This file is indexed.

/usr/lib/python2.7/dist-packages/patsy/constraint.py is in python-patsy 0.4.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
# This file is part of Patsy
# Copyright (C) 2011-2012 Nathaniel Smith <njs@pobox.com>
# See file LICENSE.txt for license information.

# Interpreting linear constraints like "2*x1 + x2 = 0"

from __future__ import print_function

# These are made available in the patsy.* namespace
__all__ = ["LinearConstraint"]

import re
import six
import numpy as np
from patsy import PatsyError
from patsy.origin import Origin
from patsy.util import (atleast_2d_column_default,
                        repr_pretty_delegate, repr_pretty_impl,
                        SortAnythingKey,
                        no_pickling, assert_no_pickling)
from patsy.infix_parser import Token, Operator, ParseNode, infix_parse
from patsy.compat import Scanner, Mapping

class LinearConstraint(object):
    """A linear constraint in matrix form.

    This object represents a linear constraint of the form `Ax = b`.

    Usually you won't be constructing these by hand, but instead get them as
    the return value from :meth:`DesignInfo.linear_constraint`.

    .. attribute:: coefs

       A 2-dimensional ndarray with float dtype, representing `A`.

    .. attribute:: constants

       A 2-dimensional single-column ndarray with float dtype, representing
       `b`.

    .. attribute:: variable_names

       A list of strings giving the names of the variables being
       constrained. (Used only for consistency checking.)
    """
    def __init__(self, variable_names, coefs, constants=None):
        self.variable_names = list(variable_names)
        self.coefs = np.atleast_2d(np.asarray(coefs, dtype=float))
        if constants is None:
            constants = np.zeros(self.coefs.shape[0], dtype=float)
        constants = np.asarray(constants, dtype=float)
        self.constants = atleast_2d_column_default(constants)
        if self.constants.ndim != 2 or self.constants.shape[1] != 1:
            raise ValueError("constants is not (convertible to) a column matrix")
        if self.coefs.ndim != 2 or self.coefs.shape[1] != len(variable_names):
            raise ValueError("wrong shape for coefs")
        if self.coefs.shape[0] == 0:
            raise ValueError("must have at least one row in constraint matrix")
        if self.coefs.shape[0] != self.constants.shape[0]:
            raise ValueError("shape mismatch between coefs and constants")
        if np.any(np.all(self.coefs == 0, axis=1)):
            raise ValueError("can't test a constant constraint")

    __repr__ = repr_pretty_delegate
    def _repr_pretty_(self, p, cycle):
        assert not cycle
        return repr_pretty_impl(p, self,
                                [self.variable_names, self.coefs, self.constants])

    __getstate__ = no_pickling

    @classmethod
    def combine(cls, constraints):
        """Create a new LinearConstraint by ANDing together several existing
        LinearConstraints.

        :arg constraints: An iterable of LinearConstraint objects. Their
          :attr:`variable_names` attributes must all match.
        :returns: A new LinearConstraint object.
        """
        if not constraints:
            raise ValueError("no constraints specified")
        variable_names = constraints[0].variable_names
        for constraint in constraints:
            if constraint.variable_names != variable_names:
                raise ValueError("variable names don't match")
        coefs = np.row_stack([c.coefs for c in constraints])
        constants = np.row_stack([c.constants for c in constraints])
        return cls(variable_names, coefs, constants)

def test_LinearConstraint():
    from numpy.testing.utils import assert_equal
    lc = LinearConstraint(["foo", "bar"], [1, 1])
    assert lc.variable_names == ["foo", "bar"]
    assert_equal(lc.coefs, [[1, 1]])
    assert_equal(lc.constants, [[0]])

    lc = LinearConstraint(["foo", "bar"], [[1, 1], [2, 3]], [10, 20])
    assert_equal(lc.coefs, [[1, 1], [2, 3]])
    assert_equal(lc.constants, [[10], [20]])
    
    assert lc.coefs.dtype == np.dtype(float)
    assert lc.constants.dtype == np.dtype(float)

    from nose.tools import assert_raises
    assert_raises(ValueError, LinearConstraint, ["a"], [[1, 2]])
    assert_raises(ValueError, LinearConstraint, ["a"], [[[1]]])
    assert_raises(ValueError, LinearConstraint, ["a"], [[1, 2]], [3, 4])
    assert_raises(ValueError, LinearConstraint, ["a", "b"], [[1, 2]], [3, 4])
    assert_raises(ValueError, LinearConstraint, ["a"], [[0]])
    assert_raises(ValueError, LinearConstraint, ["a"], [[1]], [[]])
    assert_raises(ValueError, LinearConstraint, ["a", "b"], [])
    assert_raises(ValueError, LinearConstraint, ["a", "b"],
                  np.zeros((0, 2)))

    assert_no_pickling(lc)

def test_LinearConstraint_combine():
    comb = LinearConstraint.combine([LinearConstraint(["a", "b"], [1, 0]),
                                     LinearConstraint(["a", "b"], [0, 1], [1])])
    assert comb.variable_names == ["a", "b"]
    from numpy.testing.utils import assert_equal
    assert_equal(comb.coefs, [[1, 0], [0, 1]])
    assert_equal(comb.constants, [[0], [1]])

    from nose.tools import assert_raises
    assert_raises(ValueError, LinearConstraint.combine, [])
    assert_raises(ValueError, LinearConstraint.combine,
                  [LinearConstraint(["a"], [1]), LinearConstraint(["b"], [1])])
    

_ops = [
    Operator(",", 2, -100),

    Operator("=", 2, 0),
    
    Operator("+", 1, 100),
    Operator("-", 1, 100),
    Operator("+", 2, 100),
    Operator("-", 2, 100),

    Operator("*", 2, 200),
    Operator("/", 2, 200),
    ]

_atomic = ["NUMBER", "VARIABLE"]

def _token_maker(type, string):
    def make_token(scanner, token_string):
        if type == "__OP__":
            actual_type = token_string
        else:
            actual_type = type
        return Token(actual_type,
                     Origin(string, *scanner.match.span()),
                     token_string)
    return make_token

def _tokenize_constraint(string, variable_names):
    lparen_re = r"\("
    rparen_re = r"\)"
    op_re = "|".join([re.escape(op.token_type) for op in _ops])
    num_re = r"[-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?"
    whitespace_re = r"\s+"

    # Prefer long matches:
    variable_names = sorted(variable_names, key=len, reverse=True)
    variable_re = "|".join([re.escape(n) for n in variable_names])

    lexicon = [
        (lparen_re, _token_maker(Token.LPAREN, string)),
        (rparen_re, _token_maker(Token.RPAREN, string)),
        (op_re, _token_maker("__OP__", string)),
        (variable_re, _token_maker("VARIABLE", string)),
        (num_re, _token_maker("NUMBER", string)),
        (whitespace_re, None),
        ]

    scanner = Scanner(lexicon)
    tokens, leftover = scanner.scan(string)
    if leftover:
        offset = len(string) - len(leftover)
        raise PatsyError("unrecognized token in constraint",
                            Origin(string, offset, offset + 1))

    return tokens

def test__tokenize_constraint():
    code = "2 * (a + b) = q"
    tokens = _tokenize_constraint(code, ["a", "b", "q"])
    expecteds = [("NUMBER", 0, 1, "2"),
                 ("*", 2, 3, "*"),
                 (Token.LPAREN, 4, 5, "("),
                 ("VARIABLE", 5, 6, "a"),
                 ("+", 7, 8, "+"),
                 ("VARIABLE", 9, 10, "b"),
                 (Token.RPAREN, 10, 11, ")"),
                 ("=", 12, 13, "="),
                 ("VARIABLE", 14, 15, "q")]
    for got, expected in zip(tokens, expecteds):
        assert isinstance(got, Token)
        assert got.type == expected[0]
        assert got.origin == Origin(code, expected[1], expected[2])
        assert got.extra == expected[3]

    from nose.tools import assert_raises
    assert_raises(PatsyError, _tokenize_constraint, "1 + @b", ["b"])
    # Shouldn't raise an error:
    _tokenize_constraint("1 + @b", ["@b"])

    # Check we aren't confused by names which are proper prefixes of other
    # names:
    for names in (["a", "aa"], ["aa", "a"]):
        tokens = _tokenize_constraint("a aa a", names)
        assert len(tokens) == 3
        assert [t.extra for t in tokens] == ["a", "aa", "a"]

    # Check that embedding ops and numbers inside a variable name works
    tokens = _tokenize_constraint("2 * a[1,1],", ["a[1,1]"])
    assert len(tokens) == 4
    assert [t.type for t in tokens] == ["NUMBER", "*", "VARIABLE", ","]
    assert [t.extra for t in tokens] == ["2", "*", "a[1,1]", ","]

def parse_constraint(string, variable_names):
    return infix_parse(_tokenize_constraint(string, variable_names),
                       _ops, _atomic)

class _EvalConstraint(object):
    def __init__(self, variable_names):
        self._variable_names = variable_names
        self._N = len(variable_names)

        self._dispatch = {
            ("VARIABLE", 0): self._eval_variable,
            ("NUMBER", 0): self._eval_number,
            ("+", 1): self._eval_unary_plus,
            ("-", 1): self._eval_unary_minus,
            ("+", 2): self._eval_binary_plus,
            ("-", 2): self._eval_binary_minus,
            ("*", 2): self._eval_binary_multiply,
            ("/", 2): self._eval_binary_div,
            ("=", 2): self._eval_binary_eq,
            (",", 2): self._eval_binary_comma,
            }

    # General scheme: there are 2 types we deal with:
    #   - linear combinations ("lincomb"s) of variables and constants,
    #     represented as ndarrays with size N+1
    #     The last entry is the constant, so [10, 20, 30] means 10x + 20y +
    #     30.
    #   - LinearConstraint objects

    def is_constant(self, coefs):
        return np.all(coefs[:self._N] == 0)

    def _eval_variable(self, tree):
        var = tree.token.extra
        coefs = np.zeros((self._N + 1,), dtype=float)
        coefs[self._variable_names.index(var)] = 1
        return coefs

    def _eval_number(self, tree):
        coefs = np.zeros((self._N + 1,), dtype=float)
        coefs[-1] = float(tree.token.extra)
        return coefs

    def _eval_unary_plus(self, tree):
        return self.eval(tree.args[0])

    def _eval_unary_minus(self, tree):
        return -1 * self.eval(tree.args[0])

    def _eval_binary_plus(self, tree):
        return self.eval(tree.args[0]) + self.eval(tree.args[1])

    def _eval_binary_minus(self, tree):
        return self.eval(tree.args[0]) - self.eval(tree.args[1])

    def _eval_binary_div(self, tree):
        left = self.eval(tree.args[0])
        right = self.eval(tree.args[1])
        if not self.is_constant(right):
            raise PatsyError("Can't divide by a variable in a linear "
                                "constraint", tree.args[1])
        return left / right[-1]

    def _eval_binary_multiply(self, tree):
        left = self.eval(tree.args[0])
        right = self.eval(tree.args[1])
        if self.is_constant(left):
            return left[-1] * right
        elif self.is_constant(right):
            return left * right[-1]
        else:
            raise PatsyError("Can't multiply one variable by another "
                                "in a linear constraint", tree)

    def _eval_binary_eq(self, tree):
        # Handle "a1 = a2 = a3", which is parsed as "(a1 = a2) = a3"
        args = list(tree.args)
        constraints = []
        for i, arg in enumerate(args):
            if arg.type == "=":
                constraints.append(self.eval(arg, constraint=True))
                # make our left argument be their right argument, or
                # vice-versa
                args[i] = arg.args[1 - i]
        left = self.eval(args[0])
        right = self.eval(args[1])
        coefs = left[:self._N] - right[:self._N]
        if np.all(coefs == 0):
            raise PatsyError("no variables appear in constraint", tree)
        constant = -left[-1] + right[-1]
        constraint = LinearConstraint(self._variable_names, coefs, constant)
        constraints.append(constraint)
        return LinearConstraint.combine(constraints)

    def _eval_binary_comma(self, tree):
        left = self.eval(tree.args[0], constraint=True)
        right = self.eval(tree.args[1], constraint=True)
        return LinearConstraint.combine([left, right])

    def eval(self, tree, constraint=False):
        key = (tree.type, len(tree.args))
        assert key in self._dispatch
        val = self._dispatch[key](tree)
        if constraint:
            # Force it to be a constraint
            if isinstance(val, LinearConstraint):
                return val
            else:
                assert val.size == self._N + 1
                if np.all(val[:self._N] == 0):
                    raise PatsyError("term is constant, with no variables",
                                        tree)
                return LinearConstraint(self._variable_names,
                                        val[:self._N],
                                        -val[-1])
        else:
            # Force it to *not* be a constraint
            if isinstance(val, LinearConstraint):
                raise PatsyError("unexpected constraint object", tree)
            return val

def linear_constraint(constraint_like, variable_names):
    """This is the internal interface implementing
    DesignInfo.linear_constraint, see there for docs."""
    if isinstance(constraint_like, LinearConstraint):
        if constraint_like.variable_names != variable_names:
            raise ValueError("LinearConstraint has wrong variable_names "
                             "(got %r, expected %r)"
                             % (constraint_like.variable_names,
                                variable_names))
        return constraint_like

    if isinstance(constraint_like, Mapping):
        # Simple conjunction-of-equality constraints can be specified as
        # dicts. {"x": 1, "y": 2} -> tests x = 1 and y = 2. Keys can be
        # either variable names, or variable indices.
        coefs = np.zeros((len(constraint_like), len(variable_names)),
                         dtype=float)
        constants = np.zeros(len(constraint_like))
        used = set()
        for i, (name, value) in enumerate(six.iteritems(constraint_like)):
            if name in variable_names:
                idx = variable_names.index(name)
            elif isinstance(name, six.integer_types):
                idx = name
            else:
                raise ValueError("unrecognized variable name/index %r"
                                 % (name,))
            if idx in used:
                raise ValueError("duplicated constraint on %r"
                                 % (variable_names[idx],))
            used.add(idx)
            coefs[i, idx] = 1
            constants[i] = value
        return LinearConstraint(variable_names, coefs, constants)

    if isinstance(constraint_like, str):
        constraint_like = [constraint_like]
        # fall-through

    if (isinstance(constraint_like, list)
        and constraint_like
        and isinstance(constraint_like[0], str)):
        constraints = []
        for code in constraint_like:
            if not isinstance(code, str):
                raise ValueError("expected a string, not %r" % (code,))
            tree = parse_constraint(code, variable_names)
            evaluator = _EvalConstraint(variable_names)
            constraints.append(evaluator.eval(tree, constraint=True))
        return LinearConstraint.combine(constraints)

    if isinstance(constraint_like, tuple):
        if len(constraint_like) != 2:
            raise ValueError("constraint tuple must have length 2")
        coef, constants = constraint_like
        return LinearConstraint(variable_names, coef, constants)

    # assume a raw ndarray
    coefs = np.asarray(constraint_like, dtype=float)
    return LinearConstraint(variable_names, coefs)

def _check_lincon(input, varnames, coefs, constants):
    from numpy.testing.utils import assert_equal
    got = linear_constraint(input, varnames)
    print("got", got)
    expected = LinearConstraint(varnames, coefs, constants)
    print("expected", expected)
    assert_equal(got.variable_names, expected.variable_names)
    assert_equal(got.coefs, expected.coefs)
    assert_equal(got.constants, expected.constants)
    assert_equal(got.coefs.dtype, np.dtype(float))
    assert_equal(got.constants.dtype, np.dtype(float))

def test_linear_constraint():
    from nose.tools import assert_raises
    from patsy.compat import OrderedDict
    t = _check_lincon

    t(LinearConstraint(["a", "b"], [2, 3]), ["a", "b"], [[2, 3]], [[0]])
    assert_raises(ValueError, linear_constraint,
                  LinearConstraint(["b", "a"], [2, 3]),
                  ["a", "b"])

    t({"a": 2}, ["a", "b"], [[1, 0]], [[2]])
    t(OrderedDict([("a", 2), ("b", 3)]),
      ["a", "b"], [[1, 0], [0, 1]], [[2], [3]])
    t(OrderedDict([("a", 2), ("b", 3)]),
      ["b", "a"], [[0, 1], [1, 0]], [[2], [3]])

    t({0: 2}, ["a", "b"], [[1, 0]], [[2]])
    t(OrderedDict([(0, 2), (1, 3)]), ["a", "b"], [[1, 0], [0, 1]], [[2], [3]])

    t(OrderedDict([("a", 2), (1, 3)]),
      ["a", "b"], [[1, 0], [0, 1]], [[2], [3]])

    assert_raises(ValueError, linear_constraint, {"q": 1}, ["a", "b"])
    assert_raises(ValueError, linear_constraint, {"a": 1, 0: 2}, ["a", "b"])

    t(np.array([2, 3]), ["a", "b"], [[2, 3]], [[0]])
    t(np.array([[2, 3], [4, 5]]), ["a", "b"], [[2, 3], [4, 5]], [[0], [0]])

    t("a = 2", ["a", "b"], [[1, 0]], [[2]])
    t("a - 2", ["a", "b"], [[1, 0]], [[2]])
    t("a + 1 = 3", ["a", "b"], [[1, 0]], [[2]])
    t("a + b = 3", ["a", "b"], [[1, 1]], [[3]])
    t("a = 2, b = 3", ["a", "b"], [[1, 0], [0, 1]], [[2], [3]])
    t("b = 3, a = 2", ["a", "b"], [[0, 1], [1, 0]], [[3], [2]])

    t(["a = 2", "b = 3"], ["a", "b"], [[1, 0], [0, 1]], [[2], [3]])

    assert_raises(ValueError, linear_constraint, ["a", {"b": 0}], ["a", "b"])

    # Actual evaluator tests
    t("2 * (a + b/3) + b + 2*3/4 = 1 + 2*3", ["a", "b"],
      [[2, 2.0/3 + 1]], [[7 - 6.0/4]])
    t("+2 * -a", ["a", "b"], [[-2, 0]], [[0]])
    t("a - b, a + b = 2", ["a", "b"], [[1, -1], [1, 1]], [[0], [2]])
    t("a = 1, a = 2, a = 3", ["a", "b"],
      [[1, 0], [1, 0], [1, 0]], [[1], [2], [3]])
    t("a * 2", ["a", "b"], [[2, 0]], [[0]])
    t("-a = 1", ["a", "b"], [[-1, 0]], [[1]])
    t("(2 + a - a) * b", ["a", "b"], [[0, 2]], [[0]])

    t("a = 1 = b", ["a", "b"], [[1, 0], [0, -1]], [[1], [-1]])
    t("a = (1 = b)", ["a", "b"], [[0, -1], [1, 0]], [[-1], [1]])
    t("a = 1, a = b = c", ["a", "b", "c"],
      [[1, 0, 0], [1, -1, 0], [0, 1, -1]], [[1], [0], [0]])

    # One should never do this of course, but test that it works anyway...
    t("a + 1 = 2", ["a", "a + 1"], [[0, 1]], [[2]])

    t(([10, 20], [30]), ["a", "b"], [[10, 20]], [[30]])
    t(([[10, 20], [20, 40]], [[30], [35]]), ["a", "b"],
      [[10, 20], [20, 40]], [[30], [35]])
    # wrong-length tuple
    assert_raises(ValueError, linear_constraint,
                  ([1, 0], [0], [0]), ["a", "b"])
    assert_raises(ValueError, linear_constraint, ([1, 0],), ["a", "b"])

    t([10, 20], ["a", "b"], [[10, 20]], [[0]])
    t([[10, 20], [20, 40]], ["a", "b"], [[10, 20], [20, 40]], [[0], [0]])
    t(np.array([10, 20]), ["a", "b"], [[10, 20]], [[0]])
    t(np.array([[10, 20], [20, 40]]), ["a", "b"],
      [[10, 20], [20, 40]], [[0], [0]])

    # unknown object type
    assert_raises(ValueError, linear_constraint, None, ["a", "b"])

_parse_eval_error_tests = [
    # Bad token
    "a + <f>oo",
    # No pure constant equalities
    "a = 1, <1 = 1>, b = 1",
    "a = 1, <b * 2 - b + (-2/2 * b)>",
    "a = 1, <1>, b = 2",
    "a = 1, <2 * b = b + b>, c",
    # No non-linearities
    "a + <a * b> + c",
    "a + 2 / <b> + c",
    # Constraints are not numbers
    "a = 1, 2 * <(a = b)>, c",
    "a = 1, a + <(a = b)>, c",
    "a = 1, <(a, b)> + 2, c",
]

from patsy.parse_formula import _parsing_error_test
def test_eval_errors():
    def doit(bad_code):
        return linear_constraint(bad_code, ["a", "b", "c"])
    _parsing_error_test(doit, _parse_eval_error_tests)