/usr/lib/python2.7/dist-packages/patsy/contrasts.py is in python-patsy 0.4.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 | # This file is part of Patsy
# Copyright (C) 2011-2012 Nathaniel Smith <njs@pobox.com>
# See file LICENSE.txt for license information.
# http://www.ats.ucla.edu/stat/r/library/contrast_coding.htm
# http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter5/sasreg5.htm
from __future__ import print_function
# These are made available in the patsy.* namespace
__all__ = ["ContrastMatrix", "Treatment", "Poly", "Sum", "Helmert", "Diff"]
import sys
import six
import numpy as np
from patsy import PatsyError
from patsy.compat import triu_indices, tril_indices, diag_indices
from patsy.util import (repr_pretty_delegate, repr_pretty_impl,
safe_issubdtype,
no_pickling, assert_no_pickling)
class ContrastMatrix(object):
"""A simple container for a matrix used for coding categorical factors.
Attributes:
.. attribute:: matrix
A 2d ndarray, where each column corresponds to one column of the
resulting design matrix, and each row contains the entries for a single
categorical variable level. Usually n-by-n for a full rank coding or
n-by-(n-1) for a reduced rank coding, though other options are
possible.
.. attribute:: column_suffixes
A list of strings to be appended to the factor name, to produce the
final column names. E.g. for treatment coding the entries will look
like ``"[T.level1]"``.
"""
def __init__(self, matrix, column_suffixes):
self.matrix = np.asarray(matrix)
self.column_suffixes = column_suffixes
if self.matrix.shape[1] != len(column_suffixes):
raise PatsyError("matrix and column_suffixes don't conform")
__repr__ = repr_pretty_delegate
def _repr_pretty_(self, p, cycle):
repr_pretty_impl(p, self, [self.matrix, self.column_suffixes])
__getstate__ = no_pickling
def test_ContrastMatrix():
cm = ContrastMatrix([[1, 0], [0, 1]], ["a", "b"])
assert np.array_equal(cm.matrix, np.eye(2))
assert cm.column_suffixes == ["a", "b"]
# smoke test
repr(cm)
from nose.tools import assert_raises
assert_raises(PatsyError, ContrastMatrix, [[1], [0]], ["a", "b"])
assert_no_pickling(cm)
# This always produces an object of the type that Python calls 'str' (whether
# that be a Python 2 string-of-bytes or a Python 3 string-of-unicode). It does
# *not* make any particular guarantees about being reversible or having other
# such useful programmatic properties -- it just produces something that will
# be nice for users to look at.
def _obj_to_readable_str(obj):
if isinstance(obj, str):
return obj
elif sys.version_info >= (3,) and isinstance(obj, bytes):
try:
return obj.decode("utf-8")
except UnicodeDecodeError:
return repr(obj)
elif sys.version_info < (3,) and isinstance(obj, unicode):
try:
return obj.encode("ascii")
except UnicodeEncodeError:
return repr(obj)
else:
return repr(obj)
def test__obj_to_readable_str():
def t(obj, expected):
got = _obj_to_readable_str(obj)
assert type(got) is str
assert got == expected
t(1, "1")
t(1.0, "1.0")
t("asdf", "asdf")
t(six.u("asdf"), "asdf")
if sys.version_info >= (3,):
# we can use "foo".encode here b/c this is python 3!
# a utf-8 encoded euro-sign comes out as a real euro sign.
t("\u20ac".encode("utf-8"), six.u("\u20ac"))
# but a iso-8859-15 euro sign can't be decoded, and we fall back on
# repr()
t("\u20ac".encode("iso-8859-15"), "b'\\xa4'")
else:
t(six.u("\u20ac"), "u'\\u20ac'")
def _name_levels(prefix, levels):
return ["[%s%s]" % (prefix, _obj_to_readable_str(level)) for level in levels]
def test__name_levels():
assert _name_levels("a", ["b", "c"]) == ["[ab]", "[ac]"]
def _dummy_code(levels):
return ContrastMatrix(np.eye(len(levels)), _name_levels("", levels))
def _get_level(levels, level_ref):
if level_ref in levels:
return levels.index(level_ref)
if isinstance(level_ref, six.integer_types):
if level_ref < 0:
level_ref += len(levels)
if not (0 <= level_ref < len(levels)):
raise PatsyError("specified level %r is out of range"
% (level_ref,))
return level_ref
raise PatsyError("specified level %r not found" % (level_ref,))
def test__get_level():
assert _get_level(["a", "b", "c"], 0) == 0
assert _get_level(["a", "b", "c"], -1) == 2
assert _get_level(["a", "b", "c"], "b") == 1
# For integer levels, we check identity before treating it as an index
assert _get_level([2, 1, 0], 0) == 2
from nose.tools import assert_raises
assert_raises(PatsyError, _get_level, ["a", "b"], 2)
assert_raises(PatsyError, _get_level, ["a", "b"], -3)
assert_raises(PatsyError, _get_level, ["a", "b"], "c")
if not six.PY3:
assert _get_level(["a", "b", "c"], long(0)) == 0
assert _get_level(["a", "b", "c"], long(-1)) == 2
assert _get_level([2, 1, 0], long(0)) == 2
class Treatment(object):
"""Treatment coding (also known as dummy coding).
This is the default coding.
For reduced-rank coding, one level is chosen as the "reference", and its
mean behaviour is represented by the intercept. Each column of the
resulting matrix represents the difference between the mean of one level
and this reference level.
For full-rank coding, classic "dummy" coding is used, and each column of
the resulting matrix represents the mean of the corresponding level.
The reference level defaults to the first level, or can be specified
explicitly.
.. ipython:: python
# reduced rank
dmatrix("C(a, Treatment)", balanced(a=3))
# full rank
dmatrix("0 + C(a, Treatment)", balanced(a=3))
# Setting a reference level
dmatrix("C(a, Treatment(1))", balanced(a=3))
dmatrix("C(a, Treatment('a2'))", balanced(a=3))
Equivalent to R ``contr.treatment``. The R documentation suggests that
using ``Treatment(reference=-1)`` will produce contrasts that are
"equivalent to those produced by many (but not all) SAS procedures".
"""
def __init__(self, reference=None):
self.reference = reference
def code_with_intercept(self, levels):
return _dummy_code(levels)
def code_without_intercept(self, levels):
if self.reference is None:
reference = 0
else:
reference = _get_level(levels, self.reference)
eye = np.eye(len(levels) - 1)
contrasts = np.vstack((eye[:reference, :],
np.zeros((1, len(levels) - 1)),
eye[reference:, :]))
names = _name_levels("T.", levels[:reference] + levels[reference + 1:])
return ContrastMatrix(contrasts, names)
__getstate__ = no_pickling
def test_Treatment():
t1 = Treatment()
matrix = t1.code_with_intercept(["a", "b", "c"])
assert matrix.column_suffixes == ["[a]", "[b]", "[c]"]
assert np.allclose(matrix.matrix, [[1, 0, 0], [0, 1, 0], [0, 0, 1]])
matrix = t1.code_without_intercept(["a", "b", "c"])
assert matrix.column_suffixes == ["[T.b]", "[T.c]"]
assert np.allclose(matrix.matrix, [[0, 0], [1, 0], [0, 1]])
matrix = Treatment(reference=1).code_without_intercept(["a", "b", "c"])
assert matrix.column_suffixes == ["[T.a]", "[T.c]"]
assert np.allclose(matrix.matrix, [[1, 0], [0, 0], [0, 1]])
matrix = Treatment(reference=-2).code_without_intercept(["a", "b", "c"])
assert matrix.column_suffixes == ["[T.a]", "[T.c]"]
assert np.allclose(matrix.matrix, [[1, 0], [0, 0], [0, 1]])
matrix = Treatment(reference="b").code_without_intercept(["a", "b", "c"])
assert matrix.column_suffixes == ["[T.a]", "[T.c]"]
assert np.allclose(matrix.matrix, [[1, 0], [0, 0], [0, 1]])
# Make sure the default is always the first level, even if there is a
# different level called 0.
matrix = Treatment().code_without_intercept([2, 1, 0])
assert matrix.column_suffixes == ["[T.1]", "[T.0]"]
assert np.allclose(matrix.matrix, [[0, 0], [1, 0], [0, 1]])
class Poly(object):
"""Orthogonal polynomial contrast coding.
This coding scheme treats the levels as ordered samples from an underlying
continuous scale, whose effect takes an unknown functional form which is
`Taylor-decomposed`__ into the sum of a linear, quadratic, etc. components.
.. __: https://en.wikipedia.org/wiki/Taylor_series
For reduced-rank coding, you get a linear column, a quadratic column,
etc., up to the number of levels provided.
For full-rank coding, the same scheme is used, except that the zero-order
constant polynomial is also included. I.e., you get an intercept column
included as part of your categorical term.
By default the levels are treated as equally spaced, but you can override
this by providing a value for the `scores` argument.
Examples:
.. ipython:: python
# Reduced rank
dmatrix("C(a, Poly)", balanced(a=4))
# Full rank
dmatrix("0 + C(a, Poly)", balanced(a=3))
# Explicit scores
dmatrix("C(a, Poly([1, 2, 10]))", balanced(a=3))
This is equivalent to R's ``contr.poly``. (But note that in R, reduced
rank encodings are always dummy-coded, regardless of what contrast you
have set.)
"""
def __init__(self, scores=None):
self.scores = scores
def _code_either(self, intercept, levels):
n = len(levels)
scores = self.scores
if scores is None:
scores = np.arange(n)
scores = np.asarray(scores, dtype=float)
if len(scores) != n:
raise PatsyError("number of levels (%s) does not match"
" number of scores (%s)"
% (n, len(scores)))
# Strategy: just make a matrix whose columns are naive linear,
# quadratic, etc., functions of the raw scores, and then use 'qr' to
# orthogonalize each column against those to its left.
scores -= scores.mean()
raw_poly = scores.reshape((-1, 1)) ** np.arange(n).reshape((1, -1))
q, r = np.linalg.qr(raw_poly)
q *= np.sign(np.diag(r))
q /= np.sqrt(np.sum(q ** 2, axis=1))
# The constant term is always all 1's -- we don't normalize it.
q[:, 0] = 1
names = [".Constant", ".Linear", ".Quadratic", ".Cubic"]
names += ["^%s" % (i,) for i in range(4, n)]
names = names[:n]
if intercept:
return ContrastMatrix(q, names)
else:
# We always include the constant/intercept column as something to
# orthogonalize against, but we don't always return it:
return ContrastMatrix(q[:, 1:], names[1:])
def code_with_intercept(self, levels):
return self._code_either(True, levels)
def code_without_intercept(self, levels):
return self._code_either(False, levels)
__getstate__ = no_pickling
def test_Poly():
t1 = Poly()
matrix = t1.code_with_intercept(["a", "b", "c"])
assert matrix.column_suffixes == [".Constant", ".Linear", ".Quadratic"]
# Values from R 'options(digits=15); contr.poly(3)'
expected = [[1, -7.07106781186548e-01, 0.408248290463863],
[1, 0, -0.816496580927726],
[1, 7.07106781186547e-01, 0.408248290463863]]
print(matrix.matrix)
assert np.allclose(matrix.matrix, expected)
matrix = t1.code_without_intercept(["a", "b", "c"])
assert matrix.column_suffixes == [".Linear", ".Quadratic"]
# Values from R 'options(digits=15); contr.poly(3)'
print(matrix.matrix)
assert np.allclose(matrix.matrix,
[[-7.07106781186548e-01, 0.408248290463863],
[0, -0.816496580927726],
[7.07106781186547e-01, 0.408248290463863]])
matrix = Poly(scores=[0, 10, 11]).code_with_intercept(["a", "b", "c"])
assert matrix.column_suffixes == [".Constant", ".Linear", ".Quadratic"]
# Values from R 'options(digits=15); contr.poly(3, scores=c(0, 10, 11))'
print(matrix.matrix)
assert np.allclose(matrix.matrix,
[[1, -0.813733471206735, 0.0671156055214024],
[1, 0.348742916231458, -0.7382716607354268],
[1, 0.464990554975277, 0.6711560552140243]])
# we had an integer/float handling bug for score vectors whose mean was
# non-integer, so check one of those:
matrix = Poly(scores=[0, 10, 12]).code_with_intercept(["a", "b", "c"])
assert matrix.column_suffixes == [".Constant", ".Linear", ".Quadratic"]
# Values from R 'options(digits=15); contr.poly(3, scores=c(0, 10, 12))'
print(matrix.matrix)
assert np.allclose(matrix.matrix,
[[1, -0.806559132617443, 0.127000127000191],
[1, 0.293294230042706, -0.762000762001143],
[1, 0.513264902574736, 0.635000635000952]])
from nose.tools import assert_raises
assert_raises(PatsyError,
Poly(scores=[0, 1]).code_with_intercept,
["a", "b", "c"])
matrix = t1.code_with_intercept(list(range(6)))
assert matrix.column_suffixes == [".Constant", ".Linear", ".Quadratic",
".Cubic", "^4", "^5"]
class Sum(object):
"""Deviation coding (also known as sum-to-zero coding).
Compares the mean of each level to the mean-of-means. (In a balanced
design, compares the mean of each level to the overall mean.)
For full-rank coding, a standard intercept term is added.
One level must be omitted to avoid redundancy; by default this is the last
level, but this can be adjusted via the `omit` argument.
.. warning:: There are multiple definitions of 'deviation coding' in
use. Make sure this is the one you expect before trying to interpret
your results!
Examples:
.. ipython:: python
# Reduced rank
dmatrix("C(a, Sum)", balanced(a=4))
# Full rank
dmatrix("0 + C(a, Sum)", balanced(a=4))
# Omit a different level
dmatrix("C(a, Sum(1))", balanced(a=3))
dmatrix("C(a, Sum('a1'))", balanced(a=3))
This is equivalent to R's `contr.sum`.
"""
def __init__(self, omit=None):
self.omit = omit
def _omit_i(self, levels):
if self.omit is None:
# We assume below that this is positive
return len(levels) - 1
else:
return _get_level(levels, self.omit)
def _sum_contrast(self, levels):
n = len(levels)
omit_i = self._omit_i(levels)
eye = np.eye(n - 1)
out = np.empty((n, n - 1))
out[:omit_i, :] = eye[:omit_i, :]
out[omit_i, :] = -1
out[omit_i + 1:, :] = eye[omit_i:, :]
return out
def code_with_intercept(self, levels):
contrast = self.code_without_intercept(levels)
matrix = np.column_stack((np.ones(len(levels)),
contrast.matrix))
column_suffixes = ["[mean]"] + contrast.column_suffixes
return ContrastMatrix(matrix, column_suffixes)
def code_without_intercept(self, levels):
matrix = self._sum_contrast(levels)
omit_i = self._omit_i(levels)
included_levels = levels[:omit_i] + levels[omit_i + 1:]
return ContrastMatrix(matrix, _name_levels("S.", included_levels))
__getstate__ = no_pickling
def test_Sum():
t1 = Sum()
matrix = t1.code_with_intercept(["a", "b", "c"])
assert matrix.column_suffixes == ["[mean]", "[S.a]", "[S.b]"]
assert np.allclose(matrix.matrix, [[1, 1, 0], [1, 0, 1], [1, -1, -1]])
matrix = t1.code_without_intercept(["a", "b", "c"])
assert matrix.column_suffixes == ["[S.a]", "[S.b]"]
assert np.allclose(matrix.matrix, [[1, 0], [0, 1], [-1, -1]])
# Check that it's not thrown off by negative integer term names
matrix = t1.code_without_intercept([-1, -2, -3])
assert matrix.column_suffixes == ["[S.-1]", "[S.-2]"]
assert np.allclose(matrix.matrix, [[1, 0], [0, 1], [-1, -1]])
t2 = Sum(omit=1)
matrix = t2.code_with_intercept(["a", "b", "c"])
assert matrix.column_suffixes == ["[mean]", "[S.a]", "[S.c]"]
assert np.allclose(matrix.matrix, [[1, 1, 0], [1, -1, -1], [1, 0, 1]])
matrix = t2.code_without_intercept(["a", "b", "c"])
assert matrix.column_suffixes == ["[S.a]", "[S.c]"]
assert np.allclose(matrix.matrix, [[1, 0], [-1, -1], [0, 1]])
matrix = t2.code_without_intercept([1, 0, 2])
assert matrix.column_suffixes == ["[S.0]", "[S.2]"]
assert np.allclose(matrix.matrix, [[-1, -1], [1, 0], [0, 1]])
t3 = Sum(omit=-3)
matrix = t3.code_with_intercept(["a", "b", "c"])
assert matrix.column_suffixes == ["[mean]", "[S.b]", "[S.c]"]
assert np.allclose(matrix.matrix, [[1, -1, -1], [1, 1, 0], [1, 0, 1]])
matrix = t3.code_without_intercept(["a", "b", "c"])
assert matrix.column_suffixes == ["[S.b]", "[S.c]"]
assert np.allclose(matrix.matrix, [[-1, -1], [1, 0], [0, 1]])
t4 = Sum(omit="a")
matrix = t3.code_with_intercept(["a", "b", "c"])
assert matrix.column_suffixes == ["[mean]", "[S.b]", "[S.c]"]
assert np.allclose(matrix.matrix, [[1, -1, -1], [1, 1, 0], [1, 0, 1]])
matrix = t3.code_without_intercept(["a", "b", "c"])
assert matrix.column_suffixes == ["[S.b]", "[S.c]"]
assert np.allclose(matrix.matrix, [[-1, -1], [1, 0], [0, 1]])
class Helmert(object):
"""Helmert contrasts.
Compares the second level with the first, the third with the average of
the first two, and so on.
For full-rank coding, a standard intercept term is added.
.. warning:: There are multiple definitions of 'Helmert coding' in
use. Make sure this is the one you expect before trying to interpret
your results!
Examples:
.. ipython:: python
# Reduced rank
dmatrix("C(a, Helmert)", balanced(a=4))
# Full rank
dmatrix("0 + C(a, Helmert)", balanced(a=4))
This is equivalent to R's `contr.helmert`.
"""
def _helmert_contrast(self, levels):
n = len(levels)
#http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter5/sasreg5.htm#HELMERT
#contr = np.eye(n - 1)
#int_range = np.arange(n - 1., 1, -1)
#denom = np.repeat(int_range, np.arange(n - 2, 0, -1))
#contr[np.tril_indices(n - 1, -1)] = -1. / denom
#http://www.ats.ucla.edu/stat/r/library/contrast_coding.htm#HELMERT
#contr = np.zeros((n - 1., n - 1))
#int_range = np.arange(n, 1, -1)
#denom = np.repeat(int_range[:-1], np.arange(n - 2, 0, -1))
#contr[np.diag_indices(n - 1)] = (int_range - 1.) / int_range
#contr[np.tril_indices(n - 1, -1)] = -1. / denom
#contr = np.vstack((contr, -1./int_range))
#r-like
contr = np.zeros((n, n - 1))
contr[1:][diag_indices(n - 1)] = np.arange(1, n)
contr[triu_indices(n - 1)] = -1
return contr
def code_with_intercept(self, levels):
contrast = np.column_stack((np.ones(len(levels)),
self._helmert_contrast(levels)))
column_suffixes = _name_levels("H.", ["intercept"] + list(levels[1:]))
return ContrastMatrix(contrast, column_suffixes)
def code_without_intercept(self, levels):
contrast = self._helmert_contrast(levels)
return ContrastMatrix(contrast,
_name_levels("H.", levels[1:]))
__getstate__ = no_pickling
def test_Helmert():
t1 = Helmert()
for levels in (["a", "b", "c", "d"], ("a", "b", "c", "d")):
matrix = t1.code_with_intercept(levels)
assert matrix.column_suffixes == ["[H.intercept]",
"[H.b]",
"[H.c]",
"[H.d]"]
assert np.allclose(matrix.matrix, [[1, -1, -1, -1],
[1, 1, -1, -1],
[1, 0, 2, -1],
[1, 0, 0, 3]])
matrix = t1.code_without_intercept(levels)
assert matrix.column_suffixes == ["[H.b]", "[H.c]", "[H.d]"]
assert np.allclose(matrix.matrix, [[-1, -1, -1],
[1, -1, -1],
[0, 2, -1],
[0, 0, 3]])
class Diff(object):
"""Backward difference coding.
This coding scheme is useful for ordered factors, and compares the mean of
each level with the preceding level. So you get the second level minus the
first, the third level minus the second, etc.
For full-rank coding, a standard intercept term is added (which gives the
mean value for the first level).
Examples:
.. ipython:: python
# Reduced rank
dmatrix("C(a, Diff)", balanced(a=3))
# Full rank
dmatrix("0 + C(a, Diff)", balanced(a=3))
"""
def _diff_contrast(self, levels):
nlevels = len(levels)
contr = np.zeros((nlevels, nlevels-1))
int_range = np.arange(1, nlevels)
upper_int = np.repeat(int_range, int_range)
row_i, col_i = triu_indices(nlevels-1)
# we want to iterate down the columns not across the rows
# it would be nice if the index functions had a row/col order arg
col_order = np.argsort(col_i)
contr[row_i[col_order],
col_i[col_order]] = (upper_int-nlevels)/float(nlevels)
lower_int = np.repeat(int_range, int_range[::-1])
row_i, col_i = tril_indices(nlevels-1)
# we want to iterate down the columns not across the rows
col_order = np.argsort(col_i)
contr[row_i[col_order]+1, col_i[col_order]] = lower_int/float(nlevels)
return contr
def code_with_intercept(self, levels):
contrast = np.column_stack((np.ones(len(levels)),
self._diff_contrast(levels)))
return ContrastMatrix(contrast, _name_levels("D.", levels))
def code_without_intercept(self, levels):
contrast = self._diff_contrast(levels)
return ContrastMatrix(contrast, _name_levels("D.", levels[:-1]))
__getstate__ = no_pickling
def test_diff():
t1 = Diff()
matrix = t1.code_with_intercept(["a", "b", "c", "d"])
assert matrix.column_suffixes == ["[D.a]", "[D.b]", "[D.c]",
"[D.d]"]
assert np.allclose(matrix.matrix, [[1, -3/4., -1/2., -1/4.],
[1, 1/4., -1/2., -1/4.],
[1, 1/4., 1./2, -1/4.],
[1, 1/4., 1/2., 3/4.]])
matrix = t1.code_without_intercept(["a", "b", "c", "d"])
assert matrix.column_suffixes == ["[D.a]", "[D.b]", "[D.c]"]
assert np.allclose(matrix.matrix, [[-3/4., -1/2., -1/4.],
[1/4., -1/2., -1/4.],
[1/4., 2./4, -1/4.],
[1/4., 1/2., 3/4.]])
# contrast can be:
# -- a ContrastMatrix
# -- a simple np.ndarray
# -- an object with code_with_intercept and code_without_intercept methods
# -- a function returning one of the above
# -- None, in which case the above rules are applied to 'default'
# This function always returns a ContrastMatrix.
def code_contrast_matrix(intercept, levels, contrast, default=None):
if contrast is None:
contrast = default
if callable(contrast):
contrast = contrast()
if isinstance(contrast, ContrastMatrix):
return contrast
as_array = np.asarray(contrast)
if safe_issubdtype(as_array.dtype, np.number):
return ContrastMatrix(as_array,
_name_levels("custom", range(as_array.shape[1])))
if intercept:
return contrast.code_with_intercept(levels)
else:
return contrast.code_without_intercept(levels)
|