/usr/lib/python2.7/dist-packages/patsy/util.py is in python-patsy 0.4.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 | # This file is part of Patsy
# Copyright (C) 2011-2013 Nathaniel Smith <njs@pobox.com>
# See file LICENSE.txt for license information.
# Some generic utilities.
__all__ = ["atleast_2d_column_default", "uniqueify_list",
"widest_float", "widest_complex", "wide_dtype_for", "widen",
"repr_pretty_delegate", "repr_pretty_impl",
"SortAnythingKey", "safe_scalar_isnan", "safe_isnan",
"iterable",
"have_pandas",
"have_pandas_categorical",
"have_pandas_categorical_dtype",
"pandas_Categorical_from_codes",
"pandas_Categorical_categories",
"pandas_Categorical_codes",
"safe_is_pandas_categorical_dtype",
"safe_is_pandas_categorical",
"safe_issubdtype",
"no_pickling",
"assert_no_pickling",
"safe_string_eq",
]
import sys
import numpy as np
import six
from six.moves import cStringIO as StringIO
from .compat import optional_dep_ok
try:
import pandas
except ImportError:
have_pandas = False
else:
have_pandas = True
# Pandas versions < 0.9.0 don't have Categorical
# Can drop this guard whenever we drop support for such older versions of
# pandas.
have_pandas_categorical = (have_pandas and hasattr(pandas, "Categorical"))
have_pandas_categorical_dtype = (have_pandas
and hasattr(pandas.core.common,
"is_categorical_dtype"))
# Passes through Series and DataFrames, call np.asarray() on everything else
def asarray_or_pandas(a, copy=False, dtype=None, subok=False):
if have_pandas:
if isinstance(a, (pandas.Series, pandas.DataFrame)):
# The .name attribute on Series is discarded when passing through
# the constructor:
# https://github.com/pydata/pandas/issues/1578
extra_args = {}
if hasattr(a, "name"):
extra_args["name"] = a.name
return a.__class__(a, copy=copy, dtype=dtype, **extra_args)
return np.array(a, copy=copy, dtype=dtype, subok=subok)
def test_asarray_or_pandas():
assert type(asarray_or_pandas([1, 2, 3])) is np.ndarray
assert type(asarray_or_pandas(np.matrix([[1, 2, 3]]))) is np.ndarray
assert type(asarray_or_pandas(np.matrix([[1, 2, 3]]), subok=True)) is np.matrix
a = np.array([1, 2, 3])
assert asarray_or_pandas(a) is a
a_copy = asarray_or_pandas(a, copy=True)
assert np.array_equal(a, a_copy)
a_copy[0] = 100
assert not np.array_equal(a, a_copy)
assert np.allclose(asarray_or_pandas([1, 2, 3], dtype=float),
[1.0, 2.0, 3.0])
assert asarray_or_pandas([1, 2, 3], dtype=float).dtype == np.dtype(float)
a_view = asarray_or_pandas(a, dtype=a.dtype)
a_view[0] = 99
assert a[0] == 99
global have_pandas
if have_pandas:
s = pandas.Series([1, 2, 3], name="A", index=[10, 20, 30])
s_view1 = asarray_or_pandas(s)
assert s_view1.name == "A"
assert np.array_equal(s_view1.index, [10, 20, 30])
s_view1[10] = 101
assert s[10] == 101
s_copy = asarray_or_pandas(s, copy=True)
assert s_copy.name == "A"
assert np.array_equal(s_copy.index, [10, 20, 30])
assert np.array_equal(s_copy, s)
s_copy[10] = 100
assert not np.array_equal(s_copy, s)
assert asarray_or_pandas(s, dtype=float).dtype == np.dtype(float)
s_view2 = asarray_or_pandas(s, dtype=s.dtype)
assert s_view2.name == "A"
assert np.array_equal(s_view2.index, [10, 20, 30])
s_view2[10] = 99
assert s[10] == 99
df = pandas.DataFrame([[1, 2, 3]],
columns=["A", "B", "C"],
index=[10])
df_view1 = asarray_or_pandas(df)
df_view1.ix[10, "A"] = 101
assert np.array_equal(df_view1.columns, ["A", "B", "C"])
assert np.array_equal(df_view1.index, [10])
assert df.ix[10, "A"] == 101
df_copy = asarray_or_pandas(df, copy=True)
assert np.array_equal(df_copy, df)
assert np.array_equal(df_copy.columns, ["A", "B", "C"])
assert np.array_equal(df_copy.index, [10])
df_copy.ix[10, "A"] = 100
assert not np.array_equal(df_copy, df)
df_converted = asarray_or_pandas(df, dtype=float)
assert df_converted["A"].dtype == np.dtype(float)
assert np.allclose(df_converted, df)
assert np.array_equal(df_converted.columns, ["A", "B", "C"])
assert np.array_equal(df_converted.index, [10])
df_view2 = asarray_or_pandas(df, dtype=df["A"].dtype)
assert np.array_equal(df_view2.columns, ["A", "B", "C"])
assert np.array_equal(df_view2.index, [10])
# This actually makes a copy, not a view, because of a pandas bug:
# https://github.com/pydata/pandas/issues/1572
assert np.array_equal(df, df_view2)
# df_view2[0][0] = 99
# assert df[0][0] == 99
had_pandas = have_pandas
try:
have_pandas = False
assert (type(asarray_or_pandas(pandas.Series([1, 2, 3])))
is np.ndarray)
assert (type(asarray_or_pandas(pandas.DataFrame([[1, 2, 3]])))
is np.ndarray)
finally:
have_pandas = had_pandas
# Like np.atleast_2d, but this converts lower-dimensional arrays into columns,
# instead of rows. It also converts ndarray subclasses into basic ndarrays,
# which makes it easier to guarantee correctness. However, there are many
# places in the code where we want to preserve pandas indexing information if
# present, so there is also an option
def atleast_2d_column_default(a, preserve_pandas=False):
if preserve_pandas and have_pandas:
if isinstance(a, pandas.Series):
return pandas.DataFrame(a)
elif isinstance(a, pandas.DataFrame):
return a
# fall through
a = np.asarray(a)
a = np.atleast_1d(a)
if a.ndim <= 1:
a = a.reshape((-1, 1))
assert a.ndim >= 2
return a
def test_atleast_2d_column_default():
assert np.all(atleast_2d_column_default([1, 2, 3]) == [[1], [2], [3]])
assert atleast_2d_column_default(1).shape == (1, 1)
assert atleast_2d_column_default([1]).shape == (1, 1)
assert atleast_2d_column_default([[1]]).shape == (1, 1)
assert atleast_2d_column_default([[[1]]]).shape == (1, 1, 1)
assert atleast_2d_column_default([1, 2, 3]).shape == (3, 1)
assert atleast_2d_column_default([[1], [2], [3]]).shape == (3, 1)
assert type(atleast_2d_column_default(np.matrix(1))) == np.ndarray
global have_pandas
if have_pandas:
assert (type(atleast_2d_column_default(pandas.Series([1, 2])))
== np.ndarray)
assert (type(atleast_2d_column_default(pandas.DataFrame([[1], [2]])))
== np.ndarray)
assert (type(atleast_2d_column_default(pandas.Series([1, 2]),
preserve_pandas=True))
== pandas.DataFrame)
assert (type(atleast_2d_column_default(pandas.DataFrame([[1], [2]]),
preserve_pandas=True))
== pandas.DataFrame)
s = pandas.Series([10, 11,12], name="hi", index=["a", "b", "c"])
df = atleast_2d_column_default(s, preserve_pandas=True)
assert isinstance(df, pandas.DataFrame)
assert np.all(df.columns == ["hi"])
assert np.all(df.index == ["a", "b", "c"])
assert (type(atleast_2d_column_default(np.matrix(1),
preserve_pandas=True))
== np.ndarray)
assert (type(atleast_2d_column_default([1, 2, 3],
preserve_pandas=True))
== np.ndarray)
if have_pandas:
had_pandas = have_pandas
try:
have_pandas = False
assert (type(atleast_2d_column_default(pandas.Series([1, 2]),
preserve_pandas=True))
== np.ndarray)
assert (type(atleast_2d_column_default(pandas.DataFrame([[1], [2]]),
preserve_pandas=True))
== np.ndarray)
finally:
have_pandas = had_pandas
# A version of .reshape() that knows how to down-convert a 1-column
# pandas.DataFrame into a pandas.Series. Useful for code that wants to be
# agnostic between 1d and 2d data, with the pattern:
# new_a = atleast_2d_column_default(a, preserve_pandas=True)
# # do stuff to new_a, which can assume it's always 2 dimensional
# return pandas_friendly_reshape(new_a, a.shape)
def pandas_friendly_reshape(a, new_shape):
if not have_pandas:
return a.reshape(new_shape)
if not isinstance(a, pandas.DataFrame):
return a.reshape(new_shape)
# we have a DataFrame. Only supported reshapes are no-op, and
# single-column DataFrame -> Series.
if new_shape == a.shape:
return a
if len(new_shape) == 1 and a.shape[1] == 1:
if new_shape[0] != a.shape[0]:
raise ValueError("arrays have incompatible sizes")
return a[a.columns[0]]
raise ValueError("cannot reshape a DataFrame with shape %s to shape %s"
% (a.shape, new_shape))
def test_pandas_friendly_reshape():
from nose.tools import assert_raises
global have_pandas
assert np.allclose(pandas_friendly_reshape(np.arange(10).reshape(5, 2),
(2, 5)),
np.arange(10).reshape(2, 5))
if have_pandas:
df = pandas.DataFrame({"x": [1, 2, 3]}, index=["a", "b", "c"])
noop = pandas_friendly_reshape(df, (3, 1))
assert isinstance(noop, pandas.DataFrame)
assert np.array_equal(noop.index, ["a", "b", "c"])
assert np.array_equal(noop.columns, ["x"])
squozen = pandas_friendly_reshape(df, (3,))
assert isinstance(squozen, pandas.Series)
assert np.array_equal(squozen.index, ["a", "b", "c"])
assert squozen.name == "x"
assert_raises(ValueError, pandas_friendly_reshape, df, (4,))
assert_raises(ValueError, pandas_friendly_reshape, df, (1, 3))
assert_raises(ValueError, pandas_friendly_reshape, df, (3, 3))
had_pandas = have_pandas
try:
have_pandas = False
# this will try to do a reshape directly, and DataFrames *have* no
# reshape method
assert_raises(AttributeError, pandas_friendly_reshape, df, (3,))
finally:
have_pandas = had_pandas
def uniqueify_list(seq):
seq_new = []
seen = set()
for obj in seq:
if obj not in seen:
seq_new.append(obj)
seen.add(obj)
return seq_new
def test_to_uniqueify_list():
assert uniqueify_list([1, 2, 3]) == [1, 2, 3]
assert uniqueify_list([1, 3, 3, 2, 3, 1]) == [1, 3, 2]
assert uniqueify_list([3, 2, 1, 4, 1, 2, 3]) == [3, 2, 1, 4]
for float_type in ("float128", "float96", "float64"):
if hasattr(np, float_type):
widest_float = getattr(np, float_type)
break
else: # pragma: no cover
assert False
for complex_type in ("complex256", "complex196", "complex128"):
if hasattr(np, complex_type):
widest_complex = getattr(np, complex_type)
break
else: # pragma: no cover
assert False
def wide_dtype_for(arr):
arr = np.asarray(arr)
if (safe_issubdtype(arr.dtype, np.integer)
or safe_issubdtype(arr.dtype, np.floating)):
return widest_float
elif safe_issubdtype(arr.dtype, np.complexfloating):
return widest_complex
raise ValueError("cannot widen a non-numeric type %r" % (arr.dtype,))
def widen(arr):
return np.asarray(arr, dtype=wide_dtype_for(arr))
def test_wide_dtype_for_and_widen():
assert np.allclose(widen([1, 2, 3]), [1, 2, 3])
assert widen([1, 2, 3]).dtype == widest_float
assert np.allclose(widen([1.0, 2.0, 3.0]), [1, 2, 3])
assert widen([1.0, 2.0, 3.0]).dtype == widest_float
assert np.allclose(widen([1+0j, 2, 3]), [1, 2, 3])
assert widen([1+0j, 2, 3]).dtype == widest_complex
from nose.tools import assert_raises
assert_raises(ValueError, widen, ["hi"])
class PushbackAdapter(object):
def __init__(self, it):
self._it = it
self._pushed = []
def __iter__(self):
return self
def push_back(self, obj):
self._pushed.append(obj)
def next(self):
if self._pushed:
return self._pushed.pop()
else:
# May raise StopIteration
return six.advance_iterator(self._it)
__next__ = next
def peek(self):
try:
obj = six.advance_iterator(self)
except StopIteration:
raise ValueError("no more data")
self.push_back(obj)
return obj
def has_more(self):
try:
self.peek()
except ValueError:
return False
else:
return True
def test_PushbackAdapter():
it = PushbackAdapter(iter([1, 2, 3, 4]))
assert it.has_more()
assert six.advance_iterator(it) == 1
it.push_back(0)
assert six.advance_iterator(it) == 0
assert six.advance_iterator(it) == 2
assert it.peek() == 3
it.push_back(10)
assert it.peek() == 10
it.push_back(20)
assert it.peek() == 20
assert it.has_more()
assert list(it) == [20, 10, 3, 4]
assert not it.has_more()
# The IPython pretty-printer gives very nice output that is difficult to get
# otherwise, e.g., look how much more readable this is than if it were all
# smooshed onto one line:
#
# ModelDesc(input_code='y ~ x*asdf',
# lhs_terms=[Term([EvalFactor('y')])],
# rhs_terms=[Term([]),
# Term([EvalFactor('x')]),
# Term([EvalFactor('asdf')]),
# Term([EvalFactor('x'), EvalFactor('asdf')])],
# )
#
# But, we don't want to assume it always exists; nor do we want to be
# re-writing every repr function twice, once for regular repr and once for
# the pretty printer. So, here's an ugly fallback implementation that can be
# used unconditionally to implement __repr__ in terms of _pretty_repr_.
#
# Pretty printer docs:
# http://ipython.org/ipython-doc/dev/api/generated/IPython.lib.pretty.html
class _MiniPPrinter(object):
def __init__(self):
self._out = StringIO()
self.indentation = 0
def text(self, text):
self._out.write(text)
def breakable(self, sep=" "):
self._out.write(sep)
def begin_group(self, _, text):
self.text(text)
def end_group(self, _, text):
self.text(text)
def pretty(self, obj):
if hasattr(obj, "_repr_pretty_"):
obj._repr_pretty_(self, False)
else:
self.text(repr(obj))
def getvalue(self):
return self._out.getvalue()
def _mini_pretty(obj):
printer = _MiniPPrinter()
printer.pretty(obj)
return printer.getvalue()
def repr_pretty_delegate(obj):
# If IPython is already loaded, then might as well use it. (Most commonly
# this will occur if we are in an IPython session, but somehow someone has
# called repr() directly. This can happen for example if printing an
# container like a namedtuple that IPython lacks special code for
# pretty-printing.) But, if IPython is not already imported, we do not
# attempt to import it. This makes patsy itself faster to import (as of
# Nov. 2012 I measured the extra overhead from loading IPython as ~4
# seconds on a cold cache), it prevents IPython from automatically
# spawning a bunch of child processes (!) which may not be what you want
# if you are not otherwise using IPython, and it avoids annoying the
# pandas people who have some hack to tell whether you are using IPython
# in their test suite (see patsy bug #12).
if optional_dep_ok and "IPython" in sys.modules:
from IPython.lib.pretty import pretty
return pretty(obj)
else:
return _mini_pretty(obj)
def repr_pretty_impl(p, obj, args, kwargs=[]):
name = obj.__class__.__name__
p.begin_group(len(name) + 1, "%s(" % (name,))
started = [False]
def new_item():
if started[0]:
p.text(",")
p.breakable()
started[0] = True
for arg in args:
new_item()
p.pretty(arg)
for label, value in kwargs:
new_item()
p.begin_group(len(label) + 1, "%s=" % (label,))
p.pretty(value)
p.end_group(len(label) + 1, "")
p.end_group(len(name) + 1, ")")
def test_repr_pretty():
assert repr_pretty_delegate("asdf") == "'asdf'"
printer = _MiniPPrinter()
class MyClass(object):
pass
repr_pretty_impl(printer, MyClass(),
["a", 1], [("foo", "bar"), ("asdf", "asdf")])
assert printer.getvalue() == "MyClass('a', 1, foo='bar', asdf='asdf')"
# In Python 3, objects of different types are not generally comparable, so a
# list of heterogenous types cannot be sorted. This implements a Python 2
# style comparison for arbitrary types. (It works on Python 2 too, but just
# gives you the built-in ordering.) To understand why this is tricky, consider
# this example:
# a = 1 # type 'int'
# b = 1.5 # type 'float'
# class gggg:
# pass
# c = gggg()
# sorted([a, b, c])
# The fallback ordering sorts by class name, so according to the fallback
# ordering, we have b < c < a. But, of course, a and b are comparable (even
# though they're of different types), so we also have a < b. This is
# inconsistent. There is no general solution to this problem (which I guess is
# why Python 3 stopped trying), but the worst offender is all the different
# "numeric" classes (int, float, complex, decimal, rational...), so as a
# special-case, we sort all numeric objects to the start of the list.
# (In Python 2, there is also a similar special case for str and unicode, but
# we don't have to worry about that for Python 3.)
class SortAnythingKey(object):
def __init__(self, obj):
self.obj = obj
def _python_lt(self, other_obj):
# On Py2, < never raises an error, so this is just <. (Actually it
# does raise a TypeError for comparing complex to numeric, but not for
# comparisons of complex to other types. Sigh. Whatever.)
# On Py3, this returns a bool if available, and otherwise returns
# NotImplemented
try:
return self.obj < other_obj
except TypeError:
return NotImplemented
def __lt__(self, other):
assert isinstance(other, SortAnythingKey)
result = self._python_lt(other.obj)
if result is not NotImplemented:
return result
# Okay, that didn't work, time to fall back.
# If one of these is a number, then it is smaller.
if self._python_lt(0) is not NotImplemented:
return True
if other._python_lt(0) is not NotImplemented:
return False
# Also check ==, since it may well be defined for otherwise
# unorderable objects, and if so then we should be consistent with
# it:
if self.obj == other.obj:
return False
# Otherwise, we break ties based on class name and memory position
return ((self.obj.__class__.__name__, id(self.obj))
< (other.obj.__class__.__name__, id(other.obj)))
def test_SortAnythingKey():
assert sorted([20, 10, 0, 15], key=SortAnythingKey) == [0, 10, 15, 20]
assert sorted([10, -1.5], key=SortAnythingKey) == [-1.5, 10]
assert sorted([10, "a", 20.5, "b"], key=SortAnythingKey) == [10, 20.5, "a", "b"]
class a(object):
pass
class b(object):
pass
class z(object):
pass
a_obj = a()
b_obj = b()
z_obj = z()
o_obj = object()
assert (sorted([z_obj, a_obj, 1, b_obj, o_obj], key=SortAnythingKey)
== [1, a_obj, b_obj, o_obj, z_obj])
# NaN checking functions that work on arbitrary objects, on old Python
# versions (math.isnan is only in 2.6+), etc.
def safe_scalar_isnan(x):
try:
return np.isnan(float(x))
except (TypeError, ValueError, NotImplementedError):
return False
safe_isnan = np.vectorize(safe_scalar_isnan, otypes=[bool])
def test_safe_scalar_isnan():
assert not safe_scalar_isnan(True)
assert not safe_scalar_isnan(None)
assert not safe_scalar_isnan("sadf")
assert not safe_scalar_isnan((1, 2, 3))
assert not safe_scalar_isnan(np.asarray([1, 2, 3]))
assert not safe_scalar_isnan([np.nan])
assert safe_scalar_isnan(np.nan)
assert safe_scalar_isnan(np.float32(np.nan))
assert safe_scalar_isnan(float(np.nan))
def test_safe_isnan():
assert np.array_equal(safe_isnan([1, True, None, np.nan, "asdf"]),
[False, False, False, True, False])
assert safe_isnan(np.nan).ndim == 0
assert safe_isnan(np.nan)
assert not safe_isnan(None)
# raw isnan raises a *different* error for strings than for objects:
assert not safe_isnan("asdf")
def iterable(obj):
try:
iter(obj)
except Exception:
return False
return True
def test_iterable():
assert iterable("asdf")
assert iterable([])
assert iterable({"a": 1})
assert not iterable(1)
assert not iterable(iterable)
##### Handling Pandas's categorical stuff is horrible and hateful
# Basically they decided that they didn't like how numpy does things, so their
# categorical stuff is *kinda* like how numpy would do it (e.g. they have a
# special ".dtype" attribute to mark categorical data), so by default you'll
# find yourself using the same code paths to handle pandas categorical data
# and other non-categorical data. BUT, all the idioms for detecting
# categorical data blow up with errors if you try them with real numpy dtypes,
# and all numpy's idioms for detecting non-categorical types blow up with
# errors if you try them with pandas categorical stuff. So basically they have
# just poisoned all code that touches dtypes; the old numpy stuff is unsafe,
# and you must use special code like below.
#
# Also there are hoops to jump through to handle both the old style
# (Categorical objects) and new-style (Series with dtype="category").
# Needed to support pandas < 0.15
def pandas_Categorical_from_codes(codes, categories):
assert have_pandas_categorical
# Old versions of pandas sometimes fail to coerce this to an array and
# just return it directly from .labels (?!).
codes = np.asarray(codes)
if hasattr(pandas.Categorical, "from_codes"):
return pandas.Categorical.from_codes(codes, categories)
else:
return pandas.Categorical(codes, categories)
def test_pandas_Categorical_from_codes():
c = pandas_Categorical_from_codes([1, 1, 0, -1], ["a", "b"])
assert np.all(np.asarray(c)[:-1] == ["b", "b", "a"])
assert np.isnan(np.asarray(c)[-1])
# Needed to support pandas < 0.15
def pandas_Categorical_categories(cat):
# In 0.15+, a categorical Series has a .cat attribute which is similar to
# a Categorical object, and Categorical objects are what have .categories
# and .codes attributes.
if hasattr(cat, "cat"):
cat = cat.cat
if hasattr(cat, "categories"):
return cat.categories
else:
return cat.levels
# Needed to support pandas < 0.15
def pandas_Categorical_codes(cat):
# In 0.15+, a categorical Series has a .cat attribute which is a
# Categorical object, and Categorical objects are what have .categories /
# .codes attributes.
if hasattr(cat, "cat"):
cat = cat.cat
if hasattr(cat, "codes"):
return cat.codes
else:
return cat.labels
def test_pandas_Categorical_accessors():
c = pandas_Categorical_from_codes([1, 1, 0, -1], ["a", "b"])
assert np.all(pandas_Categorical_categories(c) == ["a", "b"])
assert np.all(pandas_Categorical_codes(c) == [1, 1, 0, -1])
if have_pandas_categorical_dtype:
s = pandas.Series(c)
assert np.all(pandas_Categorical_categories(s) == ["a", "b"])
assert np.all(pandas_Categorical_codes(s) == [1, 1, 0, -1])
# Needed to support pandas >= 0.15 (!)
def safe_is_pandas_categorical_dtype(dt):
if not have_pandas_categorical_dtype:
return False
# WTF this incredibly crucial function is not even publically exported.
# Also if you read its source it uses a bare except: block which is broken
# by definition, but oh well there is not much I can do about this.
return pandas.core.common.is_categorical_dtype(dt)
# Needed to support pandas >= 0.15 (!)
def safe_is_pandas_categorical(data):
if not have_pandas_categorical:
return False
if isinstance(data, pandas.Categorical):
return True
if hasattr(data, "dtype"):
return safe_is_pandas_categorical_dtype(data.dtype)
return False
def test_safe_is_pandas_categorical():
assert not safe_is_pandas_categorical(np.arange(10))
if have_pandas_categorical:
c_obj = pandas.Categorical.from_array(["a", "b"])
assert safe_is_pandas_categorical(c_obj)
if have_pandas_categorical_dtype:
s_obj = pandas.Series(["a", "b"], dtype="category")
assert safe_is_pandas_categorical(s_obj)
# Needed to support pandas >= 0.15 (!)
# Calling np.issubdtype on a pandas categorical will blow up -- the officially
# recommended solution is to replace every piece of code like
# np.issubdtype(foo.dtype, bool)
# with code like
# isinstance(foo.dtype, np.dtype) and np.issubdtype(foo.dtype, bool)
# or
# not pandas.is_categorical_dtype(foo.dtype) and issubdtype(foo.dtype, bool)
# We do the latter (with extra hoops) because the isinstance check is not
# safe. See
# https://github.com/pydata/pandas/issues/9581
# https://github.com/pydata/pandas/issues/9581#issuecomment-77099564
def safe_issubdtype(dt1, dt2):
if safe_is_pandas_categorical_dtype(dt1):
return False
return np.issubdtype(dt1, dt2)
def test_safe_issubdtype():
assert safe_issubdtype(int, np.integer)
assert safe_issubdtype(np.dtype(float), np.floating)
assert not safe_issubdtype(int, np.floating)
assert not safe_issubdtype(np.dtype(float), np.integer)
if have_pandas_categorical_dtype:
bad_dtype = pandas.Series(["a", "b"], dtype="category")
assert not safe_issubdtype(bad_dtype, np.integer)
def no_pickling(*args, **kwargs):
raise NotImplementedError(
"Sorry, pickling not yet supported. "
"See https://github.com/pydata/patsy/issues/26 if you want to "
"help.")
def assert_no_pickling(obj):
import pickle
from nose.tools import assert_raises
assert_raises(NotImplementedError, pickle.dumps, obj)
# Use like:
# if safe_string_eq(constraints, "center"):
# ...
# where 'constraints' might be a string or an array. (If it's an array, then
# we can't use == becaues it might broadcast and ugh.)
def safe_string_eq(obj, value):
if isinstance(obj, six.string_types):
return obj == value
else:
return False
def test_safe_string_eq():
assert safe_string_eq("foo", "foo")
assert not safe_string_eq("foo", "bar")
if not six.PY3:
assert safe_string_eq(unicode("foo"), "foo")
assert not safe_string_eq(np.empty((2, 2)), "foo")
|