/usr/lib/python2.7/dist-packages/patsy/desc.py is in python-patsy 0.4.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 | # This file is part of Patsy
# Copyright (C) 2011-2012 Nathaniel Smith <njs@pobox.com>
# See file LICENSE.txt for license information.
# This file defines the ModelDesc class, which describes a model at a high
# level, as a list of interactions of factors. It also has the code to convert
# a formula parse tree (from patsy.parse_formula) into a ModelDesc.
from __future__ import print_function
import six
from patsy import PatsyError
from patsy.parse_formula import ParseNode, Token, parse_formula
from patsy.eval import EvalEnvironment, EvalFactor
from patsy.util import uniqueify_list
from patsy.util import repr_pretty_delegate, repr_pretty_impl
from patsy.util import no_pickling, assert_no_pickling
# These are made available in the patsy.* namespace
__all__ = ["Term", "ModelDesc", "INTERCEPT"]
# One might think it would make more sense for 'factors' to be a set, rather
# than a tuple-with-guaranteed-unique-entries-that-compares-like-a-set. The
# reason we do it this way is that it preserves the order that the user typed
# and is expecting, which then ends up producing nicer names in our final
# output, nicer column ordering, etc. (A similar comment applies to the
# ordering of terms in ModelDesc objects as a whole.)
class Term(object):
"""The interaction between a collection of factor objects.
This is one of the basic types used in representing formulas, and
corresponds to an expression like ``"a:b:c"`` in a formula string.
For details, see :ref:`formulas` and :ref:`expert-model-specification`.
Terms are hashable and compare by value.
Attributes:
.. attribute:: factors
A tuple of factor objects.
"""
def __init__(self, factors):
self.factors = tuple(uniqueify_list(factors))
def __eq__(self, other):
return (isinstance(other, Term)
and frozenset(other.factors) == frozenset(self.factors))
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash((Term, frozenset(self.factors)))
__repr__ = repr_pretty_delegate
def _repr_pretty_(self, p, cycle):
assert not cycle
repr_pretty_impl(p, self, [list(self.factors)])
def name(self):
"""Return a human-readable name for this term."""
if self.factors:
return ":".join([f.name() for f in self.factors])
else:
return "Intercept"
__getstate__ = no_pickling
INTERCEPT = Term([])
class _MockFactor(object):
def __init__(self, name):
self._name = name
def name(self):
return self._name
def test_Term():
assert Term([1, 2, 1]).factors == (1, 2)
assert Term([1, 2]) == Term([2, 1])
assert hash(Term([1, 2])) == hash(Term([2, 1]))
f1 = _MockFactor("a")
f2 = _MockFactor("b")
assert Term([f1, f2]).name() == "a:b"
assert Term([f2, f1]).name() == "b:a"
assert Term([]).name() == "Intercept"
assert_no_pickling(Term([]))
class ModelDesc(object):
"""A simple container representing the termlists parsed from a formula.
This is a simple container object which has exactly the same
representational power as a formula string, but is a Python object
instead. You can construct one by hand, and pass it to functions like
:func:`dmatrix` or :func:`incr_dbuilder` that are expecting a formula
string, but without having to do any messy string manipulation. For
details see :ref:`expert-model-specification`.
Attributes:
.. attribute:: lhs_termlist
rhs_termlist
Two termlists representing the left- and right-hand sides of a
formula, suitable for passing to :func:`design_matrix_builders`.
"""
def __init__(self, lhs_termlist, rhs_termlist):
self.lhs_termlist = uniqueify_list(lhs_termlist)
self.rhs_termlist = uniqueify_list(rhs_termlist)
__repr__ = repr_pretty_delegate
def _repr_pretty_(self, p, cycle):
assert not cycle
return repr_pretty_impl(p, self,
[],
[("lhs_termlist", self.lhs_termlist),
("rhs_termlist", self.rhs_termlist)])
def describe(self):
"""Returns a human-readable representation of this :class:`ModelDesc`
in pseudo-formula notation.
.. warning:: There is no guarantee that the strings returned by this
function can be parsed as formulas. They are best-effort
descriptions intended for human users. However, if this ModelDesc
was created by parsing a formula, then it should work in
practice. If you *really* have to.
"""
def term_code(term):
if term == INTERCEPT:
return "1"
else:
return term.name()
result = " + ".join([term_code(term) for term in self.lhs_termlist])
if result:
result += " ~ "
else:
result += "~ "
if self.rhs_termlist == [INTERCEPT]:
result += term_code(INTERCEPT)
else:
term_names = []
if INTERCEPT not in self.rhs_termlist:
term_names.append("0")
term_names += [term_code(term) for term in self.rhs_termlist
if term != INTERCEPT]
result += " + ".join(term_names)
return result
@classmethod
def from_formula(cls, tree_or_string):
"""Construct a :class:`ModelDesc` from a formula string.
:arg tree_or_string: A formula string. (Or an unevaluated formula
parse tree, but the API for generating those isn't public yet. Shh,
it can be our secret.)
:returns: A new :class:`ModelDesc`.
"""
if isinstance(tree_or_string, ParseNode):
tree = tree_or_string
else:
tree = parse_formula(tree_or_string)
value = Evaluator().eval(tree, require_evalexpr=False)
assert isinstance(value, cls)
return value
__getstate__ = no_pickling
def test_ModelDesc():
f1 = _MockFactor("a")
f2 = _MockFactor("b")
m = ModelDesc([INTERCEPT, Term([f1])], [Term([f1]), Term([f1, f2])])
assert m.lhs_termlist == [INTERCEPT, Term([f1])]
assert m.rhs_termlist == [Term([f1]), Term([f1, f2])]
print(m.describe())
assert m.describe() == "1 + a ~ 0 + a + a:b"
assert_no_pickling(m)
assert ModelDesc([], []).describe() == "~ 0"
assert ModelDesc([INTERCEPT], []).describe() == "1 ~ 0"
assert ModelDesc([INTERCEPT], [INTERCEPT]).describe() == "1 ~ 1"
assert (ModelDesc([INTERCEPT], [INTERCEPT, Term([f2])]).describe()
== "1 ~ b")
def test_ModelDesc_from_formula():
for input in ("y ~ x", parse_formula("y ~ x")):
md = ModelDesc.from_formula(input)
assert md.lhs_termlist == [Term([EvalFactor("y")]),]
assert md.rhs_termlist == [INTERCEPT, Term([EvalFactor("x")])]
class IntermediateExpr(object):
"This class holds an intermediate result while we're evaluating a tree."
def __init__(self, intercept, intercept_origin, intercept_removed, terms):
self.intercept = intercept
self.intercept_origin = intercept_origin
self.intercept_removed =intercept_removed
self.terms = tuple(uniqueify_list(terms))
if self.intercept:
assert self.intercept_origin
assert not (self.intercept and self.intercept_removed)
__repr__ = repr_pretty_delegate
def _pretty_repr_(self, p, cycle): # pragma: no cover
assert not cycle
return repr_pretty_impl(p, self,
[self.intercept, self.intercept_origin,
self.intercept_removed, self.terms])
__getstate__ = no_pickling
def _maybe_add_intercept(doit, terms):
if doit:
return (INTERCEPT,) + terms
else:
return terms
def _eval_any_tilde(evaluator, tree):
exprs = [evaluator.eval(arg) for arg in tree.args]
if len(exprs) == 1:
# Formula was like: "~ foo"
# We pretend that instead it was like: "0 ~ foo"
exprs.insert(0, IntermediateExpr(False, None, True, []))
assert len(exprs) == 2
# Note that only the RHS gets an implicit intercept:
return ModelDesc(_maybe_add_intercept(exprs[0].intercept, exprs[0].terms),
_maybe_add_intercept(not exprs[1].intercept_removed,
exprs[1].terms))
def _eval_binary_plus(evaluator, tree):
left_expr = evaluator.eval(tree.args[0])
if tree.args[1].type == "ZERO":
return IntermediateExpr(False, None, True, left_expr.terms)
else:
right_expr = evaluator.eval(tree.args[1])
if right_expr.intercept:
return IntermediateExpr(True, right_expr.intercept_origin, False,
left_expr.terms + right_expr.terms)
else:
return IntermediateExpr(left_expr.intercept,
left_expr.intercept_origin,
left_expr.intercept_removed,
left_expr.terms + right_expr.terms)
def _eval_binary_minus(evaluator, tree):
left_expr = evaluator.eval(tree.args[0])
if tree.args[1].type == "ZERO":
return IntermediateExpr(True, tree.args[1], False,
left_expr.terms)
elif tree.args[1].type == "ONE":
return IntermediateExpr(False, None, True, left_expr.terms)
else:
right_expr = evaluator.eval(tree.args[1])
terms = [term for term in left_expr.terms
if term not in right_expr.terms]
if right_expr.intercept:
return IntermediateExpr(False, None, True, terms)
else:
return IntermediateExpr(left_expr.intercept,
left_expr.intercept_origin,
left_expr.intercept_removed,
terms)
def _check_interactable(expr):
if expr.intercept:
raise PatsyError("intercept term cannot interact with "
"anything else", expr.intercept_origin)
def _interaction(left_expr, right_expr):
for expr in (left_expr, right_expr):
_check_interactable(expr)
terms = []
for l_term in left_expr.terms:
for r_term in right_expr.terms:
terms.append(Term(l_term.factors + r_term.factors))
return IntermediateExpr(False, None, False, terms)
def _eval_binary_prod(evaluator, tree):
exprs = [evaluator.eval(arg) for arg in tree.args]
return IntermediateExpr(False, None, False,
exprs[0].terms
+ exprs[1].terms
+ _interaction(*exprs).terms)
# Division (nesting) is right-ward distributive:
# a / (b + c) -> a/b + a/c -> a + a:b + a:c
# But left-ward, in S/R it has a quirky behavior:
# (a + b)/c -> a + b + a:b:c
# This is because it's meaningless for a factor to be "nested" under two
# different factors. (This is documented in Chambers and Hastie (page 30) as a
# "Slightly more subtle..." rule, with no further elaboration. Hopefully we
# will do better.)
def _eval_binary_div(evaluator, tree):
left_expr = evaluator.eval(tree.args[0])
right_expr = evaluator.eval(tree.args[1])
terms = list(left_expr.terms)
_check_interactable(left_expr)
# Build a single giant combined term for everything on the left:
left_factors = []
for term in left_expr.terms:
left_factors += list(term.factors)
left_combined_expr = IntermediateExpr(False, None, False,
[Term(left_factors)])
# Then interact it with everything on the right:
terms += list(_interaction(left_combined_expr, right_expr).terms)
return IntermediateExpr(False, None, False, terms)
def _eval_binary_interact(evaluator, tree):
exprs = [evaluator.eval(arg) for arg in tree.args]
return _interaction(*exprs)
def _eval_binary_power(evaluator, tree):
left_expr = evaluator.eval(tree.args[0])
_check_interactable(left_expr)
power = -1
if tree.args[1].type in ("ONE", "NUMBER"):
expr = tree.args[1].token.extra
try:
power = int(expr)
except ValueError:
pass
if power < 1:
raise PatsyError("'**' requires a positive integer", tree.args[1])
all_terms = left_expr.terms
big_expr = left_expr
# Small optimization: (a + b)**100 is just the same as (a + b)**2.
power = min(len(left_expr.terms), power)
for i in range(1, power):
big_expr = _interaction(left_expr, big_expr)
all_terms = all_terms + big_expr.terms
return IntermediateExpr(False, None, False, all_terms)
def _eval_unary_plus(evaluator, tree):
return evaluator.eval(tree.args[0])
def _eval_unary_minus(evaluator, tree):
if tree.args[0].type == "ZERO":
return IntermediateExpr(True, tree.origin, False, [])
elif tree.args[0].type == "ONE":
return IntermediateExpr(False, None, True, [])
else:
raise PatsyError("Unary minus can only be applied to 1 or 0", tree)
def _eval_zero(evaluator, tree):
return IntermediateExpr(False, None, True, [])
def _eval_one(evaluator, tree):
return IntermediateExpr(True, tree.origin, False, [])
def _eval_number(evaluator, tree):
raise PatsyError("numbers besides '0' and '1' are "
"only allowed with **", tree)
def _eval_python_expr(evaluator, tree):
factor = EvalFactor(tree.token.extra, origin=tree.origin)
return IntermediateExpr(False, None, False, [Term([factor])])
class Evaluator(object):
def __init__(self):
self._evaluators = {}
self.add_op("~", 2, _eval_any_tilde)
self.add_op("~", 1, _eval_any_tilde)
self.add_op("+", 2, _eval_binary_plus)
self.add_op("-", 2, _eval_binary_minus)
self.add_op("*", 2, _eval_binary_prod)
self.add_op("/", 2, _eval_binary_div)
self.add_op(":", 2, _eval_binary_interact)
self.add_op("**", 2, _eval_binary_power)
self.add_op("+", 1, _eval_unary_plus)
self.add_op("-", 1, _eval_unary_minus)
self.add_op("ZERO", 0, _eval_zero)
self.add_op("ONE", 0, _eval_one)
self.add_op("NUMBER", 0, _eval_number)
self.add_op("PYTHON_EXPR", 0, _eval_python_expr)
# Not used by Patsy -- provided for the convenience of eventual
# user-defined operators.
self.stash = {}
# This should not be considered a public API yet (to use for actually
# adding new operator semantics) because I wrote in some of the relevant
# code sort of speculatively, but it isn't actually tested.
def add_op(self, op, arity, evaluator):
self._evaluators[op, arity] = evaluator
def eval(self, tree, require_evalexpr=True):
result = None
assert isinstance(tree, ParseNode)
key = (tree.type, len(tree.args))
if key not in self._evaluators:
raise PatsyError("I don't know how to evaluate this "
"'%s' operator" % (tree.type,),
tree.token)
result = self._evaluators[key](self, tree)
if require_evalexpr and not isinstance(result, IntermediateExpr):
if isinstance(result, ModelDesc):
raise PatsyError("~ can only be used once, and "
"only at the top level",
tree)
else:
raise PatsyError("custom operator returned an "
"object that I don't know how to "
"handle", tree)
return result
#############
_eval_tests = {
"": (True, []),
" ": (True, []),
" \n ": (True, []),
"a": (True, ["a"]),
"1": (True, []),
"0": (False, []),
"- 1": (False, []),
"- 0": (True, []),
"+ 1": (True, []),
"+ 0": (False, []),
"0 + 1": (True, []),
"1 + 0": (False, []),
"1 - 0": (True, []),
"0 - 1": (False, []),
"1 + a": (True, ["a"]),
"0 + a": (False, ["a"]),
"a - 1": (False, ["a"]),
"a - 0": (True, ["a"]),
"1 - a": (True, []),
"a + b": (True, ["a", "b"]),
"(a + b)": (True, ["a", "b"]),
"a + ((((b))))": (True, ["a", "b"]),
"a + ((((+b))))": (True, ["a", "b"]),
"a + ((((b - a))))": (True, ["a", "b"]),
"a + a + a": (True, ["a"]),
"a + (b - a)": (True, ["a", "b"]),
"a + np.log(a, base=10)": (True, ["a", "np.log(a, base=10)"]),
# Note different spacing:
"a + np.log(a, base=10) - np . log(a , base = 10)": (True, ["a"]),
"a + (I(b) + c)": (True, ["a", "I(b)", "c"]),
"a + I(b + c)": (True, ["a", "I(b + c)"]),
"a:b": (True, [("a", "b")]),
"a:b:a": (True, [("a", "b")]),
"a:(b + c)": (True, [("a", "b"), ("a", "c")]),
"(a + b):c": (True, [("a", "c"), ("b", "c")]),
"a:(b - c)": (True, [("a", "b")]),
"c + a:c + a:(b - c)": (True, ["c", ("a", "c"), ("a", "b")]),
"(a - b):c": (True, [("a", "c")]),
"b + b:c + (a - b):c": (True, ["b", ("b", "c"), ("a", "c")]),
"a:b - a:b": (True, []),
"a:b - b:a": (True, []),
"1 - (a + b)": (True, []),
"a + b - (a + b)": (True, []),
"a * b": (True, ["a", "b", ("a", "b")]),
"a * b * a": (True, ["a", "b", ("a", "b")]),
"a * (b + c)": (True, ["a", "b", "c", ("a", "b"), ("a", "c")]),
"(a + b) * c": (True, ["a", "b", "c", ("a", "c"), ("b", "c")]),
"a * (b - c)": (True, ["a", "b", ("a", "b")]),
"c + a:c + a * (b - c)": (True, ["c", ("a", "c"), "a", "b", ("a", "b")]),
"(a - b) * c": (True, ["a", "c", ("a", "c")]),
"b + b:c + (a - b) * c": (True, ["b", ("b", "c"), "a", "c", ("a", "c")]),
"a/b": (True, ["a", ("a", "b")]),
"(a + b)/c": (True, ["a", "b", ("a", "b", "c")]),
"b + b:c + (a - b)/c": (True, ["b", ("b", "c"), "a", ("a", "c")]),
"a/(b + c)": (True, ["a", ("a", "b"), ("a", "c")]),
"a ** 2": (True, ["a"]),
"(a + b + c + d) ** 2": (True, ["a", "b", "c", "d",
("a", "b"), ("a", "c"), ("a", "d"),
("b", "c"), ("b", "d"), ("c", "d")]),
"(a + b + c + d) ** 3": (True, ["a", "b", "c", "d",
("a", "b"), ("a", "c"), ("a", "d"),
("b", "c"), ("b", "d"), ("c", "d"),
("a", "b", "c"), ("a", "b", "d"),
("a", "c", "d"), ("b", "c", "d")]),
"a + +a": (True, ["a"]),
"~ a + b": (True, ["a", "b"]),
"~ a*b": (True, ["a", "b", ("a", "b")]),
"~ a*b + 0": (False, ["a", "b", ("a", "b")]),
"~ -1": (False, []),
"0 ~ a + b": (True, ["a", "b"]),
"1 ~ a + b": (True, [], True, ["a", "b"]),
"y ~ a + b": (False, ["y"], True, ["a", "b"]),
"0 + y ~ a + b": (False, ["y"], True, ["a", "b"]),
"0 + y * z ~ a + b": (False, ["y", "z", ("y", "z")], True, ["a", "b"]),
"-1 ~ 1": (False, [], True, []),
"1 + y ~ a + b": (True, ["y"], True, ["a", "b"]),
# Check precedence:
"a + b * c": (True, ["a", "b", "c", ("b", "c")]),
"a * b + c": (True, ["a", "b", ("a", "b"), "c"]),
"a * b - a": (True, ["b", ("a", "b")]),
"a + b / c": (True, ["a", "b", ("b", "c")]),
"a / b + c": (True, ["a", ("a", "b"), "c"]),
"a*b:c": (True, ["a", ("b", "c"), ("a", "b", "c")]),
"a:b*c": (True, [("a", "b"), "c", ("a", "b", "c")]),
# Intercept handling:
"~ 1 + 1 + 0 + 1": (True, []),
"~ 0 + 1 + 0": (False, []),
"~ 0 - 1 - 1 + 0 + 1": (True, []),
"~ 1 - 1": (False, []),
"~ 0 + a + 1": (True, ["a"]),
"~ 1 + (a + 0)": (True, ["a"]), # This is correct, but perhaps surprising!
"~ 0 + (a + 1)": (True, ["a"]), # Also correct!
"~ 1 - (a + 1)": (False, []),
}
# <> mark off where the error should be reported:
_eval_error_tests = [
"a <+>",
"a + <(>",
"b + <(-a)>",
"a:<1>",
"(a + <1>)*b",
"a + <2>",
"a + <1.0>",
# eh, catching this is a hassle, we'll just leave the user some rope if
# they really want it:
#"a + <0x1>",
"a ** <b>",
"a ** <(1 + 1)>",
"a ** <1.5>",
"a + b <# asdf>",
"<)>",
"a + <)>",
"<*> a",
"a + <*>",
"a + <foo[bar>",
"a + <foo{bar>",
"a + <foo(bar>",
"a + <[bar>",
"a + <{bar>",
"a + <{bar[]>",
"a + foo<]>bar",
"a + foo[]<]>bar",
"a + foo{}<}>bar",
"a + foo<)>bar",
"a + b<)>",
"(a) <.>",
"<(>a + b",
"<y ~ a> ~ b",
"y ~ <(a ~ b)>",
"<~ a> ~ b",
"~ <(a ~ b)>",
"1 + <-(a + b)>",
"<- a>",
"a + <-a**2>",
]
def _assert_terms_match(terms, expected_intercept, expecteds): # pragma: no cover
if expected_intercept:
expecteds = [()] + expecteds
assert len(terms) == len(expecteds)
for term, expected in zip(terms, expecteds):
if isinstance(term, Term):
if isinstance(expected, str):
expected = (expected,)
assert term.factors == tuple([EvalFactor(s) for s in expected])
else:
assert term == expected
def _do_eval_formula_tests(tests): # pragma: no cover
for code, result in six.iteritems(tests):
if len(result) == 2:
result = (False, []) + result
model_desc = ModelDesc.from_formula(code)
print(repr(code))
print(result)
print(model_desc)
lhs_intercept, lhs_termlist, rhs_intercept, rhs_termlist = result
_assert_terms_match(model_desc.lhs_termlist,
lhs_intercept, lhs_termlist)
_assert_terms_match(model_desc.rhs_termlist,
rhs_intercept, rhs_termlist)
def test_eval_formula():
_do_eval_formula_tests(_eval_tests)
def test_eval_formula_error_reporting():
from patsy.parse_formula import _parsing_error_test
parse_fn = lambda formula: ModelDesc.from_formula(formula)
_parsing_error_test(parse_fn, _eval_error_tests)
def test_formula_factor_origin():
from patsy.origin import Origin
desc = ModelDesc.from_formula("a + b")
assert (desc.rhs_termlist[1].factors[0].origin
== Origin("a + b", 0, 1))
assert (desc.rhs_termlist[2].factors[0].origin
== Origin("a + b", 4, 5))
|