This file is indexed.

/usr/lib/python2.7/dist-packages/patsy/build.py is in python-patsy 0.4.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
# This file is part of Patsy
# Copyright (C) 2011-2015 Nathaniel Smith <njs@pobox.com>
# See file LICENSE.txt for license information.

# This file defines the core design matrix building functions.

# These are made available in the patsy.* namespace
__all__ = ["design_matrix_builders", "build_design_matrices"]

import itertools
import six

import numpy as np
from patsy import PatsyError
from patsy.categorical import (guess_categorical,
                               CategoricalSniffer,
                               categorical_to_int)
from patsy.util import (atleast_2d_column_default,
                        have_pandas, asarray_or_pandas,
                        safe_issubdtype)
from patsy.design_info import (DesignMatrix, DesignInfo,
                               FactorInfo, SubtermInfo)
from patsy.redundancy import pick_contrasts_for_term
from patsy.eval import EvalEnvironment
from patsy.contrasts import code_contrast_matrix, Treatment
from patsy.compat import OrderedDict
from patsy.missing import NAAction

if have_pandas:
    import pandas

class _MockFactor(object):
    def __init__(self, name="MOCKMOCK"):
        self._name = name

    def eval(self, state, env):
        return env["mock"]

    def name(self):
        return self._name

def _max_allowed_dim(dim, arr, factor):
    if arr.ndim > dim:
        msg = ("factor '%s' evaluates to an %s-dimensional array; I only "
               "handle arrays with dimension <= %s"
               % (factor.name(), arr.ndim, dim))
        raise PatsyError(msg, factor)

def test__max_allowed_dim():
    from nose.tools import assert_raises
    f = _MockFactor()
    _max_allowed_dim(1, np.array(1), f)
    _max_allowed_dim(1, np.array([1]), f)
    assert_raises(PatsyError, _max_allowed_dim, 1, np.array([[1]]), f)
    assert_raises(PatsyError, _max_allowed_dim, 1, np.array([[[1]]]), f)
    _max_allowed_dim(2, np.array(1), f)
    _max_allowed_dim(2, np.array([1]), f)
    _max_allowed_dim(2, np.array([[1]]), f)
    assert_raises(PatsyError, _max_allowed_dim, 2, np.array([[[1]]]), f)

def _eval_factor(factor_info, data, NA_action):
    factor = factor_info.factor
    result = factor.eval(factor_info.state, data)
    # Returns either a 2d ndarray, or a DataFrame, plus is_NA mask
    if factor_info.type == "numerical":
        result = atleast_2d_column_default(result, preserve_pandas=True)
        _max_allowed_dim(2, result, factor)
        if result.shape[1] != factor_info.num_columns:
            raise PatsyError("when evaluating factor %s, I got %s columns "
                                "instead of the %s I was expecting"
                                % (factor.name(),
                                   factor_info.num_columns,
                                   result.shape[1]),
                                factor)
        if not safe_issubdtype(np.asarray(result).dtype, np.number):
            raise PatsyError("when evaluating numeric factor %s, "
                             "I got non-numeric data of type '%s'"
                             % (factor.name(), result.dtype),
                             factor)
        return result, NA_action.is_numerical_NA(result)
    # returns either a 1d ndarray or a pandas.Series, plus is_NA mask
    else:
        assert factor_info.type == "categorical"
        result = categorical_to_int(result, factor_info.categories, NA_action,
                                    origin=factor_info.factor)
        assert result.ndim == 1
        return result, np.asarray(result == -1)

def test__eval_factor_numerical():
    from nose.tools import assert_raises
    naa = NAAction()
    f = _MockFactor()

    fi1 = FactorInfo(f, "numerical", {}, num_columns=1, categories=None)

    assert fi1.factor is f
    eval123, is_NA = _eval_factor(fi1, {"mock": [1, 2, 3]}, naa)
    assert eval123.shape == (3, 1)
    assert np.all(eval123 == [[1], [2], [3]])
    assert is_NA.shape == (3,)
    assert np.all(~is_NA)
    assert_raises(PatsyError, _eval_factor, fi1, {"mock": [[[1]]]}, naa)
    assert_raises(PatsyError, _eval_factor, fi1, {"mock": [[1, 2]]}, naa)
    assert_raises(PatsyError, _eval_factor, fi1, {"mock": ["a", "b"]}, naa)
    assert_raises(PatsyError, _eval_factor, fi1, {"mock": [True, False]}, naa)
    fi2 = FactorInfo(_MockFactor(), "numerical",
                     {}, num_columns=2, categories=None)
    eval123321, is_NA = _eval_factor(fi2,
                                     {"mock": [[1, 3], [2, 2], [3, 1]]},
                                     naa)
    assert eval123321.shape == (3, 2)
    assert np.all(eval123321 == [[1, 3], [2, 2], [3, 1]])
    assert is_NA.shape == (3,)
    assert np.all(~is_NA)
    assert_raises(PatsyError, _eval_factor, fi2, {"mock": [1, 2, 3]}, naa)
    assert_raises(PatsyError, _eval_factor, fi2, {"mock": [[1, 2, 3]]}, naa)

    ev_nan, is_NA = _eval_factor(fi1, {"mock": [1, 2, np.nan]},
                                 NAAction(NA_types=["NaN"]))
    assert np.array_equal(is_NA, [False, False, True])
    ev_nan, is_NA = _eval_factor(fi1, {"mock": [1, 2, np.nan]},
                                 NAAction(NA_types=[]))
    assert np.array_equal(is_NA, [False, False, False])

    if have_pandas:
        eval_ser, _ = _eval_factor(fi1,
                                   {"mock":
                                    pandas.Series([1, 2, 3],
                                                  index=[10, 20, 30])},
                                   naa)
        assert isinstance(eval_ser, pandas.DataFrame)
        assert np.array_equal(eval_ser, [[1], [2], [3]])
        assert np.array_equal(eval_ser.index, [10, 20, 30])
        eval_df1, _ = _eval_factor(fi1,
                                   {"mock":
                                    pandas.DataFrame([[2], [1], [3]],
                                                     index=[20, 10, 30])},
                                   naa)
        assert isinstance(eval_df1, pandas.DataFrame)
        assert np.array_equal(eval_df1, [[2], [1], [3]])
        assert np.array_equal(eval_df1.index, [20, 10, 30])
        eval_df2, _ = _eval_factor(fi2,
                                   {"mock":
                                    pandas.DataFrame([[2, 3], [1, 4], [3, -1]],
                                                     index=[20, 30, 10])},
                                   naa)
        assert isinstance(eval_df2, pandas.DataFrame)
        assert np.array_equal(eval_df2, [[2, 3], [1, 4], [3, -1]])
        assert np.array_equal(eval_df2.index, [20, 30, 10])

        assert_raises(PatsyError,
                      _eval_factor, fi2,
                      {"mock": pandas.Series([1, 2, 3], index=[10, 20, 30])},
                      naa)
        assert_raises(PatsyError,
                      _eval_factor, fi1,
                      {"mock":
                       pandas.DataFrame([[2, 3], [1, 4], [3, -1]],
                                        index=[20, 30, 10])},
                      naa)

def test__eval_factor_categorical():
    from nose.tools import assert_raises
    from patsy.categorical import C
    naa = NAAction()
    f = _MockFactor()
    fi1 = FactorInfo(f, "categorical",
                     {}, num_columns=None, categories=("a", "b"))
    assert fi1.factor is f
    cat1, _ = _eval_factor(fi1, {"mock": ["b", "a", "b"]}, naa)
    assert cat1.shape == (3,)
    assert np.all(cat1 == [1, 0, 1])
    assert_raises(PatsyError, _eval_factor, fi1, {"mock": ["c"]}, naa)
    assert_raises(PatsyError, _eval_factor, fi1, {"mock": C(["a", "c"])}, naa)
    assert_raises(PatsyError, _eval_factor, fi1,
                  {"mock": C(["a", "b"], levels=["b", "a"])}, naa)
    assert_raises(PatsyError, _eval_factor, fi1, {"mock": [1, 0, 1]}, naa)
    bad_cat = np.asarray(["b", "a", "a", "b"])
    bad_cat.resize((2, 2))
    assert_raises(PatsyError, _eval_factor, fi1, {"mock": bad_cat}, naa)

    cat1_NA, is_NA = _eval_factor(fi1, {"mock": ["a", None, "b"]},
                                  NAAction(NA_types=["None"]))
    assert np.array_equal(is_NA, [False, True, False])
    assert np.array_equal(cat1_NA, [0, -1, 1])
    assert_raises(PatsyError, _eval_factor, fi1,
                  {"mock": ["a", None, "b"]}, NAAction(NA_types=[]))

    fi2 = FactorInfo(_MockFactor(), "categorical", {},
                     num_columns=None, categories=[False, True])
    cat2, _ = _eval_factor(fi2, {"mock": [True, False, False, True]}, naa)
    assert cat2.shape == (4,)
    assert np.all(cat2 == [1, 0, 0, 1])

    if have_pandas:
        s = pandas.Series(["b", "a"], index=[10, 20])
        cat_s, _ = _eval_factor(fi1, {"mock": s}, naa)
        assert isinstance(cat_s, pandas.Series)
        assert np.array_equal(cat_s, [1, 0])
        assert np.array_equal(cat_s.index, [10, 20])
        sbool = pandas.Series([True, False], index=[11, 21])
        cat_sbool, _ = _eval_factor(fi2, {"mock": sbool}, naa)
        assert isinstance(cat_sbool, pandas.Series)
        assert np.array_equal(cat_sbool, [1, 0])
        assert np.array_equal(cat_sbool.index, [11, 21])

def _column_combinations(columns_per_factor):
    # For consistency with R, the left-most item iterates fastest:
    iterators = [range(n) for n in reversed(columns_per_factor)]
    for reversed_combo in itertools.product(*iterators):
        yield reversed_combo[::-1]

def test__column_combinations():
    assert list(_column_combinations([2, 3])) == [(0, 0),
                                                  (1, 0),
                                                  (0, 1),
                                                  (1, 1),
                                                  (0, 2),
                                                  (1, 2)]
    assert list(_column_combinations([3])) == [(0,), (1,), (2,)]
    assert list(_column_combinations([])) == [()]

def _subterm_column_combinations(factor_infos, subterm):
    columns_per_factor = []
    for factor in subterm.factors:
        if factor in subterm.contrast_matrices:
            columns = subterm.contrast_matrices[factor].matrix.shape[1]
        else:
            columns = factor_infos[factor].num_columns
        columns_per_factor.append(columns)
    return _column_combinations(columns_per_factor)

def _subterm_column_names_iter(factor_infos, subterm):
    total = 0
    for i, column_idxs in enumerate(
            _subterm_column_combinations(factor_infos, subterm)):
        name_pieces = []
        for factor, column_idx in zip(subterm.factors, column_idxs):
            fi = factor_infos[factor]
            if fi.type == "numerical":
                if fi.num_columns > 1:
                    name_pieces.append("%s[%s]"
                                       % (factor.name(), column_idx))
                else:
                    assert column_idx == 0
                    name_pieces.append(factor.name())
            else:
                assert fi.type == "categorical"
                contrast = subterm.contrast_matrices[factor]
                suffix = contrast.column_suffixes[column_idx]
                name_pieces.append("%s%s" % (factor.name(), suffix))
        if not name_pieces:
            yield "Intercept"
        else:
            yield ":".join(name_pieces)
        total += 1
    assert total == subterm.num_columns

def _build_subterm(subterm, factor_infos, factor_values, out):
    assert subterm.num_columns == out.shape[1]
    out[...] = 1
    for i, column_idxs in enumerate(
            _subterm_column_combinations(factor_infos, subterm)):
        for factor, column_idx in zip(subterm.factors, column_idxs):
            if factor_infos[factor].type == "categorical":
                contrast = subterm.contrast_matrices[factor]
                if np.any(factor_values[factor] < 0):
                    raise PatsyError("can't build a design matrix "
                                     "containing missing values", factor)
                out[:, i] *= contrast.matrix[factor_values[factor],
                                             column_idx]
            else:
                assert factor_infos[factor].type == "numerical"
                assert (factor_values[factor].shape[1]
                        == factor_infos[factor].num_columns)
                out[:, i] *= factor_values[factor][:, column_idx]

def test__subterm_column_names_iter_and__build_subterm():
    from nose.tools import assert_raises
    from patsy.contrasts import ContrastMatrix
    from patsy.categorical import C
    f1 = _MockFactor("f1")
    f2 = _MockFactor("f2")
    f3 = _MockFactor("f3")
    contrast = ContrastMatrix(np.array([[0, 0.5],
                                        [3, 0]]),
                              ["[c1]", "[c2]"])

    factor_infos1 = {f1: FactorInfo(f1, "numerical", {},
                                    num_columns=1, categories=None),
                     f2: FactorInfo(f2, "categorical", {},
                                    num_columns=None, categories=["a", "b"]),
                     f3: FactorInfo(f3, "numerical", {},
                                    num_columns=1, categories=None),
                     }
    contrast_matrices = {f2: contrast}
    subterm1 = SubtermInfo([f1, f2, f3], contrast_matrices, 2)
    assert (list(_subterm_column_names_iter(factor_infos1, subterm1))
            == ["f1:f2[c1]:f3", "f1:f2[c2]:f3"])

    mat = np.empty((3, 2))
    _build_subterm(subterm1, factor_infos1,
                   {f1: atleast_2d_column_default([1, 2, 3]),
                    f2: np.asarray([0, 0, 1]),
                    f3: atleast_2d_column_default([7.5, 2, -12])},
                   mat)
    assert np.allclose(mat, [[0, 0.5 * 1 * 7.5],
                             [0, 0.5 * 2 * 2],
                             [3 * 3 * -12, 0]])
    # Check that missing categorical values blow up
    assert_raises(PatsyError, _build_subterm, subterm1, factor_infos1,
                  {f1: atleast_2d_column_default([1, 2, 3]),
                   f2: np.asarray([0, -1, 1]),
                   f3: atleast_2d_column_default([7.5, 2, -12])},
                  mat)

    factor_infos2 = dict(factor_infos1)
    factor_infos2[f1] = FactorInfo(f1, "numerical", {},
                                   num_columns=2, categories=None)
    subterm2 = SubtermInfo([f1, f2, f3], contrast_matrices, 4)
    assert (list(_subterm_column_names_iter(factor_infos2, subterm2))
            == ["f1[0]:f2[c1]:f3",
                "f1[1]:f2[c1]:f3",
                "f1[0]:f2[c2]:f3",
                "f1[1]:f2[c2]:f3"])

    mat2 = np.empty((3, 4))
    _build_subterm(subterm2, factor_infos2,
                   {f1: atleast_2d_column_default([[1, 2], [3, 4], [5, 6]]),
                    f2: np.asarray([0, 0, 1]),
                    f3: atleast_2d_column_default([7.5, 2, -12])},
                   mat2)
    assert np.allclose(mat2, [[0, 0, 0.5 * 1 * 7.5, 0.5 * 2 * 7.5],
                              [0, 0, 0.5 * 3 * 2, 0.5 * 4 * 2],
                              [3 * 5 * -12, 3 * 6 * -12, 0, 0]])


    subterm_int = SubtermInfo([], {}, 1)
    assert list(_subterm_column_names_iter({}, subterm_int)) == ["Intercept"]

    mat3 = np.empty((3, 1))
    _build_subterm(subterm_int, {},
                   {f1: [1, 2, 3], f2: [1, 2, 3], f3: [1, 2, 3]},
                   mat3)
    assert np.allclose(mat3, 1)

def _factors_memorize(factors, data_iter_maker, eval_env):
    # First, start off the memorization process by setting up each factor's
    # state and finding out how many passes it will need:
    factor_states = {}
    passes_needed = {}
    for factor in factors:
        state = {}
        which_pass = factor.memorize_passes_needed(state, eval_env)
        factor_states[factor] = state
        passes_needed[factor] = which_pass
    # Now, cycle through the data until all the factors have finished
    # memorizing everything:
    memorize_needed = set()
    for factor, passes in six.iteritems(passes_needed):
        if passes > 0:
            memorize_needed.add(factor)
    which_pass = 0
    while memorize_needed:
        for data in data_iter_maker():
            for factor in memorize_needed:
                state = factor_states[factor]
                factor.memorize_chunk(state, which_pass, data)
        for factor in list(memorize_needed):
            factor.memorize_finish(factor_states[factor], which_pass)
            if which_pass == passes_needed[factor] - 1:
                memorize_needed.remove(factor)
        which_pass += 1
    return factor_states

def test__factors_memorize():
    class MockFactor(object):
        def __init__(self, requested_passes, token):
            self._requested_passes = requested_passes
            self._token = token
            self._chunk_in_pass = 0
            self._seen_passes = 0

        def memorize_passes_needed(self, state, eval_env):
            state["calls"] = []
            state["token"] = self._token
            return self._requested_passes

        def memorize_chunk(self, state, which_pass, data):
            state["calls"].append(("memorize_chunk", which_pass))
            assert data["chunk"] == self._chunk_in_pass
            self._chunk_in_pass += 1

        def memorize_finish(self, state, which_pass):
            state["calls"].append(("memorize_finish", which_pass))
            self._chunk_in_pass = 0

    class Data(object):
        CHUNKS = 3
        def __init__(self):
            self.calls = 0
            self.data = [{"chunk": i} for i in range(self.CHUNKS)]
        def __call__(self):
            self.calls += 1
            return iter(self.data)
    data = Data()
    f0 = MockFactor(0, "f0")
    f1 = MockFactor(1, "f1")
    f2a = MockFactor(2, "f2a")
    f2b = MockFactor(2, "f2b")
    factor_states = _factors_memorize(set([f0, f1, f2a, f2b]), data, {})
    assert data.calls == 2
    mem_chunks0 = [("memorize_chunk", 0)] * data.CHUNKS
    mem_chunks1 = [("memorize_chunk", 1)] * data.CHUNKS
    expected = {
        f0: {
            "calls": [],
            "token": "f0",
            },
        f1: {
            "calls": mem_chunks0 + [("memorize_finish", 0)],
            "token": "f1",
            },
        f2a: {
            "calls": mem_chunks0 + [("memorize_finish", 0)]
                     + mem_chunks1 + [("memorize_finish", 1)],
            "token": "f2a",
            },
        f2b: {
            "calls": mem_chunks0 + [("memorize_finish", 0)]
                     + mem_chunks1 + [("memorize_finish", 1)],
            "token": "f2b",
            },
        }
    assert factor_states == expected

def _examine_factor_types(factors, factor_states, data_iter_maker, NA_action):
    num_column_counts = {}
    cat_sniffers = {}
    examine_needed = set(factors)
    for data in data_iter_maker():
        for factor in list(examine_needed):
            value = factor.eval(factor_states[factor], data)
            if factor in cat_sniffers or guess_categorical(value):
                if factor not in cat_sniffers:
                    cat_sniffers[factor] = CategoricalSniffer(NA_action,
                                                              factor.origin)
                done = cat_sniffers[factor].sniff(value)
                if done:
                    examine_needed.remove(factor)
            else:
                # Numeric
                value = atleast_2d_column_default(value)
                _max_allowed_dim(2, value, factor)
                column_count = value.shape[1]
                num_column_counts[factor] = column_count
                examine_needed.remove(factor)
        if not examine_needed:
            break
    # Pull out the levels
    cat_levels_contrasts = {}
    for factor, sniffer in six.iteritems(cat_sniffers):
        cat_levels_contrasts[factor] = sniffer.levels_contrast()
    return (num_column_counts, cat_levels_contrasts)

def test__examine_factor_types():
    from patsy.categorical import C
    class MockFactor(object):
        def __init__(self):
            # You should check this using 'is', not '=='
            from patsy.origin import Origin
            self.origin = Origin("MOCK", 1, 2)

        def eval(self, state, data):
            return state[data]

        def name(self):
            return "MOCK MOCK"

    # This hacky class can only be iterated over once, but it keeps track of
    # how far it got.
    class DataIterMaker(object):
        def __init__(self):
            self.i = -1

        def __call__(self):
            return self

        def __iter__(self):
            return self

        def next(self):
            self.i += 1
            if self.i > 1:
                raise StopIteration
            return self.i
        __next__ = next

    num_1dim = MockFactor()
    num_1col = MockFactor()
    num_4col = MockFactor()
    categ_1col = MockFactor()
    bool_1col = MockFactor()
    string_1col = MockFactor()
    object_1col = MockFactor()
    object_levels = (object(), object(), object())
    factor_states = {
        num_1dim: ([1, 2, 3], [4, 5, 6]),
        num_1col: ([[1], [2], [3]], [[4], [5], [6]]),
        num_4col: (np.zeros((3, 4)), np.ones((3, 4))),
        categ_1col: (C(["a", "b", "c"], levels=("a", "b", "c"),
                       contrast="MOCK CONTRAST"),
                     C(["c", "b", "a"], levels=("a", "b", "c"),
                       contrast="MOCK CONTRAST")),
        bool_1col: ([True, True, False], [False, True, True]),
        # It has to read through all the data to see all the possible levels:
        string_1col: (["a", "a", "a"], ["c", "b", "a"]),
        object_1col: ([object_levels[0]] * 3, object_levels),
        }

    it = DataIterMaker()
    (num_column_counts, cat_levels_contrasts,
     ) = _examine_factor_types(factor_states.keys(), factor_states, it,
                               NAAction())
    assert it.i == 2
    iterations = 0
    assert num_column_counts == {num_1dim: 1, num_1col: 1, num_4col: 4}
    assert cat_levels_contrasts == {
        categ_1col: (("a", "b", "c"), "MOCK CONTRAST"),
        bool_1col: ((False, True), None),
        string_1col: (("a", "b", "c"), None),
        object_1col: (tuple(sorted(object_levels, key=id)), None),
        }

    # Check that it doesn't read through all the data if that's not necessary:
    it = DataIterMaker()
    no_read_necessary = [num_1dim, num_1col, num_4col, categ_1col, bool_1col]
    (num_column_counts, cat_levels_contrasts,
     ) = _examine_factor_types(no_read_necessary, factor_states, it,
                               NAAction())
    assert it.i == 0
    assert num_column_counts == {num_1dim: 1, num_1col: 1, num_4col: 4}
    assert cat_levels_contrasts == {
        categ_1col: (("a", "b", "c"), "MOCK CONTRAST"),
        bool_1col: ((False, True), None),
        }

    # Illegal inputs:
    bool_3col = MockFactor()
    num_3dim = MockFactor()
    # no such thing as a multi-dimensional Categorical
    # categ_3dim = MockFactor()
    string_3col = MockFactor()
    object_3col = MockFactor()
    illegal_factor_states = {
        num_3dim: (np.zeros((3, 3, 3)), np.ones((3, 3, 3))),
        string_3col: ([["a", "b", "c"]], [["b", "c", "a"]]),
        object_3col: ([[[object()]]], [[[object()]]]),
        }
    from nose.tools import assert_raises
    for illegal_factor in illegal_factor_states:
        it = DataIterMaker()
        try:
            _examine_factor_types([illegal_factor], illegal_factor_states, it,
                                  NAAction())
        except PatsyError as e:
            assert e.origin is illegal_factor.origin
        else:
            assert False

def _make_subterm_infos(terms,
                        num_column_counts,
                        cat_levels_contrasts):
    # Sort each term into a bucket based on the set of numeric factors it
    # contains:
    term_buckets = OrderedDict()
    bucket_ordering = []
    for term in terms:
        num_factors = []
        for factor in term.factors:
            if factor in num_column_counts:
                num_factors.append(factor)
        bucket = frozenset(num_factors)
        if bucket not in term_buckets:
            bucket_ordering.append(bucket)
        term_buckets.setdefault(bucket, []).append(term)
    # Special rule: if there is a no-numerics bucket, then it always comes
    # first:
    if frozenset() in term_buckets:
        bucket_ordering.remove(frozenset())
        bucket_ordering.insert(0, frozenset())
    term_to_subterm_infos = OrderedDict()
    new_term_order = []
    # Then within each bucket, work out which sort of contrasts we want to use
    # for each term to avoid redundancy
    for bucket in bucket_ordering:
        bucket_terms = term_buckets[bucket]
        # Sort by degree of interaction
        bucket_terms.sort(key=lambda t: len(t.factors))
        new_term_order += bucket_terms
        used_subterms = set()
        for term in bucket_terms:
            subterm_infos = []
            factor_codings = pick_contrasts_for_term(term,
                                                     num_column_counts,
                                                     used_subterms)
            # Construct one SubtermInfo for each subterm
            for factor_coding in factor_codings:
                subterm_factors = []
                contrast_matrices = {}
                subterm_columns = 1
                # In order to preserve factor ordering information, the
                # coding_for_term just returns dicts, and we refer to
                # the original factors to figure out which are included in
                # each subterm, and in what order
                for factor in term.factors:
                    # Numeric factors are included in every subterm
                    if factor in num_column_counts:
                        subterm_factors.append(factor)
                        subterm_columns *= num_column_counts[factor]
                    elif factor in factor_coding:
                        subterm_factors.append(factor)
                        levels, contrast = cat_levels_contrasts[factor]
                        # This is where the default coding is set to
                        # Treatment:
                        coded = code_contrast_matrix(factor_coding[factor],
                                                     levels, contrast,
                                                     default=Treatment)
                        contrast_matrices[factor] = coded
                        subterm_columns *= coded.matrix.shape[1]
                subterm_infos.append(SubtermInfo(subterm_factors,
                                                       contrast_matrices,
                                                       subterm_columns))
            term_to_subterm_infos[term] = subterm_infos
    assert new_term_order == list(term_to_subterm_infos)
    return term_to_subterm_infos

def design_matrix_builders(termlists, data_iter_maker, eval_env,
                           NA_action="drop"):
    """Construct several :class:`DesignInfo` objects from termlists.

    This is one of Patsy's fundamental functions. This function and
    :func:`build_design_matrices` together form the API to the core formula
    interpretation machinery.

    :arg termlists: A list of termlists, where each termlist is a list of
      :class:`Term` objects which together specify a design matrix.
    :arg data_iter_maker: A zero-argument callable which returns an iterator
      over dict-like data objects. This must be a callable rather than a
      simple iterator because sufficiently complex formulas may require
      multiple passes over the data (e.g. if there are nested stateful
      transforms).
    :arg eval_env: Either a :class:`EvalEnvironment` which will be used to
      look up any variables referenced in `termlists` that cannot be
      found in `data_iter_maker`, or else a depth represented as an
      integer which will be passed to :meth:`EvalEnvironment.capture`.
      ``eval_env=0`` means to use the context of the function calling
      :func:`design_matrix_builders` for lookups. If calling this function
      from a library, you probably want ``eval_env=1``, which means that
      variables should be resolved in *your* caller's namespace.
    :arg NA_action: An :class:`NAAction` object or string, used to determine
      what values count as 'missing' for purposes of determining the levels of
      categorical factors.
    :returns: A list of :class:`DesignInfo` objects, one for each
      termlist passed in.

    This function performs zero or more iterations over the data in order to
    sniff out any necessary information about factor types, set up stateful
    transforms, pick column names, etc.

    See :ref:`formulas` for details.

    .. versionadded:: 0.2.0
       The ``NA_action`` argument.
    .. versionadded:: 0.4.0
       The ``eval_env`` argument.
    """
    # People upgrading from versions prior to 0.4.0 could potentially have
    # passed NA_action as the 3rd positional argument. Fortunately
    # EvalEnvironment.capture only accepts int and EvalEnvironment objects,
    # and we improved its error messages to make this clear.
    eval_env = EvalEnvironment.capture(eval_env, reference=1)
    if isinstance(NA_action, str):
        NA_action = NAAction(NA_action)
    all_factors = set()
    for termlist in termlists:
        for term in termlist:
            all_factors.update(term.factors)
    factor_states = _factors_memorize(all_factors, data_iter_maker, eval_env)
    # Now all the factors have working eval methods, so we can evaluate them
    # on some data to find out what type of data they return.
    (num_column_counts,
     cat_levels_contrasts) = _examine_factor_types(all_factors,
                                                   factor_states,
                                                   data_iter_maker,
                                                   NA_action)
    # Now we need the factor infos, which encapsulate the knowledge of
    # how to turn any given factor into a chunk of data:
    factor_infos = {}
    for factor in all_factors:
        if factor in num_column_counts:
            fi = FactorInfo(factor,
                            "numerical",
                            factor_states[factor],
                            num_columns=num_column_counts[factor],
                            categories=None)
        else:
            assert factor in cat_levels_contrasts
            categories = cat_levels_contrasts[factor][0]
            fi = FactorInfo(factor,
                            "categorical",
                            factor_states[factor],
                            num_columns=None,
                            categories=categories)
        factor_infos[factor] = fi
    # And now we can construct the DesignInfo for each termlist:
    design_infos = []
    for termlist in termlists:
        term_to_subterm_infos = _make_subterm_infos(termlist,
                                                    num_column_counts,
                                                    cat_levels_contrasts)
        assert isinstance(term_to_subterm_infos, OrderedDict)
        assert frozenset(term_to_subterm_infos) == frozenset(termlist)
        this_design_factor_infos = {}
        for term in termlist:
            for factor in term.factors:
                this_design_factor_infos[factor] = factor_infos[factor]
        column_names = []
        for subterms in six.itervalues(term_to_subterm_infos):
            for subterm in subterms:
                for column_name in _subterm_column_names_iter(
                        factor_infos, subterm):
                    column_names.append(column_name)
        design_infos.append(DesignInfo(column_names,
                                       factor_infos=this_design_factor_infos,
                                       term_codings=term_to_subterm_infos))
    return design_infos

def _build_design_matrix(design_info, factor_info_to_values, dtype):
    factor_to_values = {}
    need_reshape = False
    num_rows = None
    for factor_info, value in six.iteritems(factor_info_to_values):
        # It's possible that the same factor appears in multiple different
        # FactorInfo objects (e.g. if someone is simultaneously building two
        # DesignInfo objects that started out as part of different
        # formulas). Skip any factor_info that is not our expected
        # factor_info.
        if design_info.factor_infos.get(factor_info.factor) is not factor_info:
            continue
        factor_to_values[factor_info.factor] = value
        if num_rows is not None:
            assert num_rows == value.shape[0]
        else:
            num_rows = value.shape[0]
    if num_rows is None:
        # We have no dependence on the data -- e.g. an empty termlist, or
        # only an intercept term.
        num_rows = 1
        need_reshape = True
    shape = (num_rows, len(design_info.column_names))
    m = DesignMatrix(np.empty(shape, dtype=dtype), design_info)
    start_column = 0
    for term, subterms in six.iteritems(design_info.term_codings):
        for subterm in subterms:
            end_column = start_column + subterm.num_columns
            m_slice = m[:, start_column:end_column]
            _build_subterm(subterm, design_info.factor_infos,
                           factor_to_values, m_slice)
            start_column = end_column
    assert start_column == m.shape[1]
    return need_reshape, m

class _CheckMatch(object):
    def __init__(self, name, eq_fn):
        self._name = name
        self._eq_fn = eq_fn
        self.value = None
        self._value_desc = None
        self._value_origin = None

    def check(self, seen_value, desc, origin):
        if self.value is None:
            self.value = seen_value
            self._value_desc = desc
            self._value_origin = origin
        else:
            if not self._eq_fn(self.value, seen_value):
                msg = ("%s mismatch between %s and %s"
                       % (self._name, self._value_desc, desc))
                if isinstance(self.value, int):
                    msg += " (%r versus %r)" % (self.value, seen_value)
                # XX FIXME: this is a case where having discontiguous Origins
                # would be useful...
                raise PatsyError(msg, origin)

def build_design_matrices(design_infos, data,
                          NA_action="drop",
                          return_type="matrix",
                          dtype=np.dtype(float)):
    """Construct several design matrices from :class:`DesignMatrixBuilder`
    objects.

    This is one of Patsy's fundamental functions. This function and
    :func:`design_matrix_builders` together form the API to the core formula
    interpretation machinery.

    :arg design_infos: A list of :class:`DesignInfo` objects describing the
      design matrices to be built.
    :arg data: A dict-like object which will be used to look up data.
    :arg NA_action: What to do with rows that contain missing values. You can
      ``"drop"`` them, ``"raise"`` an error, or for customization, pass an
      :class:`NAAction` object. See :class:`NAAction` for details on what
      values count as 'missing' (and how to alter this).
    :arg return_type: Either ``"matrix"`` or ``"dataframe"``. See below.
    :arg dtype: The dtype of the returned matrix. Useful if you want to use
      single-precision or extended-precision.

    This function returns either a list of :class:`DesignMatrix` objects (for
    ``return_type="matrix"``) or a list of :class:`pandas.DataFrame` objects
    (for ``return_type="dataframe"``). In both cases, all returned design
    matrices will have ``.design_info`` attributes containing the appropriate
    :class:`DesignInfo` objects.

    Note that unlike :func:`design_matrix_builders`, this function takes only
    a simple data argument, not any kind of iterator. That's because this
    function doesn't need a global view of the data -- everything that depends
    on the whole data set is already encapsulated in the ``design_infos``. If
    you are incrementally processing a large data set, simply call this
    function for each chunk.

    Index handling: This function always checks for indexes in the following
    places:

    * If ``data`` is a :class:`pandas.DataFrame`, its ``.index`` attribute.
    * If any factors evaluate to a :class:`pandas.Series` or
      :class:`pandas.DataFrame`, then their ``.index`` attributes.

    If multiple indexes are found, they must be identical (same values in the
    same order). If no indexes are found, then a default index is generated
    using ``np.arange(num_rows)``. One way or another, we end up with a single
    index for all the data. If ``return_type="dataframe"``, then this index is
    used as the index of the returned DataFrame objects. Examining this index
    makes it possible to determine which rows were removed due to NAs.

    Determining the number of rows in design matrices: This is not as obvious
    as it might seem, because it's possible to have a formula like "~ 1" that
    doesn't depend on the data (it has no factors). For this formula, it's
    obvious what every row in the design matrix should look like (just the
    value ``1``); but, how many rows like this should there be? To determine
    the number of rows in a design matrix, this function always checks in the
    following places:

    * If ``data`` is a :class:`pandas.DataFrame`, then its number of rows.
    * The number of entries in any factors present in any of the design
    * matrices being built.

    All these values much match. In particular, if this function is called to
    generate multiple design matrices at once, then they must all have the
    same number of rows.

    .. versionadded:: 0.2.0
       The ``NA_action`` argument.

    """
    if isinstance(NA_action, str):
        NA_action = NAAction(NA_action)
    if return_type == "dataframe" and not have_pandas:
        raise PatsyError("pandas.DataFrame was requested, but pandas "
                            "is not installed")
    if return_type not in ("matrix", "dataframe"):
        raise PatsyError("unrecognized output type %r, should be "
                            "'matrix' or 'dataframe'" % (return_type,))
    # Evaluate factors
    factor_info_to_values = {}
    factor_info_to_isNAs = {}
    rows_checker = _CheckMatch("Number of rows", lambda a, b: a == b)
    index_checker = _CheckMatch("Index", lambda a, b: a.equals(b))
    if have_pandas and isinstance(data, pandas.DataFrame):
        index_checker.check(data.index, "data.index", None)
        rows_checker.check(data.shape[0], "data argument", None)
    for design_info in design_infos:
        # We look at evaluators rather than factors here, because it might
        # happen that we have the same factor twice, but with different
        # memorized state.
        for factor_info in six.itervalues(design_info.factor_infos):
            if factor_info not in factor_info_to_values:
                value, is_NA = _eval_factor(factor_info, data, NA_action)
                factor_info_to_isNAs[factor_info] = is_NA
                # value may now be a Series, DataFrame, or ndarray
                name = factor_info.factor.name()
                origin = factor_info.factor.origin
                rows_checker.check(value.shape[0], name, origin)
                if (have_pandas
                    and isinstance(value, (pandas.Series, pandas.DataFrame))):
                    index_checker.check(value.index, name, origin)
                # Strategy: we work with raw ndarrays for doing the actual
                # combining; DesignMatrixBuilder objects never sees pandas
                # objects. Then at the end, if a DataFrame was requested, we
                # convert. So every entry in this dict is either a 2-d array
                # of floats, or a 1-d array of integers (representing
                # categories).
                value = np.asarray(value)
                factor_info_to_values[factor_info] = value
    # Handle NAs
    values = list(factor_info_to_values.values())
    is_NAs = list(factor_info_to_isNAs.values())
    origins = [factor_info.factor.origin
               for factor_info in factor_info_to_values]
    pandas_index = index_checker.value
    num_rows = rows_checker.value
    # num_rows is None iff evaluator_to_values (and associated sets like
    # 'values') are empty, i.e., we have no actual evaluators involved
    # (formulas like "~ 1").
    if return_type == "dataframe" and num_rows is not None:
        if pandas_index is None:
            pandas_index = np.arange(num_rows)
        values.append(pandas_index)
        is_NAs.append(np.zeros(len(pandas_index), dtype=bool))
        origins.append(None)
    new_values = NA_action.handle_NA(values, is_NAs, origins)
    # NA_action may have changed the number of rows.
    if new_values:
        num_rows = new_values[0].shape[0]
    if return_type == "dataframe" and num_rows is not None:
        pandas_index = new_values.pop()
    factor_info_to_values = dict(zip(factor_info_to_values, new_values))
    # Build factor values into matrices
    results = []
    for design_info in design_infos:
        results.append(_build_design_matrix(design_info,
                                            factor_info_to_values,
                                            dtype))
    matrices = []
    for need_reshape, matrix in results:
        if need_reshape:
            # There is no data-dependence, at all -- a formula like "1 ~ 1".
            # In this case the builder just returns a single-row matrix, and
            # we have to broadcast it vertically to the appropriate size. If
            # we can figure out what that is...
            assert matrix.shape[0] == 1
            if num_rows is not None:
                matrix = DesignMatrix(np.repeat(matrix, num_rows, axis=0),
                                      matrix.design_info)
            else:
                raise PatsyError(
                    "No design matrix has any non-trivial factors, "
                    "the data object is not a DataFrame. "
                    "I can't tell how many rows the design matrix should "
                    "have!"
                    )
        matrices.append(matrix)
    if return_type == "dataframe":
        assert have_pandas
        for i, matrix in enumerate(matrices):
            di = matrix.design_info
            matrices[i] = pandas.DataFrame(matrix,
                                           columns=di.column_names,
                                           index=pandas_index)
            matrices[i].design_info = di
    return matrices

# It should be possible to do just the factors -> factor_infos stuff
# alone, since that, well, makes logical sense to do.