/usr/lib/python2.7/dist-packages/patsy/splines.py is in python-patsy 0.4.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 | # This file is part of Patsy
# Copyright (C) 2012-2013 Nathaniel Smith <njs@pobox.com>
# See file LICENSE.txt for license information.
# R-compatible spline basis functions
# These are made available in the patsy.* namespace
__all__ = ["bs"]
import numpy as np
from patsy.util import have_pandas, no_pickling, assert_no_pickling
from patsy.state import stateful_transform
if have_pandas:
import pandas
def _eval_bspline_basis(x, knots, degree):
try:
from scipy.interpolate import splev
except ImportError: # pragma: no cover
raise ImportError("spline functionality requires scipy")
# 'knots' are assumed to be already pre-processed. E.g. usually you
# want to include duplicate copies of boundary knots; you should do
# that *before* calling this constructor.
knots = np.atleast_1d(np.asarray(knots, dtype=float))
assert knots.ndim == 1
knots.sort()
degree = int(degree)
x = np.atleast_1d(x)
if x.ndim == 2 and x.shape[1] == 1:
x = x[:, 0]
assert x.ndim == 1
# XX FIXME: when points fall outside of the boundaries, splev and R seem
# to handle them differently. I don't know why yet. So until we understand
# this and decide what to do with it, I'm going to play it safe and
# disallow such points.
if np.min(x) < np.min(knots) or np.max(x) > np.max(knots):
raise NotImplementedError("some data points fall outside the "
"outermost knots, and I'm not sure how "
"to handle them. (Patches accepted!)")
# Thanks to Charles Harris for explaining splev. It's not well
# documented, but basically it computes an arbitrary b-spline basis
# given knots and degree on some specificed points (or derivatives
# thereof, but we don't use that functionality), and then returns some
# linear combination of these basis functions. To get out the basis
# functions themselves, we use linear combinations like [1, 0, 0], [0,
# 1, 0], [0, 0, 1].
# NB: This probably makes it rather inefficient (though I haven't checked
# to be sure -- maybe the fortran code actually skips computing the basis
# function for coefficients that are zero).
# Note: the order of a spline is the same as its degree + 1.
# Note: there are (len(knots) - order) basis functions.
n_bases = len(knots) - (degree + 1)
basis = np.empty((x.shape[0], n_bases), dtype=float)
for i in range(n_bases):
coefs = np.zeros((n_bases,))
coefs[i] = 1
basis[:, i] = splev(x, (knots, coefs, degree))
return basis
def _R_compat_quantile(x, probs):
#return np.percentile(x, 100 * np.asarray(probs))
probs = np.asarray(probs)
quantiles = np.asarray([np.percentile(x, 100 * prob)
for prob in probs.ravel(order="C")])
return quantiles.reshape(probs.shape, order="C")
def test__R_compat_quantile():
def t(x, prob, expected):
assert np.allclose(_R_compat_quantile(x, prob), expected)
t([10, 20], 0.5, 15)
t([10, 20], 0.3, 13)
t([10, 20], [0.3, 0.7], [13, 17])
t(list(range(10)), [0.3, 0.7], [2.7, 6.3])
class BS(object):
"""bs(x, df=None, knots=None, degree=3, include_intercept=False, lower_bound=None, upper_bound=None)
Generates a B-spline basis for ``x``, allowing non-linear fits. The usual
usage is something like::
y ~ 1 + bs(x, 4)
to fit ``y`` as a smooth function of ``x``, with 4 degrees of freedom
given to the smooth.
:arg df: The number of degrees of freedom to use for this spline. The
return value will have this many columns. You must specify at least one
of ``df`` and ``knots``.
:arg knots: The interior knots to use for the spline. If unspecified, then
equally spaced quantiles of the input data are used. You must specify at
least one of ``df`` and ``knots``.
:arg degree: The degree of the spline to use.
:arg include_intercept: If ``True``, then the resulting
spline basis will span the intercept term (i.e., the constant
function). If ``False`` (the default) then this will not be the case,
which is useful for avoiding overspecification in models that include
multiple spline terms and/or an intercept term.
:arg lower_bound: The lower exterior knot location.
:arg upper_bound: The upper exterior knot location.
A spline with ``degree=0`` is piecewise constant with breakpoints at each
knot, and the default knot positions are quantiles of the input. So if you
find yourself in the situation of wanting to quantize a continuous
variable into ``num_bins`` equal-sized bins with a constant effect across
each bin, you can use ``bs(x, num_bins - 1, degree=0)``. (The ``- 1`` is
because one degree of freedom will be taken by the intercept;
alternatively, you could leave the intercept term out of your model and
use ``bs(x, num_bins, degree=0, include_intercept=True)``.
A spline with ``degree=1`` is piecewise linear with breakpoints at each
knot.
The default is ``degree=3``, which gives a cubic b-spline.
This is a stateful transform (for details see
:ref:`stateful-transforms`). If ``knots``, ``lower_bound``, or
``upper_bound`` are not specified, they will be calculated from the data
and then the chosen values will be remembered and re-used for prediction
from the fitted model.
Using this function requires scipy be installed.
.. note:: This function is very similar to the R function of the same
name. In cases where both return output at all (e.g., R's ``bs`` will
raise an error if ``degree=0``, while patsy's will not), they should
produce identical output given identical input and parameter settings.
.. warning:: I'm not sure on what the proper handling of points outside
the lower/upper bounds is, so for now attempting to evaluate a spline
basis at such points produces an error. Patches gratefully accepted.
.. versionadded:: 0.2.0
"""
def __init__(self):
self._tmp = {}
self._degree = None
self._all_knots = None
def memorize_chunk(self, x, df=None, knots=None, degree=3,
include_intercept=False,
lower_bound=None, upper_bound=None):
args = {"df": df,
"knots": knots,
"degree": degree,
"include_intercept": include_intercept,
"lower_bound": lower_bound,
"upper_bound": upper_bound,
}
self._tmp["args"] = args
# XX: check whether we need x values before saving them
x = np.atleast_1d(x)
if x.ndim == 2 and x.shape[1] == 1:
x = x[:, 0]
if x.ndim > 1:
raise ValueError("input to 'bs' must be 1-d, "
"or a 2-d column vector")
# There's no better way to compute exact quantiles than memorizing
# all data.
self._tmp.setdefault("xs", []).append(x)
def memorize_finish(self):
tmp = self._tmp
args = tmp["args"]
del self._tmp
if args["degree"] < 0:
raise ValueError("degree must be greater than 0 (not %r)"
% (args["degree"],))
if int(args["degree"]) != args["degree"]:
raise ValueError("degree must be an integer (not %r)"
% (self._degree,))
# These are guaranteed to all be 1d vectors by the code above
x = np.concatenate(tmp["xs"])
if args["df"] is None and args["knots"] is None:
raise ValueError("must specify either df or knots")
order = args["degree"] + 1
if args["df"] is not None:
n_inner_knots = args["df"] - order
if not args["include_intercept"]:
n_inner_knots += 1
if n_inner_knots < 0:
raise ValueError("df=%r is too small for degree=%r and "
"include_intercept=%r; must be >= %s"
% (args["df"], args["degree"],
args["include_intercept"],
# We know that n_inner_knots is negative;
# if df were that much larger, it would
# have been zero, and things would work.
args["df"] - n_inner_knots))
if args["knots"] is not None:
if len(args["knots"]) != n_inner_knots:
raise ValueError("df=%s with degree=%r implies %s knots, "
"but %s knots were provided"
% (args["df"], args["degree"],
n_inner_knots, len(args["knots"])))
else:
# Need to compute inner knots
knot_quantiles = np.linspace(0, 1, n_inner_knots + 2)[1:-1]
inner_knots = _R_compat_quantile(x, knot_quantiles)
if args["knots"] is not None:
inner_knots = args["knots"]
if args["lower_bound"] is not None:
lower_bound = args["lower_bound"]
else:
lower_bound = np.min(x)
if args["upper_bound"] is not None:
upper_bound = args["upper_bound"]
else:
upper_bound = np.max(x)
if lower_bound > upper_bound:
raise ValueError("lower_bound > upper_bound (%r > %r)"
% (lower_bound, upper_bound))
inner_knots = np.asarray(inner_knots)
if inner_knots.ndim > 1:
raise ValueError("knots must be 1 dimensional")
if np.any(inner_knots < lower_bound):
raise ValueError("some knot values (%s) fall below lower bound "
"(%r)"
% (inner_knots[inner_knots < lower_bound],
lower_bound))
if np.any(inner_knots > upper_bound):
raise ValueError("some knot values (%s) fall above upper bound "
"(%r)"
% (inner_knots[inner_knots > upper_bound],
upper_bound))
all_knots = np.concatenate(([lower_bound, upper_bound] * order,
inner_knots))
all_knots.sort()
self._degree = args["degree"]
self._all_knots = all_knots
def transform(self, x, df=None, knots=None, degree=3,
include_intercept=False,
lower_bound=None, upper_bound=None):
basis = _eval_bspline_basis(x, self._all_knots, self._degree)
if not include_intercept:
basis = basis[:, 1:]
if have_pandas:
if isinstance(x, (pandas.Series, pandas.DataFrame)):
basis = pandas.DataFrame(basis)
basis.index = x.index
return basis
__getstate__ = no_pickling
bs = stateful_transform(BS)
def test_bs_compat():
from patsy.test_state import check_stateful
from patsy.test_splines_bs_data import (R_bs_test_x,
R_bs_test_data,
R_bs_num_tests)
lines = R_bs_test_data.split("\n")
tests_ran = 0
start_idx = lines.index("--BEGIN TEST CASE--")
while True:
if not lines[start_idx] == "--BEGIN TEST CASE--":
break
start_idx += 1
stop_idx = lines.index("--END TEST CASE--", start_idx)
block = lines[start_idx:stop_idx]
test_data = {}
for line in block:
key, value = line.split("=", 1)
test_data[key] = value
# Translate the R output into Python calling conventions
kwargs = {
"degree": int(test_data["degree"]),
# integer, or None
"df": eval(test_data["df"]),
# np.array() call, or None
"knots": eval(test_data["knots"]),
}
if test_data["Boundary.knots"] != "None":
lower, upper = eval(test_data["Boundary.knots"])
kwargs["lower_bound"] = lower
kwargs["upper_bound"] = upper
kwargs["include_intercept"] = (test_data["intercept"] == "TRUE")
# Special case: in R, setting intercept=TRUE increases the effective
# dof by 1. Adjust our arguments to match.
# if kwargs["df"] is not None and kwargs["include_intercept"]:
# kwargs["df"] += 1
output = np.asarray(eval(test_data["output"]))
if kwargs["df"] is not None:
assert output.shape[1] == kwargs["df"]
# Do the actual test
check_stateful(BS, False, R_bs_test_x, output, **kwargs)
tests_ran += 1
# Set up for the next one
start_idx = stop_idx + 1
assert tests_ran == R_bs_num_tests
test_bs_compat.slow = 1
# This isn't checked by the above, because R doesn't have zero degree
# b-splines.
def test_bs_0degree():
x = np.logspace(-1, 1, 10)
result = bs(x, knots=[1, 4], degree=0, include_intercept=True)
assert result.shape[1] == 3
expected_0 = np.zeros(10)
expected_0[x < 1] = 1
assert np.array_equal(result[:, 0], expected_0)
expected_1 = np.zeros(10)
expected_1[(x >= 1) & (x < 4)] = 1
assert np.array_equal(result[:, 1], expected_1)
expected_2 = np.zeros(10)
expected_2[x >= 4] = 1
assert np.array_equal(result[:, 2], expected_2)
# Check handling of points that exactly fall on knots. They arbitrarily
# get included into the larger region, not the smaller. This is consistent
# with Python's half-open interval convention -- each basis function is
# constant on [knot[i], knot[i + 1]).
assert np.array_equal(bs([0, 1, 2], degree=0, knots=[1],
include_intercept=True),
[[1, 0],
[0, 1],
[0, 1]])
result_int = bs(x, knots=[1, 4], degree=0, include_intercept=True)
result_no_int = bs(x, knots=[1, 4], degree=0, include_intercept=False)
assert np.array_equal(result_int[:, 1:], result_no_int)
def test_bs_errors():
from nose.tools import assert_raises
x = np.linspace(-10, 10, 20)
# error checks:
# out of bounds
assert_raises(NotImplementedError, bs, x, 3, lower_bound=0)
assert_raises(NotImplementedError, bs, x, 3, upper_bound=0)
# must specify df or knots
assert_raises(ValueError, bs, x)
# df/knots match/mismatch (with and without intercept)
# match:
bs(x, df=10, include_intercept=False, knots=[0] * 7)
bs(x, df=10, include_intercept=True, knots=[0] * 6)
bs(x, df=10, include_intercept=False, knots=[0] * 9, degree=1)
bs(x, df=10, include_intercept=True, knots=[0] * 8, degree=1)
# too many knots:
assert_raises(ValueError,
bs, x, df=10, include_intercept=False, knots=[0] * 8)
assert_raises(ValueError,
bs, x, df=10, include_intercept=True, knots=[0] * 7)
assert_raises(ValueError,
bs, x, df=10, include_intercept=False, knots=[0] * 10,
degree=1)
assert_raises(ValueError,
bs, x, df=10, include_intercept=True, knots=[0] * 9,
degree=1)
# too few knots:
assert_raises(ValueError,
bs, x, df=10, include_intercept=False, knots=[0] * 6)
assert_raises(ValueError,
bs, x, df=10, include_intercept=True, knots=[0] * 5)
assert_raises(ValueError,
bs, x, df=10, include_intercept=False, knots=[0] * 8,
degree=1)
assert_raises(ValueError,
bs, x, df=10, include_intercept=True, knots=[0] * 7,
degree=1)
# df too small
assert_raises(ValueError,
bs, x, df=1, degree=3)
assert_raises(ValueError,
bs, x, df=3, degree=5)
# bad degree
assert_raises(ValueError,
bs, x, df=10, degree=-1)
assert_raises(ValueError,
bs, x, df=10, degree=1.5)
# upper_bound < lower_bound
assert_raises(ValueError,
bs, x, 3, lower_bound=1, upper_bound=-1)
# multidimensional input
assert_raises(ValueError,
bs, np.column_stack((x, x)), 3)
# unsorted knots are okay, and get sorted
assert np.array_equal(bs(x, knots=[1, 4]), bs(x, knots=[4, 1]))
# 2d knots
assert_raises(ValueError,
bs, x, knots=[[0], [20]])
# knots > upper_bound
assert_raises(ValueError,
bs, x, knots=[0, 20])
assert_raises(ValueError,
bs, x, knots=[0, 4], upper_bound=3)
# knots < lower_bound
assert_raises(ValueError,
bs, x, knots=[-20, 0])
assert_raises(ValueError,
bs, x, knots=[-4, 0], lower_bound=-3)
# differences between bs and ns (since the R code is a pile of copy-paste):
# - degree is always 3
# - different number of interior knots given df (b/c fewer dof used at edges I
# guess)
# - boundary knots always repeated exactly 4 times (same as bs with degree=3)
# - complications at the end to handle boundary conditions
# the 'rcs' function uses slightly different conventions -- in particular it
# picks boundary knots that are not quite at the edges of the data, which
# makes sense for a natural spline.
|