/usr/lib/python2.7/dist-packages/pygal/interpolate.py is in python-pygal 2.0.12-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 | # -*- coding: utf-8 -*-
# This file is part of pygal
#
# A python svg graph plotting library
# Copyright © 2012-2015 Kozea
#
# This library is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option) any
# later version.
#
# This library is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
# details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with pygal. If not, see <http://www.gnu.org/licenses/>.
"""
Interpolation functions
These functions takes two lists of points x and y and
returns an iterator over the interpolation between all these points
with `precision` interpolated points between each of them
"""
from __future__ import division
from math import sin
def quadratic_interpolate(x, y, precision=250, **kwargs):
"""
Interpolate x, y using a quadratic algorithm
https://en.wikipedia.org/wiki/Spline_(mathematics)
"""
n = len(x) - 1
delta_x = [x2 - x1 for x1, x2 in zip(x, x[1:])]
delta_y = [y2 - y1 for y1, y2 in zip(y, y[1:])]
slope = [delta_y[i] / delta_x[i] if delta_x[i] else 1 for i in range(n)]
# Quadratic spline: a + bx + cx²
a = y
b = [0] * (n + 1)
c = [0] * (n + 1)
for i in range(1, n):
b[i] = 2 * slope[i - 1] - b[i - 1]
c = [(slope[i] - b[i]) / delta_x[i] if delta_x[i] else 0 for i in range(n)]
for i in range(n + 1):
yield x[i], a[i]
if i == n or delta_x[i] == 0:
continue
for s in range(1, precision):
X = s * delta_x[i] / precision
X2 = X * X
yield x[i] + X, a[i] + b[i] * X + c[i] * X2
def cubic_interpolate(x, y, precision=250, **kwargs):
"""
Interpolate x, y using a cubic algorithm
https://en.wikipedia.org/wiki/Spline_interpolation
"""
n = len(x) - 1
# Spline equation is a + bx + cx² + dx³
# ie: Spline part i equation is a[i] + b[i]x + c[i]x² + d[i]x³
a = y
b = [0] * (n + 1)
c = [0] * (n + 1)
d = [0] * (n + 1)
m = [0] * (n + 1)
z = [0] * (n + 1)
h = [x2 - x1 for x1, x2 in zip(x, x[1:])]
k = [a2 - a1 for a1, a2 in zip(a, a[1:])]
g = [k[i] / h[i] if h[i] else 1 for i in range(n)]
for i in range(1, n):
j = i - 1
l = 1 / (2 * (x[i + 1] - x[j]) - h[j] * m[j]) if x[i + 1] - x[j] else 0
m[i] = h[i] * l
z[i] = (3 * (g[i] - g[j]) - h[j] * z[j]) * l
for j in reversed(range(n)):
if h[j] == 0:
continue
c[j] = z[j] - (m[j] * c[j + 1])
b[j] = g[j] - (h[j] * (c[j + 1] + 2 * c[j])) / 3
d[j] = (c[j + 1] - c[j]) / (3 * h[j])
for i in range(n + 1):
yield x[i], a[i]
if i == n or h[i] == 0:
continue
for s in range(1, precision):
X = s * h[i] / precision
X2 = X * X
X3 = X2 * X
yield x[i] + X, a[i] + b[i] * X + c[i] * X2 + d[i] * X3
def hermite_interpolate(x, y, precision=250,
type='cardinal', c=None, b=None, t=None):
"""
Interpolate x, y using the hermite method.
See https://en.wikipedia.org/wiki/Cubic_Hermite_spline
This interpolation is configurable and contain 4 subtypes:
* Catmull Rom
* Finite Difference
* Cardinal
* Kochanek Bartels
The cardinal subtype is customizable with a parameter:
* c: tension (0, 1)
This last type is also customizable using 3 parameters:
* c: continuity (-1, 1)
* b: bias (-1, 1)
* t: tension (-1, 1)
"""
n = len(x) - 1
m = [1] * (n + 1)
w = [1] * (n + 1)
delta_x = [x2 - x1 for x1, x2 in zip(x, x[1:])]
if type == 'catmull_rom':
type = 'cardinal'
c = 0
if type == 'finite_difference':
for i in range(1, n):
m[i] = w[i] = .5 * (
(y[i + 1] - y[i]) / (x[i + 1] - x[i]) +
(y[i] - y[i - 1]) / (
x[i] - x[i - 1])
) if x[i + 1] - x[i] and x[i] - x[i - 1] else 0
elif type == 'kochanek_bartels':
c = c or 0
b = b or 0
t = t or 0
for i in range(1, n):
m[i] = .5 * ((1 - t) * (1 + b) * (1 + c) * (y[i] - y[i - 1]) +
(1 - t) * (1 - b) * (1 - c) * (y[i + 1] - y[i]))
w[i] = .5 * ((1 - t) * (1 + b) * (1 - c) * (y[i] - y[i - 1]) +
(1 - t) * (1 - b) * (1 + c) * (y[i + 1] - y[i]))
if type == 'cardinal':
c = c or 0
for i in range(1, n):
m[i] = w[i] = (1 - c) * (
y[i + 1] - y[i - 1]) / (
x[i + 1] - x[i - 1]) if x[i + 1] - x[i - 1] else 0
def p(i, x_):
t = (x_ - x[i]) / delta_x[i]
t2 = t * t
t3 = t2 * t
h00 = 2 * t3 - 3 * t2 + 1
h10 = t3 - 2 * t2 + t
h01 = - 2 * t3 + 3 * t2
h11 = t3 - t2
return (h00 * y[i] +
h10 * m[i] * delta_x[i] +
h01 * y[i + 1] +
h11 * w[i + 1] * delta_x[i])
for i in range(n + 1):
yield x[i], y[i]
if i == n or delta_x[i] == 0:
continue
for s in range(1, precision):
X = x[i] + s * delta_x[i] / precision
yield X, p(i, X)
def lagrange_interpolate(x, y, precision=250, **kwargs):
"""
Interpolate x, y using Lagrange polynomials
https://en.wikipedia.org/wiki/Lagrange_polynomial
"""
n = len(x) - 1
delta_x = [x2 - x1 for x1, x2 in zip(x, x[1:])]
for i in range(n + 1):
yield x[i], y[i]
if i == n or delta_x[i] == 0:
continue
for s in range(1, precision):
X = x[i] + s * delta_x[i] / precision
s = 0
for k in range(n + 1):
p = 1
for m in range(n + 1):
if m == k:
continue
if x[k] - x[m]:
p *= (X - x[m]) / (x[k] - x[m])
s += y[k] * p
yield X, s
def trigonometric_interpolate(x, y, precision=250, **kwargs):
"""
Interpolate x, y using trigonometric
As per http://en.wikipedia.org/wiki/Trigonometric_interpolation
"""
n = len(x) - 1
delta_x = [x2 - x1 for x1, x2 in zip(x, x[1:])]
for i in range(n + 1):
yield x[i], y[i]
if i == n or delta_x[i] == 0:
continue
for s in range(1, precision):
X = x[i] + s * delta_x[i] / precision
s = 0
for k in range(n + 1):
p = 1
for m in range(n + 1):
if m == k:
continue
if sin(0.5 * (x[k] - x[m])):
p *= sin(0.5 * (X - x[m])) / sin(0.5 * (x[k] - x[m]))
s += y[k] * p
yield X, s
INTERPOLATIONS = {
'quadratic': quadratic_interpolate,
'cubic': cubic_interpolate,
'hermite': hermite_interpolate,
'lagrange': lagrange_interpolate,
'trigonometric': trigonometric_interpolate
}
if __name__ == '__main__':
from pygal import XY
points = [(.1, 7), (.3, -4), (.6, 10), (.9, 8), (1.4, 3), (1.7, 1)]
xy = XY(show_dots=False)
xy.add('normal', points)
xy.add('quadratic', quadratic_interpolate(*zip(*points)))
xy.add('cubic', cubic_interpolate(*zip(*points)))
xy.add('lagrange', lagrange_interpolate(*zip(*points)))
xy.add('trigonometric', trigonometric_interpolate(*zip(*points)))
xy.add('hermite catmul_rom', hermite_interpolate(
*zip(*points), type='catmul_rom'))
xy.add('hermite finite_difference', hermite_interpolate(
*zip(*points), type='finite_difference'))
xy.add('hermite cardinal -.5', hermite_interpolate(
*zip(*points), type='cardinal', c=-.5))
xy.add('hermite cardinal .5', hermite_interpolate(
*zip(*points), type='cardinal', c=.5))
xy.add('hermite kochanek_bartels .5 .75 -.25', hermite_interpolate(
*zip(*points), type='kochanek_bartels', c=.5, b=.75, t=-.25))
xy.add('hermite kochanek_bartels .25 -.75 .5', hermite_interpolate(
*zip(*points), type='kochanek_bartels', c=.25, b=-.75, t=.5))
xy.render_in_browser()
|