectra_i = np.take(yk, items, axis=0)
        eigs_i = np.take(eigvals, items)
        if adaptive:
            # compute the weights
            weights, _ = adaptive_weights(spectra_i, eigs_i, sides=sides)
        else:
            weights = eigs_i[:, None]
        # this is the leave-one-out estimate of the sdf
        jk_sdf.append(
            mtm_cross_spectrum(
                spectra_i, spectra_i, weights, sides=sides
                )
            )
    # log-transform the leave-one-out estimates and the mean of estimates
    jk_sdf = np.log(jk_sdf)
    # jk_avg should be the mean of the log(jk_sdf(i))
    jk_avg = jk_sdf.mean(axis=0)

    K = float(K)

    jk_var = (jk_sdf - jk_avg)
    np.power(jk_var, 2, jk_var)
    jk_var = jk_var.sum(axis=0)

    # Thompson's recommended factor, eq 18
    # Jackknifing Multitaper Spectrum Estimates
    # IEEE SIGNAL PROCESSING MAGAZINE [20] JULY 2007
    f = (K - 1) ** 2 / K / (K - 0.5)
    jk_var *= f
    return jk_var


def jackknifed_coh_variance(tx, ty, eigvals, adaptive=True):
    """
    Returns the variance of the coherency between x and y, estimated
    through jack-knifing the tapered samples in {tx, ty}.

    Parameters
    ----------

    tx : ndarray, (K, L)
       The K complex spectra of tapered timeseries x
    ty : ndarray, (K, L)
       The K complex spectra of tapered timeseries y
    eigvals : ndarray (K,)
       The eigenvalues associated with the K DPSS tapers

    Returns
    -------

    jk_var : ndarray
       The variance computed in the transformed domain (see
       normalize_coherence)
    """

    K = tx.shape[0]

    # calculate leave-one-out estimates of MSC (magnitude squared coherence)
    jk_coh = []
    # coherence is symmetric (right??)
    sides = 'onesided'
    all_orders = set(range(K))

    import nitime.algorithms as alg

    # get the leave-one-out estimates
    for i in range(K):
        items = list(all_orders.difference([i]))
        tx_i = np.take(tx, items, axis=0)
        ty_i = np.take(ty, items, axis=0)
        eigs_i = np.take(eigvals, items)
        if adaptive:
            wx, _ = adaptive_weights(tx_i, eigs_i, sides=sides)
            wy, _ = adaptive_weights(ty_i, eigs_i, sides=sides)
        else:
            wx = wy = eigs_i[:, None]
        # The CSD
        sxy_i = alg.mtm_cross_spectrum(tx_i, ty_i, (wx, wy), sides=sides)
        # The PSDs
        sxx_i = alg.mtm_cross_spectrum(tx_i, tx_i, wx, sides=sides)
        syy_i = alg.mtm_cross_spectrum(ty_i, ty_i, wy, sides=sides)
        # these are the | c_i | samples
        msc = np.abs(sxy_i)
        msc /= np.sqrt(sxx_i * syy_i)
        jk_coh.append(msc)

    jk_coh = np.array(jk_coh)
    # now normalize the coherence estimates and take the mean
    normalize_coherence(jk_coh, 2 * K - 2, copy=False)  # inplace
    jk_avg = np.mean(jk_coh, axis=0)

    jk_var = (jk_coh - jk_avg)
    np.power(jk_var, 2, jk_var)
    jk_var = jk_var.sum(axis=0)

    # Do/Don't use the alternative scaling here??
    f = float(K - 1) / K

    jk_var *= f

    return jk_var


#-----------------------------------------------------------------------------
# Multitaper utils
#-----------------------------------------------------------------------------
def adaptive_weights(yk, eigvals, sides='onesided', max_iter=150):
    r"""
    Perform an iterative procedure to find the optimal weights for K
    direct spectral estimators of DPSS tapered signals.

    Parameters
    ----------

    yk : ndarray (K, N)
       The K DFTs of the tapered sequences
    eigvals : ndarray, length-K
       The eigenvalues of the DPSS tapers
    sides : str
       Whether to compute weights on a one-sided or two-sided spectrum
    max_iter : int
       Maximum number of iterations for weight computation

    Returns
    -------

    weights, nu

       The weights (array like sdfs), and the
       "equivalent degrees of freedom" (array length-L)

    Notes
    -----

    The weights to use for making the multitaper estimate, such that
    :math:`S_{mt} = \sum_{k} |w_k|^2S_k^{mt} / \sum_{k} |w_k|^2`

    If there are less than 3 tapers, then the adaptive weights are not
    found. The square root of the eigenvalues are returned as weights,
    and the degrees of freedom are 2*K

    """
    from nitime.algorithms import mtm_cross_spectrum
    K = len(eigvals)
    if len(eigvals) < 3:
        print("""
        Warning--not adaptively combining the spectral estimators
        due to a low number of tapers.
        """)
        # we'll hope this is a correct length for L
        N = yk.shape[-1]
        L = N / 2 + 1 if sides == 'onesided' else N
        return (np.multiply.outer(np.sqrt(eigvals), np.ones(L)), 2 * K)
    rt_eig = np.sqrt(eigvals)

    # combine the SDFs in the traditional way in order to estimate
    # the variance of the timeseries
    N = yk.shape[1]
    sdf = mtm_cross_spectrum(yk, yk, eigvals[:, None], sides=sides)
    L = sdf.shape[-1]
    var_est = np.sum(sdf, axis=-1) / N
    bband_sup = (1-eigvals)*var_est

    # The process is to iteratively switch solving for the following
    # two expressions:
    # (1) Adaptive Multitaper SDF:
    # S^{mt}(f) = [ sum |d_k(f)|^2 S_k(f) ]/ sum |d_k(f)|^2
    #
    # (2) Weights
    # d_k(f) = [sqrt(lam_k) S^{mt}(f)] / [lam_k S^{mt}(f) + E{B_k(f)}]
    #
    # Where lam_k are the eigenvalues corresponding to the DPSS tapers,
    # and the expected value of the broadband bias function
    # E{B_k(f)} is replaced by its full-band integration
    # (1/2pi) int_{-pi}^{pi} E{B_k(f)} = sig^2(1-lam_k)

    # start with an estimate from incomplete data--the first 2 tapers
    sdf_iter = mtm_cross_spectrum(yk[:2], yk[:2], eigvals[:2, None],
                                  sides=sides)
    err = np.zeros((K, L))
    # for numerical considerations, don't bother doing adaptive
    # weighting after 150 dB down
    min_pwr = sdf_iter.max() * 10 ** (-150/20.)
    default_weights = np.where(sdf_iter < min_pwr)[0]
    adaptiv_weights = np.where(sdf_iter >= min_pwr)[0]

    w_def = rt_eig[:,None] * sdf_iter[default_weights]
    w_def /= eigvals[:, None] * sdf_iter[default_weights] + bband_sup[:,None]

    d_sdfs = np.abs(yk[:,adaptiv_weights])**2
    if L < N:
        d_sdfs *= 2
    sdf_iter = sdf_iter[adaptiv_weights]
    yk = yk[:,adaptiv_weights]
    for n in range(max_iter):
        d_k = rt_eig[:,None] * sdf_iter[None, :]
        d_k /= eigvals[:, None]*sdf_iter[None, :] + bband_sup[:,None]
        # Test for convergence -- this is overly conservative, since
        # iteration only stops when all frequencies have converged.
        # A better approach is to iterate separately for each freq, but
        # that is a nonvectorized algorithm.
        #sdf_iter = mtm_cross_spectrum(yk, yk, d_k, sides=sides)
        sdf_iter = np.sum( d_k**2 * d_sdfs, axis=0 )
        sdf_iter /= np.sum( d_k**2, axis=0 )
        # Compute the cost function from eq 5.4 in Thomson 1982
        cfn = eigvals[:,None] * (sdf_iter[None,:] - d_sdfs)
        cfn /= (eigvals[:,None] * sdf_iter[None,:] + bband_sup[:,None])**2
        cfn = np.sum(cfn, axis=0)
        # there seem to be some pathological freqs sometimes ..
        # this should be a good heuristic
        if np.percentile(cfn**2, 95) < 1e-12:
            break
    else:  # If you have reached maximum number of iterations
        # Issue a warning and return non-converged weights:
        e_s = 'Breaking due to iterative meltdown in '
        e_s += 'nitime.utils.adaptive_weights.'
        warnings.warn(e_s, RuntimeWarning)
    weights = np.zeros( (K,L) )
    weights[:,adaptiv_weights] = d_k
    weights[:,default_weights] = w_def
    nu = 2 * (weights ** 2).sum(axis=-2)
    return weights, nu

def detect_lines(s, tapers, p=None, **taper_kws):
    """
    Detect the presence of line spectra in s using the F-test
    described in "Spectrum estimation and harmonic analysis" (Thompson 81).
    Strategies for detecting harmonics in low SNR include increasing the
    number of FFT points (NFFT keyword arg) and/or increasing the stability
    of the spectral estimate by using more tapers (higher NW parameter).

    s : ndarray
        The sequence(s) to test. If s.ndim > 1, then test sequences in
        the last axis in parallel

    tapers : ndarray or container
        Either the precomputed DPSS tapers, or the pair of parameters
        (NW, K) needed to compute K tapers of length n_pts.

    p : float
        The confidence threshold: under the null hypothesis of
        a locally white spectrum, there is a threshold such that
        there is a (1-p)% chance of a line amplitude being larger
        than that threshold. Only detect lines with amplitude greater
        than this threshold. The default is 1/N, to control for false
        positives.

    taper_kws
        Options for the tapered_spectra method, if no DPSS are provided.

    Returns
    -------

    (freq, beta) : sequence
        The frequencies (normalized in [0, .5]) and coefficients of the
        complex exponentials detected in the spectrum. A pair is returned
        for each sequence tested.

        One can reconstruct the line components as such:

        sn = 2*(beta[:,None]*np.exp(i*2*np.pi*np.arange(N)*freq[:,None])).real
        sn = sn.sum(axis=0)

    """
    from nitime.algorithms import tapered_spectra, dpss_windows
    import scipy.stats.distributions as dists
    import scipy.ndimage as ndimage
    N = s.shape[-1]
    # Some boiler-plate --
    # 1) set up tapers
    # 2) perform FFT on all windowed series
    if not isinstance(tapers, np.ndarray):
        # then tapers is (NW, K)
        args = (N,) + tuple(tapers)
        dpss, eigvals = dpss_windows(*args)
        if taper_kws.pop('low_bias', False):
            keepers = (eigvals > 0.9)
            dpss = dpss[keepers]
        tapers = dpss
    # spectra is (n_arr, K, nfft)
    spectra = tapered_spectra(s, tapers, **taper_kws)
    nfft = spectra.shape[-1]
    spectra = spectra[..., :nfft//2 + 1]

    # Set up some data for the following calculations --
    #   get the DC component of the taper spectra
    K = tapers.shape[0]
    U0 = tapers.sum(axis=1)
    U_sq = np.sum(U0**2)
    #  first order linear regression for mu to explain spectra
    mu = np.sum( U0[:,None] * spectra, axis=-2 ) / U_sq

    # numerator of F-stat -- strength of regression
    numr = 0.5 * np.abs(mu)**2 * U_sq
    numr[...,0] = 1; # don't care about DC
    # denominator -- strength of residual
    spectra = np.rollaxis(spectra, -2, 0)
    U0.shape = (K,) + (1,) * (spectra.ndim-1)
    denomr = spectra - U0*mu
    denomr = np.sum(np.abs(denomr)**2, axis=0) / (2*K-2)
    denomr[...,0] = 1;
    f_stat = numr / denomr

    # look for lines in each F-spectrum
    if not p:
        # the number of simultaneous tests are nfft/2, so this puts
        # the expected value for false detection somewhere less than 1
        p = 1.0/nfft
    #thresh = dists.f.isf(p, 2, 2*K-2)
    thresh = dists.f.isf(p, 2, K-1)
    f_stat = np.atleast_2d(f_stat)
    mu = np.atleast_2d(mu)
    lines = ()
    for fs, m in zip(f_stat, mu):
        detected = np.where(fs > thresh)[0]
        # do a quick pass through the detected lines to reject multiple
        # hits within the 2NW resolution of the MT analysis -- approximate
        # 2NW by K
        ddiff = np.diff(detected)
        flagged_groups, last_group = ndimage.label( (ddiff < K) )
        for g in range(1,last_group+1):
            idx = np.where(flagged_groups==g)[0]
            idx = np.r_[idx, idx[-1]+1]
            # keep the super-threshold point with largest amplitude
            mx = np.argmax(np.abs(m[ detected[idx] ]))
            i_sv = detected[idx[mx]]
            detected[idx] = -1
            detected[idx[mx]] = i_sv
        detected = detected[detected>0]
        if len(detected):
            lines = lines + ( (detected/float(nfft), m[detected]), )
        else:
            lines = lines + ( (), )
    if len(lines) == 1:
        lines = lines[0]
    return lines


#-----------------------------------------------------------------------------
# Eigensystem utils
#-----------------------------------------------------------------------------

# If we can get it, we want the cythonized version
try:
    from _utils import tridisolve

# If that doesn't work, we define it here:
except ImportError:
    def tridisolve(d, e, b, overwrite_b=True):
        """
        Symmetric tridiagonal system solver,
        from Golub and Van Loan, Matrix Computations pg 157

        Parameters
        ----------

        d : ndarray
          main diagonal stored in d[:]
        e : ndarray
          superdiagonal stored in e[:-1]
        b : ndarray
          RHS vector

        Returns
        -------

        x : ndarray
          Solution to Ax = b (if overwrite_b is False). Otherwise solution is
          stored in previous RHS vector b

        """
        N = len(b)
        # work vectors
        dw = d.copy()
        ew = e.copy()
        if overwrite_b:
            x = b
        else:
            x = b.copy()
        for k in range(1, N):
            # e^(k-1) = e(k-1) / d(k-1)
            # d(k) = d(k) - e^(k-1)e(k-1) / d(k-1)
            t = ew[k - 1]
            ew[k - 1] = t / dw[k - 1]
            dw[k] = dw[k] - t * ew[k - 1]
        for k in range(1, N):
            x[k] = x[k] - ew[k - 1] * x[k - 1]
        x[N - 1] = x[N - 1] / dw[N - 1]
        for k in range(N - 2, -1, -1):
            x[k] = x[k] / dw[k] - ew[k] * x[k + 1]

        if not overwrite_b:
            return x


def tridi_inverse_iteration(d, e, w, x0=None, rtol=1e-8):
    """Perform an inverse iteration to find the eigenvector corresponding
    to the given eigenvalue in a symmetric tridiagonal system.

    Parameters
    ----------

    d : ndarray
      main diagonal of the tridiagonal system
    e : ndarray
      offdiagonal stored in e[:-1]
    w : float
      eigenvalue of the eigenvector
    x0 : ndarray
      initial point to start the iteration
    rtol : float
      tolerance for the norm of the difference of iterates

    Returns
    -------

    e : ndarray
      The converged eigenvector

    """
    eig_diag = d - w
    if x0 is None:
        x0 = np.random.randn(len(d))
    x_prev = np.zeros_like(x0)
    norm_x = np.linalg.norm(x0)
    # the eigenvector is unique up to sign change, so iterate
    # until || |x^(n)| - |x^(n-1)| ||^2 < rtol
    x0 /= norm_x
    while np.linalg.norm(np.abs(x0) - np.abs(x_prev)) > rtol:
        x_prev = x0.copy()
        tridisolve(eig_diag, e, x0)
        norm_x = np.linalg.norm(x0)
        x0 /= norm_x
    return x0

#-----------------------------------------------------------------------------
# Correlation/Covariance utils
#-----------------------------------------------------------------------------


def remove_bias(x, axis):
    "Subtracts an estimate of the mean from signal x at axis"
    padded_slice = [slice(d) for d in x.shape]
    padded_slice[axis] = np.newaxis
    mn = np.mean(x, axis=axis)
    return x - mn[tuple(padded_slice)]


def crosscov(x, y, axis=-1, all_lags=False, debias=True, normalize=True):
    """Returns the crosscovariance sequence between two ndarrays.
    This is performed by calling fftconvolve on x, y[::-1]

    Parameters
    ----------

    x : ndarray
    y : ndarray
    axis : time axis
    all_lags : {True/False}
       whether to return all nonzero lags, or to clip the length of s_xy
       to be the length of x and y. If False, then the zero lag covariance
       is at index 0. Otherwise, it is found at (len(x) + len(y) - 1)/2
    debias : {True/False}
       Always removes an estimate of the mean along the axis, unless
       told not to (eg X and Y are known zero-mean)

    Returns
    -------

    cxy : ndarray
       The crosscovariance function

    Notes
    -----

    cross covariance of processes x and y is defined as

    .. math::

    C_{xy}[k]=E\{(X(n+k)-E\{X\})(Y(n)-E\{Y\})^{*}\}

    where X and Y are discrete, stationary (or ergodic) random processes

    Also note that this routine is the workhorse for all auto/cross/cov/corr
    functions.

    """
    if x.shape[axis] != y.shape[axis]:
        raise ValueError(
            'crosscov() only works on same-length sequences for now'
            )
    if debias:
        x = remove_bias(x, axis)
        y = remove_bias(y, axis)
    slicing = [slice(d) for d in x.shape]
    slicing[axis] = slice(None, None, -1)
    cxy = fftconvolve(x, y[tuple(slicing)].conj(), axis=axis, mode='full')
    N = x.shape[axis]
    if normalize:
        cxy /= N
    if all_lags:
        return cxy
    slicing[axis] = slice(N - 1, 2 * N - 1)
    return cxy[tuple(slicing)]


def crosscorr(x, y, **kwargs):
    """
    Returns the crosscorrelation sequence between two ndarrays.
    This is performed by calling fftconvolve on x, y[::-1]

    Parameters
    ----------

    x : ndarray
    y : ndarray
    axis : time axis
    all_lags : {True/False}
       whether to return all nonzero lags, or to clip the length of r_xy
       to be the length of x and y. If False, then the zero lag correlation
       is at index 0. Otherwise, it is found at (len(x) + len(y) - 1)/2

    Returns
    -------

    rxy : ndarray
       The crosscorrelation function

    Notes
    -----

    cross correlation is defined as

    .. math::

    R_{xy}[k]=E\{X[n+k]Y^{*}[n]\}

    where X and Y are discrete, stationary (ergodic) random processes
    """
    # just make the same computation as the crosscovariance,
    # but without subtracting the mean
    kwargs['debias'] = False
    rxy = crosscov(x, y, **kwargs)
    return rxy


def autocov(x, **kwargs):
    """Returns the autocovariance of signal s at all lags.

    Parameters
    ----------

    x : ndarray
    axis : time axis
    all_lags : {True/False}
       whether to return all nonzero lags, or to clip the length of r_xy
       to be the length of x and y. If False, then the zero lag correlation
       is at index 0. Otherwise, it is found at (len(x) + len(y) - 1)/2

    Returns
    -------

    cxx : ndarray
       The autocovariance function

    Notes
    -----

    Adheres to the definition

    .. math::

    C_{xx}[k]=E\{(X[n+k]-E\{X\})(X[n]-E\{X\})^{*}\}

    where X is a discrete, stationary (ergodic) random process
    """
    # only remove the mean once, if needed
    debias = kwargs.pop('debias', True)
    axis = kwargs.get('axis', -1)
    if debias:
        x = remove_bias(x, axis)
    kwargs['debias'] = False
    return crosscov(x, x, **kwargs)


def autocorr(x, **kwargs):
    """Returns the autocorrelation of signal s at all lags.

    Parameters
    ----------

    x : ndarray
    axis : time axis
    all_lags : {True/False}
       whether to return all nonzero lags, or to clip the length of r_xy
       to be the length of x and y. If False, then the zero lag correlation
       is at index 0. Otherwise, it is found at (len(x) + len(y) - 1)/2

    Notes
    -----

    Adheres to the definition

    .. math::

    R_{xx}[k]=E\{X[n+k]X^{*}[n]\}

    where X is a discrete, stationary (ergodic) random process

    """
    # do same computation as autocovariance,
    # but without subtracting the mean
    kwargs['debias'] = False
    return autocov(x, **kwargs)


def fftconvolve(in1, in2, mode="full", axis=None):
    """ Convolve two N-dimensional arrays using FFT. See convolve.

    This is a fix of scipy.signal.fftconvolve, adding an axis argument and
    importing locally the stuff only needed for this function

    """
    s1 = np.array(in1.shape)
    s2 = np.array(in2.shape)
    complex_result = (np.issubdtype(in1.dtype, np.complex) or
                      np.issubdtype(in2.dtype, np.complex))

    if axis is None:
        size = s1 + s2 - 1
        fslice = tuple([slice(0, int(sz)) for sz in size])
    else:
        equal_shapes = s1 == s2
        # allow equal_shapes[axis] to be False
        equal_shapes[axis] = True
        assert equal_shapes.all(), 'Shape mismatch on non-convolving axes'
        size = s1[axis] + s2[axis] - 1
        fslice = [slice(l) for l in s1]
        fslice[axis] = slice(0, int(size))
        fslice = tuple(fslice)

    # Always use 2**n-sized FFT
    fsize = 2 ** int(np.ceil(np.log2(size)))
    if axis is None:
        IN1 = fftpack.fftn(in1, fsize)
        IN1 *= fftpack.fftn(in2, fsize)
        ret = fftpack.ifftn(IN1)[fslice].copy()
    else:
        IN1 = fftpack.fft(in1, fsize, axis=axis)
        IN1 *= fftpack.fft(in2, fsize, axis=axis)
        ret = fftpack.ifft(IN1, axis=axis)[fslice].copy()
    del IN1
    if not complex_result:
        ret = ret.real
    if mode == "full":
        return ret
    elif mode == "same":
        if np.product(s1, axis=0) > np.product(s2, axis=0):
            osize = s1
        else:
            osize = s2
        return signaltools._centered(ret, osize)
    elif mode == "valid":
        return signaltools._centered(ret, abs(s2 - s1) + 1)


#-----------------------------------------------------------------------------
# 'get' utils
#-----------------------------------------------------------------------------
def get_freqs(Fs, n):
    """Returns the center frequencies of the frequency decomposotion of a time
    series of length n, sampled at Fs Hz"""

    return np.linspace(0, float(Fs) / 2, float(n) / 2 + 1)


def circle_to_hz(omega, Fsamp):
    """For a frequency grid spaced on the unit circle of an imaginary plane,
    return the corresponding freqency grid in Hz.
    """
    return Fsamp * omega / (2 * np.pi)


def get_bounds(f, lb=0, ub=None):
    """ Find the indices of the lower and upper bounds within an array f

    Parameters
    ----------
    f, array

    lb,ub, float

    Returns
    -------

    lb_idx, ub_idx: the indices into 'f' which correspond to values bounded
    between ub and lb in that array
    """
    lb_idx = np.searchsorted(f, lb, 'left')
    if ub == None:
        ub_idx = len(f)
    else:
        ub_idx = np.searchsorted(f, ub, 'right')

    return lb_idx, ub_idx


def unwrap_phases(a):
    """
    Changes consecutive jumps larger than pi to their 2*pi complement.
    """
    pi = np.pi

    diffs = np.diff(a)
    mod_diffs = np.mod(diffs + pi, 2 * pi) - pi
    neg_pi_idx = np.where(mod_diffs == -1 * np.pi)
    pos_idx = np.where(diffs > 0)
    this_idx = np.intersect1d(neg_pi_idx[0], pos_idx[0])
    mod_diffs[this_idx] = pi
    correction = mod_diffs - diffs
    correction[np.where(np.abs(diffs) < pi)] = 0
    a[1:] += np.cumsum(correction)

    return a


def multi_intersect(input):
    """ A function for finding the intersection of several different arrays

    Parameters
    ----------
    input is a tuple of arrays, with all the different arrays

    Returns
    -------
    array - the intersection of the inputs

    Notes
    -----
    Simply runs intersect1d iteratively on the inputs
    """
    arr  = input[0].ravel()
    for this in input[1:]:
        arr = np.intersect1d(arr, this.ravel())

    return arr

def zero_pad(time_series, NFFT):
    """
    Pad a time-series with zeros on either side, depending on its length

    Parameters
    ----------
    time_series : n-d array
       Time-series data with time as the last dimension

    NFFT : int
       The length to pad the data up to.

    """

    n_dims = len(time_series.shape)
    n_time_points = time_series.shape[-1]

    if n_dims>1:
        n_channels = time_series.shape[:-1]
        shape_out = n_channels + (NFFT,)
    else:
        shape_out = NFFT
    # zero pad if time_series is too short
    if n_time_points < NFFT:
        tmp = time_series
        time_series = np.zeros(shape_out, time_series.dtype)
        time_series[..., :n_time_points] = tmp
        del tmp

    return time_series


#-----------------------------------------------------------------------------
# Numpy utilities - Note: these have been sent into numpy itself, so eventually
# we'll be able to get rid of them here.
#-----------------------------------------------------------------------------
def fill_diagonal(a, val):
    """Fill the main diagonal of the given array of any dimensionality.

    For an array with ndim > 2, the diagonal is the list of locations with
    indices a[i,i,...,i], all identical.

    This function modifies the input array in-place, it does not return a
    value.

    This functionality can be obtained via diag_indices(), but internally this
    version uses a much faster implementation that never constructs the indices
    and uses simple slicing.

    Parameters
    ----------
    a : array, at least 2-dimensional.
      Array whose diagonal is to be filled, it gets modified in-place.

    val : scalar
      Value to be written on the diagonal, its type must be compatible with
      that of the array a.

    Examples
    --------
    >>> a = np.zeros((3,3),int)
    >>> fill_diagonal(a,5)
    >>> a
    array([[5, 0, 0],
           [0, 5, 0],
           [0, 0, 5]])

    The same function can operate on a 4-d array:
    >>> a = np.zeros((3,3,3,3),int)
    >>> fill_diagonal(a,4)

    We only show a few blocks for clarity:
    >>> a[0,0]
    array([[4, 0, 0],
           [0, 0, 0],
           [0, 0, 0]])
    >>> a[1,1]
    array([[0, 0, 0],
           [0, 4, 0],
           [0, 0, 0]])
    >>> a[2,2]
    array([[0, 0, 0],
           [0, 0, 0],
           [0, 0, 4]])

    See also
    --------
    - diag_indices: indices to access diagonals given shape information.
    - diag_indices_from: indices to access diagonals given an array.
    """
    if a.ndim < 2:
        raise ValueError("array must be at least 2-d")
    if a.ndim == 2:
        # Explicit, fast formula for the common case.  For 2-d arrays, we
        # accept rectangular ones.
        step = a.shape[1] + 1
    else:
        # For more than d=2, the strided formula is only valid for arrays with
        # all dimensions equal, so we check first.
        if not np.alltrue(np.diff(a.shape) == 0):
            raise ValueError("All dimensions of input must be of equal length")
        step = np.cumprod((1,) + a.shape[:-1]).sum()

    # Write the value out into the diagonal.
    a.flat[::step] = val


def diag_indices(n, ndim=2):
    """Return the indices to access the main diagonal of an array.

    This returns a tuple of indices that can be used to access the main
    diagonal of an array with ndim (>=2) dimensions and shape (n,n,...,n).  For
    ndim=2 this is the usual diagonal, for ndim>2 this is the set of indices
    to access A[i,i,...,i] for i=[0..n-1].

    Parameters
    ----------
    n : int
      The size, along each dimension, of the arrays for which the returned
      indices can be used.

    ndim : int, optional
      The number of dimensions

    Examples
    --------
    Create a set of indices to access the diagonal of a (4,4) array:
    >>> di = diag_indices(4)

    >>> a = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]])
    >>> a
    array([[ 1,  2,  3,  4],
           [ 5,  6,  7,  8],
           [ 9, 10, 11, 12],
           [13, 14, 15, 16]])
    >>> a[di] = 100
    >>> a
    array([[100,   2,   3,   4],
           [  5, 100,   7,   8],
           [  9,  10, 100,  12],
           [ 13,  14,  15, 100]])

    Now, we create indices to manipulate a 3-d array:
    >>> d3 = diag_indices(2,3)

    And use it to set the diagonal of a zeros array to 1:
    >>> a = np.zeros((2,2,2),int)
    >>> a[d3] = 1
    >>> a
    array([[[1, 0],
            [0, 0]],
    <BLANKLINE>
           [[0, 0],
            [0, 1]]])

    See also
    --------
    - diag_indices_from: create the indices based on the shape of an existing
    array.
    """
    idx = np.arange(n)
    return (idx,) * ndim


def diag_indices_from(arr):
    """Return the indices to access the main diagonal of an n-dimensional
    array.

    See diag_indices() for full details.

    Parameters
    ----------
    arr : array, at least 2-d
    """
    if not arr.ndim >= 2:
        raise ValueError("input array must be at least 2-d")
    # For more than d=2, the strided formula is only valid for arrays with
    # all dimensions equal, so we check first.
    if not np.alltrue(np.diff(arr.shape) == 0):
        raise ValueError("All dimensions of input must be of equal length")

    return diag_indices(arr.shape[0], arr.ndim)


def mask_indices(n, mask_func, k=0):
    """Return the indices to access (n,n) arrays, given a masking function.

    Assume mask_func() is a function that, for a square array a of size (n,n)
    with a possible offset argument k, when called as mask_func(a,k) returns a
    new array with zeros in certain locations (functions like triu() or tril()
    do precisely this).  Then this function returns the indices where the
    non-zero values would be located.

    Parameters
    ----------
    n : int
      The returned indices will be valid to access arrays of shape (n,n).

    mask_func : callable
      A function whose api is similar to that of numpy.tri{u,l}.  That is,
      mask_func(x,k) returns a boolean array, shaped like x.  k is an optional
      argument to the function.

    k : scalar
      An optional argument which is passed through to mask_func().  Functions
      like tri{u,l} take a second argument that is interpreted as an offset.

    Returns
    -------
    indices : an n-tuple of index arrays.
      The indices corresponding to the locations where mask_func(ones((n,n)),k)
      is True.

    Examples
    --------
    These are the indices that would allow you to access the upper triangular
    part of any 3x3 array:
    >>> iu = mask_indices(3,np.triu)

    For example, if `a` is a 3x3 array:
    >>> a = np.arange(9).reshape(3,3)
    >>> a
    array([[0, 1, 2],
           [3, 4, 5],
           [6, 7, 8]])

    Then:
    >>> a[iu]
    array([0, 1, 2, 4, 5, 8])

    An offset can be passed also to the masking function.  This gets us the
    indices starting on the first diagonal right of the main one:
    >>> iu1 = mask_indices(3,np.triu,1)

    with which we now extract only three elements:
    >>> a[iu1]
    array([1, 2, 5])
    """
    m = np.ones((n, n), int)
    a = mask_func(m, k)
    return np.where(a != 0)


def tril_indices(n, k=0):
    """Return the indices for the lower-triangle of an (n,n) array.

    Parameters
    ----------
    n : int
      Sets the size of the arrays for which the returned indices will be valid.

    k : int, optional
      Diagonal offset (see tril() for details).

    Examples
    --------
    Commpute two different sets of indices to access 4x4 arrays, one for the
    lower triangular part starting at the main diagonal, and one starting two
    diagonals further right:

    >>> il1 = tril_indices(4)
    >>> il2 = tril_indices(4,2)

    Here is how they can be used with a sample array:
    >>> a = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]])
    >>> a
    array([[ 1,  2,  3,  4],
           [ 5,  6,  7,  8],
           [ 9, 10, 11, 12],
           [13, 14, 15, 16]])

    Both for indexing:
    >>> a[il1]
    array([ 1,  5,  6,  9, 10, 11, 13, 14, 15, 16])

    And for assigning values:
    >>> a[il1] = -1
    >>> a
    array([[-1,  2,  3,  4],
           [-1, -1,  7,  8],
           [-1, -1, -1, 12],
           [-1, -1, -1, -1]])

    These cover almost the whole array (two diagonals right of the main one):
    >>> a[il2] = -10
    >>> a
    array([[-10, -10, -10,   4],
           [-10, -10, -10, -10],
           [-10, -10, -10, -10],
           [-10, -10, -10, -10]])

    See also
    --------
    - triu_indices : similar function, for upper-triangular.
    - mask_indices : generic function accepting an arbitrary mask function.
    """
    return mask_indices(n, np.tril, k)


def tril_indices_from(arr, k=0):
    """Return the indices for the lower-triangle of an (n,n) array.

    See tril_indices() for full details.

    Parameters
    ----------
    n : int
      Sets the size of the arrays for which the returned indices will be valid.

    k : int, optional
      Diagonal offset (see tril() for details).

    """
    if not arr.ndim == 2 and arr.shape[0] == arr.shape[1]:
        raise ValueError("input array must be 2-d and square")
    return tril_indices(arr.shape[0], k)


def triu_indices(n, k=0):
    """Return the indices for the upper-triangle of an (n,n) array.

    Parameters
    ----------
    n : int
      Sets the size of the arrays for which the returned indices will be valid.

    k : int, optional
      Diagonal offset (see triu() for details).

    Examples
    --------
    Commpute two different sets of indices to access 4x4 arrays, one for the
    upper triangular part starting at the main diagonal, and one starting two
    diagonals further right:

    >>> iu1 = triu_indices(4)
    >>> iu2 = triu_indices(4,2)

    Here is how they can be used with a sample array:
    >>> a = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]])
    >>> a
    array([[ 1,  2,  3,  4],
           [ 5,  6,  7,  8],
           [ 9, 10, 11, 12],
           [13, 14, 15, 16]])

    Both for indexing:
    >>> a[iu1]
    array([ 1,  2,  3,  4,  6,  7,  8, 11, 12, 16])

    And for assigning values:
    >>> a[iu1] = -1
    >>> a
    array([[-1, -1, -1, -1],
           [ 5, -1, -1, -1],
           [ 9, 10, -1, -1],
           [13, 14, 15, -1]])

    These cover almost the whole array (two diagonals right of the main one):
    >>> a[iu2] = -10
    >>> a
    array([[ -1,  -1, -10, -10],
           [  5,  -1,  -1, -10],
           [  9,  10,  -1,  -1],
           [ 13,  14,  15,  -1]])

    See also
    --------
    - tril_indices : similar function, for lower-triangular.
    - mask_indices : generic function accepting an arbitrary mask function.
    """
    return mask_indices(n, np.triu, k)


def triu_indices_from(arr, k=0):
    """Return the indices for the lower-triangle of an (n,n) array.

    See triu_indices() for full details.

    Parameters
    ----------
    n : int
      Sets the size of the arrays for which the returned indices will be valid.

    k : int, optional
      Diagonal offset (see triu() for details).

    """
    if not arr.ndim == 2 and arr.shape[0] == arr.shape[1]:
        raise ValueError("input array must be 2-d and square")
    return triu_indices(arr.shape[0], k)


def structured_rand_arr(size, sample_func=np.random.random,
                        ltfac=None, utfac=None, fill_diag=None):
    """Make a structured random 2-d array of shape (size,size).

    If no optional arguments are given, a symmetric array is returned.

    Parameters
    ----------
    size : int
      Determines the shape of the output array: (size,size).

    sample_func : function, optional.
      Must be a function which when called with a 2-tuple of ints, returns a
      2-d array of that shape.  By default, np.random.random is used, but any
      other sampling function can be used as long as matches this API.

    utfac : float, optional
      Multiplicative factor for the upper triangular part of the matrix.

    ltfac : float, optional
      Multiplicative factor for the lower triangular part of the matrix.

    fill_diag : float, optional
      If given, use this value to fill in the diagonal.  Otherwise the diagonal
      will contain random elements.

    Examples
    --------
    >>> np.random.seed(0)  # for doctesting
    >>> np.set_printoptions(precision=4)  # for doctesting
    >>> structured_rand_arr(4)
    array([[ 0.5488,  0.7152,  0.6028,  0.5449],
           [ 0.7152,  0.6459,  0.4376,  0.8918],
           [ 0.6028,  0.4376,  0.7917,  0.5289],
           [ 0.5449,  0.8918,  0.5289,  0.0871]])
    >>> structured_rand_arr(4,ltfac=-10,utfac=10,fill_diag=0.5)
    array([[ 0.5   ,  8.3262,  7.7816,  8.7001],
           [-8.3262,  0.5   ,  4.6148,  7.8053],
           [-7.7816, -4.6148,  0.5   ,  9.4467],
           [-8.7001, -7.8053, -9.4467,  0.5   ]])
    """
    # Make a random array from the given sampling function
    rmat = sample_func((size, size))
    # And the empty one we'll then fill in to return
    out = np.empty_like(rmat)
    # Extract indices for upper-triangle, lower-triangle and diagonal
    uidx = triu_indices(size, 1)
    lidx = tril_indices(size, -1)
    didx = diag_indices(size)
    # Extract each part from the original and copy it to the output, possibly
    # applying multiplicative factors.  We check the factors instead of
    # defaulting to 1.0 to avoid unnecessary floating point multiplications
    # which could be noticeable for very large sizes.
    if utfac:
        out[uidx] = utfac * rmat[uidx]
    else:
        out[uidx] = rmat[uidx]
    if ltfac:
        out[lidx] = ltfac * rmat.T[lidx]
    else:
        out[lidx] = rmat.T[lidx]
    # If fill_diag was provided, use it; otherwise take the values in the
    # diagonal from the original random array.
    if fill_diag is not None:
        out[didx] = fill_diag
    else:
        out[didx] = rmat[didx]

    return out


def symm_rand_arr(size, sample_func=np.random.random, fill_diag=None):
    """Make a symmetric random 2-d array of shape (size,size).

    Parameters
    ----------
    n : int
      Size of the output array.

    sample_func : function, optional.
      Must be a function which when called with a 2-tuple of ints, returns a
      2-d array of that shape.  By default, np.random.random is used, but any
      other sampling function can be used as long as matches this API.

    fill_diag : float, optional
      If given, use this value to fill in the diagonal.  Useful for

    Examples
    --------
    >>> np.random.seed(0)  # for doctesting
    >>> np.set_printoptions(precision=4)  # for doctesting
    >>> symm_rand_arr(4)
    array([[ 0.5488,  0.7152,  0.6028,  0.5449],
           [ 0.7152,  0.6459,  0.4376,  0.8918],
           [ 0.6028,  0.4376,  0.7917,  0.5289],
           [ 0.5449,  0.8918,  0.5289,  0.0871]])
    >>> symm_rand_arr(4,fill_diag=4)
    array([[ 4.    ,  0.8326,  0.7782,  0.87  ],
           [ 0.8326,  4.    ,  0.4615,  0.7805],
           [ 0.7782,  0.4615,  4.    ,  0.9447],
           [ 0.87  ,  0.7805,  0.9447,  4.    ]])
      """
    return structured_rand_arr(size, sample_func, fill_diag=fill_diag)


def antisymm_rand_arr(size, sample_func=np.random.random):
    """Make an anti-symmetric random 2-d array of shape (size,size).

    Parameters
    ----------

    n : int
      Size of the output array.

    sample_func : function, optional.
      Must be a function which when called with a 2-tuple of ints, returns a
      2-d array of that shape.  By default, np.random.random is used, but any
      other sampling function can be used as long as matches this API.

    Examples
    --------
    >>> np.random.seed(0)  # for doctesting
    >>> np.set_printoptions(precision=4)  # for doctesting
    >>> antisymm_rand_arr(4)
    array([[ 0.    ,  0.7152,  0.6028,  0.5449],
           [-0.7152,  0.    ,  0.4376,  0.8918],
           [-0.6028, -0.4376,  0.    ,  0.5289],
           [-0.5449, -0.8918, -0.5289,  0.    ]])
      """
    return structured_rand_arr(size, sample_func, ltfac=-1.0, fill_diag=0)


# --------brainx utils------------------------------------------------------
# These utils were copied over from brainx - needed for viz


def threshold_arr(cmat, threshold=0.0, threshold2=None):
    """Threshold values from the input array.

    Parameters
    ----------
    cmat : array

    threshold : float, optional.
      First threshold.

    threshold2 : float, optional.
      Second threshold.

    Returns
    -------
    indices, values: a tuple with ndim+1

    Examples
    --------
    >>> np.set_printoptions(precision=4)  # For doctesting
    >>> a = np.linspace(0,0.2,5)
    >>> a
    array([ 0.  ,  0.05,  0.1 ,  0.15,  0.2 ])
    >>> threshold_arr(a,0.1)
    (array([3, 4]), array([ 0.15,  0.2 ]))

    With two thresholds:
    >>> threshold_arr(a,0.1,0.2)
    (array([0, 1]), array([ 0.  ,  0.05]))
    """
    # Select thresholds
    if threshold2 is None:
        th_low = -np.inf
        th_hi = threshold
    else:
        th_low = threshold
        th_hi = threshold2

    # Mask out the values we are actually going to use
    idx = np.where((cmat < th_low) | (cmat > th_hi))
    vals = cmat[idx]

    return idx + (vals,)


def thresholded_arr(arr, threshold=0.0, threshold2=None, fill_val=np.nan):
    """Threshold values from the input matrix and return a new matrix.

    Parameters
    ----------
    arr : array

    threshold : float
      First threshold.

    threshold2 : float, optional.
      Second threshold.

    Returns
    -------
    An array shaped like the input, with the values outside the threshold
    replaced with fill_val.

    Examples
    --------
    """
    a2 = np.empty_like(arr)
    a2.fill(fill_val)
    mth = threshold_arr(arr, threshold, threshold2)
    idx, vals = mth[:-1], mth[-1]
    a2[idx] = vals

    return a2


def rescale_arr(arr, amin, amax):
    """Rescale an array to a new range.

    Return a new array whose range of values is (amin,amax).

    Parameters
    ----------
    arr : array-like

    amin : float
      new minimum value

    amax : float
      new maximum value

    Examples
    --------
    >>> a = np.arange(5)

    >>> rescale_arr(a,3,6)
    array([ 3.  ,  3.75,  4.5 ,  5.25,  6.  ])
    """

    # old bounds
    m = arr.min()
    M = arr.max()
    # scale/offset
    s = float(amax - amin) / (M - m)
    d = amin - s * m

    # Apply clip before returning to cut off possible overflows outside the
    # intended range due to roundoff error, so that we can absolutely guarantee
    # that on output, there are no values > amax or < amin.
    return np.clip(s * arr + d, amin, amax)


def minmax_norm(arr, mode='direct', folding_edges=None):
    """Minmax_norm an array to [0,1] range.

    By default, this simply rescales the input array to [0,1].  But it has a
    special 'folding' mode that allows for the normalization of an array with
    negative and positive values by mapping the negative values to their
    flipped sign

    Parameters
    ----------
    arr : 1d array

    mode : string, one of ['direct','folding']

    folding_edges : (float,float)
      Only needed for folding mode, ignored in 'direct' mode.

    Examples
    --------
    >>> np.set_printoptions(precision=4)  # for doctesting
    >>> a = np.linspace(0.3,0.8,4)
    >>> minmax_norm(a)
    array([ 0.    ,  0.3333,  0.6667,  1.    ])
    >>> b = np.concatenate([np.linspace(-0.7,-0.3,3),
    ...                             np.linspace(0.3,0.8,3)])
    >>> b
    array([-0.7 , -0.5 , -0.3 ,  0.3 ,  0.55,  0.8 ])
    >>> minmax_norm(b,'folding',[-0.3,0.3])
    array([ 0.8,  0.4,  0. ,  0. ,  0.5,  1. ])
    """
    if mode == 'direct':
        return rescale_arr(arr, 0, 1)
    else:
        fa, fb = folding_edges
        amin, amax = arr.min(), arr.max()
        ra, rb = float(fa - amin), float(amax - fb)  # in case inputs are ints
        if ra < 0 or rb < 0:
            raise ValueError("folding edges must be within array range")
        greater = arr >= fb
        upper_idx = greater.nonzero()
        lower_idx = (~greater).nonzero()
        # Two folding scenarios, we map the thresholds to zero but the upper
        # ranges must retain comparability.
        if ra > rb:
            lower = 1.0 - rescale_arr(arr[lower_idx], 0, 1.0)
            upper = rescale_arr(arr[upper_idx], 0, float(rb) / ra)
        else:
            upper = rescale_arr(arr[upper_idx], 0, 1)
            # The lower range is trickier: we need to rescale it and then flip
            # it, so the edge goes to 0.
            resc_a = float(ra) / rb
            lower = rescale_arr(arr[lower_idx], 0, resc_a)
            lower = resc_a - lower
        # Now, make output array
        out = np.empty_like(arr)
        out[lower_idx] = lower
        out[upper_idx] = upper
        return out


#---------- intersect coords ----------------------------------------------
def intersect_coords(coords1, coords2):
    """For two sets of coordinates, find the coordinates that are common to
    both, where the dimensionality is the coords1.shape[0]"""
    # Find the longer one
    if coords1.shape[-1] > coords2.shape[-1]:
        coords_long = coords1
        coords_short = coords2
    else:
        coords_long = coords2
        coords_short = coords1

    ans = np.array([[], [], []], dtype='int')  # Initialize as a 3 row variable
    # Loop over the longer of the coordinate sets
    for i in range(coords_long.shape[-1]):
        # For each coordinate:
        this_coords = coords_long[:, i]
        # Find the matches in the other set of coordinates:
        x = np.where(coords_short[0, :] == this_coords[0])[0]
        y = np.where(coords_short[1, :] == this_coords[1])[0]
        z = np.where(coords_short[2, :] == this_coords[2])[0]

        # Use intersect1d, such that there can be more than one match (and the
        # size of idx will reflect how many such matches exist):
        idx = np.intersect1d(np.intersect1d(x, y), z)
        # Append the places where there are matches in all three dimensions:
        if len(idx):
            ans = np.hstack([ans, coords_short[:, idx]])

    return ans


#---------- Time Series Stats ----------------------------------------
def zscore(time_series, axis=-1):
    """Returns the z-score of each point of the time series
    along a given axis of the array time_series.

    Parameters
    ----------
    time_series : ndarray
        an array of time series
    axis : int, optional
        the axis of time_series along which to compute means and stdevs

    Returns
    _______
    zt : ndarray
        the renormalized time series array
    """
    time_series = np.asarray(time_series)
    et = time_series.mean(axis=axis)
    st = time_series.std(axis=axis)
    sl = [slice(None)] * len(time_series.shape)
    sl[axis] = np.newaxis
    zt = time_series - et[sl]
    zt /= st[sl]
    return zt


def percent_change(ts, ax=-1):
    """Returns the % signal change of each point of the times series
    along a given axis of the array time_series

    Parameters
    ----------

    ts : ndarray
        an array of time series

    ax : int, optional (default to -1)
        the axis of time_series along which to compute means and stdevs

    Returns
    -------

    ndarray
        the renormalized time series array (in units of %)

    Examples
    --------

    >>> ts = np.arange(4*5).reshape(4,5)
    >>> ax = 0
    >>> percent_change(ts,ax)
    array([[-100.    ,  -88.2353,  -78.9474,  -71.4286,  -65.2174],
           [ -33.3333,  -29.4118,  -26.3158,  -23.8095,  -21.7391],
           [  33.3333,   29.4118,   26.3158,   23.8095,   21.7391],
           [ 100.    ,   88.2353,   78.9474,   71.4286,   65.2174]])
    >>> ax = 1
    >>> percent_change(ts,ax)
    array([[-100.    ,  -50.    ,    0.    ,   50.    ,  100.    ],
           [ -28.5714,  -14.2857,    0.    ,   14.2857,   28.5714],
           [ -16.6667,   -8.3333,    0.    ,    8.3333,   16.6667],
           [ -11.7647,   -5.8824,    0.    ,    5.8824,   11.7647]])
"""
    ts = np.asarray(ts)

    return (ts / np.expand_dims(np.mean(ts, ax), ax) - 1) * 100


#----------Event-related analysis utils ----------------------------------
def fir_design_matrix(events, len_hrf):
    """Create a FIR event matrix from a time-series of events.

    Parameters
    ----------

    events : 1-d int array
       Integers denoting different kinds of events, occuring at the time
       corresponding to the bin represented by each slot in the array. In
       time-bins in which no event occured, a 0 should be entered. If negative
       event values are entered, they will be used as "negative" events, as in
       events that should be contrasted with the postitive events (typically -1
       and 1 can be used for a simple contrast of two conditions)

    len_hrf : int
       The expected length of the HRF (in the same time-units as the events are
       represented (presumably TR). The size of the block dedicated in the
       fir_matrix to each type of event

    Returns
    -------

    fir_matrix : matrix

       The design matrix for FIR estimation
    """
    event_types = np.unique(events)[np.unique(events) != 0]
    fir_matrix = np.zeros((events.shape[0], len_hrf * event_types.shape[0]))

    for t in event_types:
        idx_h_a = (np.array(np.where(event_types == t)[0]) * len_hrf)[0]
        idx_h_b = idx_h_a + len_hrf
        idx_v = np.where(events == t)[0]
        for idx_v_a in idx_v:
            idx_v_b = idx_v_a + len_hrf
            fir_matrix[idx_v_a:idx_v_b, idx_h_a:idx_h_b] += (np.eye(len_hrf) *
                                                             np.sign(t))

    return fir_matrix


#---------- MAR utilities ----------------------------------------

# These utilities are used in the computation of multivariate autoregressive
# models (used in computing Granger causality):

def crosscov_vector(x, y, nlags=None):
    """
    This method computes the following function

    .. math::

        R_{xy}(k) = E{ x(t)y^{*}(t-k) } = E{ x(t+k)y^{*}(t) }
        k \in {0, 1, ..., nlags-1}

    (* := conjugate transpose)

    Note: This is related to the other commonly used definition
    for vector crosscovariance

    .. math::

        R_{xy}^{(2)}(k) = E{ x(t-k)y^{*}(t) } = R_{xy}^(-k) = R_{yx}^{*}(k)

    Parameters
    ----------

    x, y : ndarray (nc, N)

    nlags : int, optional
       compute lags for k in {0, ..., nlags-1}

    Returns
    -------

    rxy : ndarray (nc, nc, nlags)

    """
    N = x.shape[1]
    if nlags is None:
        nlags = N
    nc = x.shape[0]

    rxy = np.empty((nc, nc, nlags))

    # rxy(k) = E{ x(t)y*(t-k) } ( * = conj transpose )
    # Take the expectation over an outer-product
    # between x(t) and conj{y(t-k)} for each t

    for k in range(nlags):
        # rxy(k) = E{ x(t)y*(t-k) }
        prod = x[:, None, k:] * y[None, :, :N - k].conj()
##         # rxy(k) = E{ x(t)y*(t+k) }
##         prod = x[:,None,:N-k] * y[None,:,k:].conj()
        # Do a sample mean of N-k pts? or sum and divide by N?
        rxy[..., k] = prod.mean(axis=-1)
    return rxy


def autocov_vector(x, nlags=None):
    """
    This method computes the following function

    .. math::

    R_{xx}(k) = E{ x(t)x^{*}(t-k) } = E{ x(t+k)x^{*}(t) }
    k \in {0, 1, ..., nlags-1}

    (* := conjugate transpose)

    Note: this is related to
    the other commonly used definition for vector autocovariance

    .. math::

    R_{xx}^{(2)}(k) = E{ x(t-k)x^{*}(t) } = R_{xx}(-k) = R_{xx}^{*}(k)

    Parameters
    ----------

    x : ndarray (nc, N)

    nlags : int, optional
       compute lags for k in {0, ..., nlags-1}

    Returns
    -------

    rxx : ndarray (nc, nc, nlags)

    """
    return crosscov_vector(x, x, nlags=nlags)


def generate_mar(a, cov, N):
    """
    Generates a multivariate autoregressive dataset given the formula:

    X(t) + sum_{i=1}^{P} a(i)X(t-i) = E(t)

    Where E(t) is a vector of samples from possibly covarying noise processes.

    Parameters
    ----------

    a : ndarray (n_order, n_c, n_c)
       An order n_order set of coefficient matrices, each shaped (n_c, n_c) for
       n_channel data
    cov : ndarray (n_c, n_c)
       The innovations process covariance
    N : int
       how many samples to generate

    Returns
    -------

    mar, nz

    mar and noise process shaped (n_c, N)
    """
    n_c = cov.shape[0]
    n_order = a.shape[0]

    nz = np.random.multivariate_normal(
        np.zeros(n_c), cov, size=(N,)
        )

    # nz is a (N x n_seq) array

    mar = nz.copy()  # np.zeros((N, n_seq), 'd')

    # this looks like a redundant loop that can be rolled into a matrix-matrix
    # multiplication at each coef matrix a(i)

    # this rearranges the equation to read:
    # X(i) = E(i) - sum_{j=1}^{P} a(j)X(i-j)
    # where X(n) n < 0 is taken to be 0
    # In terms of the code: X is mar and E is nz, P is n_order
    for i in range(N):
        for j in range(min(i, n_order)):  # j logically in set {1, 2, ..., P}
            mar[i, :] -= np.dot(a[j], mar[i - j - 1, :])

    return mar.transpose(), nz.transpose()


#----------goodness of fit utilities ----------------------------------------

def akaike_information_criterion(ecov, p, m, Ntotal, corrected=False):

    """

    A measure of the goodness of fit of an auto-regressive model based on the
    model order and the error covariance.

    Parameters
    ----------

    ecov : float array
        The error covariance of the system
    p
        the number of channels
    m : int
        the model order
    Ntotal
        the number of total time-points (across channels)
    corrected : boolean (optional)
        Whether to correct for small sample size

    Returns
    -------

    AIC : float
        The value of the AIC


    Notes
    -----
    This is an implementation of equation (50) in Ding et al. (2006):

    M Ding and Y Chen and S Bressler (2006) Granger Causality: Basic Theory and
    Application to Neuroscience. http://arxiv.org/abs/q-bio/0608035v1


    Correction for small sample size is taken from:
    http://en.wikipedia.org/wiki/Akaike_information_criterion.

    """

    AIC = (2 * (np.log(linalg.det(ecov))) +
           ((2 * (p ** 2) * m) / (Ntotal)))

    if corrected is None:
        return AIC
    else:
        return AIC + (2 * m * (m + 1)) / (Ntotal - m - 1)


def bayesian_information_criterion(ecov, p, m, Ntotal):
    """The Bayesian Information Criterion, also known as the Schwarz criterion
     is a measure of goodness of fit of a statistical model, based on the
     number of model parameters and the likelihood of the model

    Parameters
    ----------
    ecov : float array
        The error covariance of the system

    p : int
        the system size (how many variables).

    m : int
        the model order.

    corrected : boolean (optional)
        Whether to correct for small sample size


    Returns
    -------

    BIC : float
        The value of the BIC
    a
        the resulting autocovariance vector

    Notes
    -----
    This is an implementation of equation (51) in Ding et al. (2006):

    .. math ::

    BIC(m) = 2 log(|\Sigma|) + \frac{2p^2 m log(N_{total})}{N_{total}},

    where $\Sigma$ is the noise covariance matrix. In auto-regressive model
    estimation, this matrix will contain in $\Sigma_{i,j}$ the residual
    variance in estimating time-series $i$ from $j$, $p$ is the dimensionality
    of the data, $m$ is the number of parameters in the model and $N_{total}$
    is the number of time-points.

    M Ding and Y Chen and S Bressler (2006) Granger Causality: Basic Theory and
    Application to Neuroscience. http://arxiv.org/abs/q-bio/0608035v1


    See http://en.wikipedia.org/wiki/Schwarz_criterion

    """

    BIC = (2 * (np.log(linalg.det(ecov))) +
            ((2 * (p ** 2) * m * np.log(Ntotal)) / (Ntotal)))

    return BIC