/usr/share/pyshared/nxt/motor.py is in python-nxt 2.2.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 | # nxt.motor module -- Class to control LEGO Mindstorms NXT motors
# Copyright (C) 2006 Douglas P Lau
# Copyright (C) 2009 Marcus Wanner, rhn
# Copyright (C) 2010 rhn
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
"""Use for motor control"""
import time
PORT_A = 0x00
PORT_B = 0x01
PORT_C = 0x02
PORT_ALL = 0xFF
MODE_IDLE = 0x00
MODE_MOTOR_ON = 0x01
MODE_BRAKE = 0x02
MODE_REGULATED = 0x04
REGULATION_IDLE = 0x00
REGULATION_MOTOR_SPEED = 0x01
REGULATION_MOTOR_SYNC = 0x02
RUN_STATE_IDLE = 0x00
RUN_STATE_RAMP_UP = 0x10
RUN_STATE_RUNNING = 0x20
RUN_STATE_RAMP_DOWN = 0x40
LIMIT_RUN_FOREVER = 0
class BlockedException(Exception):
pass
class OutputState(object):
"""An object holding the internal state of a motor, not including rotation
counters.
"""
def __init__(self, values):
(self.power, self.mode, self.regulation,
self.turn_ratio, self.run_state, self.tacho_limit) = values
def to_list(self):
"""Returns a list of properties that can be used with set_output_state.
"""
return [self.power, self.mode, self.regulation,
self.turn_ratio, self.run_state, self.tacho_limit]
def __str__(self):
modes = []
if self.mode & MODE_MOTOR_ON:
modes.append('on')
if self.mode & MODE_BRAKE:
modes.append('brake')
if self.mode & MODE_REGULATED:
modes.append('regulated')
if not modes:
modes.append('idle')
mode = '&'.join(modes)
regulation = 'regulation: ' + \
['idle', 'speed', 'sync'][self.regulation]
run_state = 'run state: ' + {0: 'idle', 0x10: 'ramp_up',
0x20: 'running', 0x40: 'ramp_down'}[self.run_state]
return ', '.join([mode, regulation, str(self.turn_ratio), run_state] + [str(self.tacho_limit)])
class TachoInfo:
"""An object containing the information about the rotation of a motor"""
def __init__(self, values):
self.tacho_count, self.block_tacho_count, self.rotation_count = values
def get_target(self, tacho_limit, direction):
"""Returns a TachoInfo object which corresponds to tacho state after
moving for tacho_limit ticks. Direction can be 1 (add) or -1 (subtract)
"""
# TODO: adjust other fields
if abs(direction) != 1:
raise ValueError('Invalid direction')
new_tacho = self.tacho_count + direction * tacho_limit
return TachoInfo([new_tacho, None, None])
def is_greater(self, target, direction):
return direction * (self.tacho_count - target.tacho_count) > 0
def is_near(self, target, threshold):
difference = abs(target.tacho_count - self.tacho_count)
return difference < threshold
def __str__(self):
return str((self.tacho_count, self.block_tacho_count,
self.rotation_count))
class SynchronizedTacho(object):
def __init__(self, leader_tacho, follower_tacho):
self.leader_tacho = leader_tacho
self.follower_tacho = follower_tacho
def get_target(self, tacho_limit, direction):
"""This method will leave follower's target as None"""
leader_tacho = self.leader_tacho.get_target(tacho_limit, direction)
return SynchronizedTacho(leader_tacho, None)
def is_greater(self, other, direction):
return self.leader_tacho.is_greater(other.leader_tacho, direction)
def is_near(self, other, threshold):
return self.leader_tacho.is_near(other.leader_tacho, threshold)
def __str__(self):
if self.follower_tacho is not None:
t2 = str(self.follower_tacho.tacho_count)
else:
t2 = 'None'
t1 = str(self.leader_tacho.tacho_count)
return 'tacho: ' + t1 + ' ' + t2
def get_tacho_and_state(values):
"""A convenience function. values is the list of values from
get_output_state. Returns both OutputState and TachoInfo.
"""
return OutputState(values[1:7]), TachoInfo(values[7:])
class BaseMotor(object):
"""Base class for motors"""
debug = 0
def _debug_out(self, message):
if self.debug:
print message
def turn(self, power, tacho_units, brake=True, timeout=1, emulate=True):
"""Use this to turn a motor. The motor will not stop until it turns the
desired distance. Accuracy is much better over a USB connection than
with bluetooth...
power is a value between -127 and 128 (an absolute value greater than
64 is recommended)
tacho_units is the number of degrees to turn the motor. values smaller
than 50 are not recommended and may have strange results.
brake is whether or not to hold the motor after the function exits
(either by reaching the distance or throwing an exception).
timeout is the number of seconds after which a BlockedException is
raised if the motor doesn't turn
emulate is a boolean value. If set to False, the motor is aware of the
tacho limit. If True, a run() function equivalent is used.
Warning: motors remember their positions and not using emulate
may lead to strange behavior, especially with synced motors
"""
tacho_limit = tacho_units
if tacho_limit < 0:
raise ValueError, "tacho_units must be greater than 0!"
#TODO Calibrate the new values for ip socket latency.
if self.method == 'bluetooth':
threshold = 70
elif self.method == 'usb':
threshold = 5
elif self.method == 'ipbluetooth':
threshold = 80
elif self.method == 'ipusb':
threshold = 15
else:
threshold = 30 #compromise
tacho = self.get_tacho()
state = self._get_new_state()
# Update modifiers even if they aren't used, might have been changed
state.power = power
if not emulate:
state.tacho_limit = tacho_limit
self._debug_out('Updating motor information...')
self._set_state(state)
direction = 1 if power > 0 else -1
self._debug_out('tachocount: ' + str(tacho))
current_time = time.time()
tacho_target = tacho.get_target(tacho_limit, direction)
blocked = False
try:
while True:
time.sleep(self._eta(tacho, tacho_target, power) / 2)
if not blocked: # if still blocked, don't reset the counter
last_tacho = tacho
last_time = current_time
tacho = self.get_tacho()
current_time = time.time()
blocked = self._is_blocked(tacho, last_tacho, direction)
if blocked:
self._debug_out(('not advancing', last_tacho, tacho))
# the motor can be up to 80+ degrees in either direction from target when using bluetooth
if current_time - last_time > timeout:
if tacho.is_near(tacho_target, threshold):
break
else:
raise BlockedException("Blocked!")
else:
self._debug_out(('advancing', last_tacho, tacho))
if tacho.is_near(tacho_target, threshold) or tacho.is_greater(tacho_target, direction):
break
finally:
if brake:
self.brake()
else:
self.idle()
class Motor(BaseMotor):
def __init__(self, brick, port):
self.brick = brick
self.port = port
self._read_state()
self.sync = 0
self.turn_ratio = 0
try:
self.method = brick.sock.type
except:
print "Warning: Socket did not report a type!"
print "Please report this problem to the developers!"
print "For now, turn() accuracy will not be optimal."
print "Continuing happily..."
self.method = None
def _set_state(self, state):
self._debug_out('Setting brick output state...')
list_state = [self.port] + state.to_list()
self.brick.set_output_state(*list_state)
self._debug_out(state)
self._state = state
self._debug_out('State set.')
def _read_state(self):
self._debug_out('Getting brick output state...')
values = self.brick.get_output_state(self.port)
self._debug_out('State got.')
self._state, tacho = get_tacho_and_state(values)
return self._state, tacho
#def get_tacho_and_state here would allow tacho manipulation
def _get_state(self):
"""Returns a copy of the current motor state for manipulation."""
return OutputState(self._state.to_list())
def _get_new_state(self):
state = self._get_state()
if self.sync:
state.mode = MODE_MOTOR_ON | MODE_REGULATED
state.regulation = REGULATION_MOTOR_SYNC
state.turn_ratio = self.turn_ratio
else:
state.mode = MODE_MOTOR_ON | MODE_REGULATED
state.regulation = REGULATION_MOTOR_SPEED
state.run_state = RUN_STATE_RUNNING
state.tacho_limit = LIMIT_RUN_FOREVER
return state
def get_tacho(self):
return self._read_state()[1]
def reset_position(self, relative):
"""Resets the counters. Relative can be True or False"""
self.brick.reset_motor_position(self.port, relative)
def run(self, power=100, regulated=False):
'''Tells the motor to run continuously. If regulated is True, then the
synchronization starts working.
'''
state = self._get_new_state()
state.power = power
if not regulated:
state.mode = MODE_MOTOR_ON
self._set_state(state)
def brake(self):
"""Holds the motor in place"""
state = self._get_new_state()
state.power = 0
state.mode = MODE_MOTOR_ON | MODE_BRAKE | MODE_REGULATED
self._set_state(state)
def idle(self):
'''Tells the motor to stop whatever it's doing. It also desyncs it'''
state = self._get_new_state()
state.power = 0
state.mode = MODE_IDLE
state.regulation = REGULATION_IDLE
state.run_state = RUN_STATE_IDLE
self._set_state(state)
def weak_turn(self, power, tacho_units):
"""Tries to turn a motor for the specified distance. This function
returns immediately, and it's not guaranteed that the motor turns that
distance. This is an interface to use tacho_limit without
REGULATION_MODE_SPEED
"""
tacho_limit = tacho_units
tacho = self.get_tacho()
state = self._get_new_state()
# Update modifiers even if they aren't used, might have been changed
state.mode = MODE_MOTOR_ON
state.regulation = REGULATION_IDLE
state.power = power
state.tacho_limit = tacho_limit
self._debug_out('Updating motor information...')
self._set_state(state)
def _eta(self, current, target, power):
"""Returns time in seconds. Do not trust it too much"""
tacho = abs(current.tacho_count - target.tacho_count)
return (float(tacho) / abs(power)) / 5
def _is_blocked(self, tacho, last_tacho, direction):
"""Returns if any of the engines is blocked"""
return direction * (last_tacho.tacho_count - tacho.tacho_count) >= 0
class SynchronizedMotors(BaseMotor):
"""The object used to make two motors run in sync. Many objects may be
present at the same time but they can't be used at the same time.
Warning! Movement methods reset tacho counter.
THIS CODE IS EXPERIMENTAL!!!
"""
def __init__(self, leader, follower, turn_ratio):
"""Turn ratio can be >= 0 only! If you want to have it reversed,
change motor order.
"""
if follower.brick != leader.brick:
raise ValueError('motors belong to different bricks')
self.leader = leader
self.follower = follower
self.method = self.leader.method #being from the same brick, they both have the same com method.
if turn_ratio < 0:
raise ValueError('Turn ratio <0. Change motor order instead!')
if self.leader.port == self.follower.port:
raise ValueError("The same motor passed twice")
elif self.leader.port > self.follower.port:
self.turn_ratio = turn_ratio
else:
self._debug_out('reversed')
self.turn_ratio = -turn_ratio
def _get_new_state(self):
return self.leader._get_new_state()
def _set_state(self, state):
self.leader._set_state(state)
self.follower._set_state(state)
def get_tacho(self):
leadertacho = self.leader.get_tacho()
followertacho = self.follower.get_tacho()
return SynchronizedTacho(leadertacho, followertacho)
def reset_position(self, relative):
"""Resets the counters. Relative can be True or False"""
self.leader.reset_position(relative)
self.follower.reset_position(relative)
def _enable(self): # This works as expected. I'm not sure why.
#self._disable()
self.reset_position(True)
self.leader.sync = True
self.follower.sync = True
self.leader.turn_ratio = self.turn_ratio
self.follower.turn_ratio = self.turn_ratio
def _disable(self): # This works as expected. (tacho is reset ok)
self.leader.sync = False
self.follower.sync = False
#self.reset_position(True)
self.leader.idle()
self.follower.idle()
#self.reset_position(True)
def run(self, power=100):
"""Warning! After calling this method, make sure to call idle. The
motors are reported to behave wildly otherwise.
"""
self._enable()
self.leader.run(power, True)
self.follower.run(power, True)
def brake(self):
self._disable() # reset the counters
self._enable()
self.leader.brake() # brake both motors at the same time
self.follower.brake()
self._disable() # now brake as usual
self.leader.brake()
self.follower.brake()
def idle(self):
self._disable()
def turn(self, power, tacho_units, brake=True, timeout=1):
self._enable()
# non-emulation is a nightmare, tacho is being counted differently
try:
if power < 0:
self.leader, self.follower = self.follower, self.leader
BaseMotor.turn(self, power, tacho_units, brake, timeout, emulate=True)
finally:
if power < 0:
self.leader, self.follower = self.follower, self.leader
def _eta(self, tacho, target, power):
return self.leader._eta(tacho.leader_tacho, target.leader_tacho, power)
def _is_blocked(self, tacho, last_tacho, direction):
# no need to check both, they're synced
return self.leader._is_blocked(tacho.leader_tacho, last_tacho.leader_tacho, direction)
|