/usr/lib/python2.7/dist-packages/pymzml/spec.py is in python-pymzml 0.7.6-dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 | # -*- coding: utf-8 -*-
# encoding: utf-8
"""
The spectrum class offers a python object for mass spectrometry data.
The spectrum object holds the basic information on the spectrum and offers
methods to interrogate properties of the spectrum.
Data, i.e. mass over charge (m/z) and intensity decoding is performed on demand
and can be accessed via their properties, e.g. :py:attr:`spec.Spectrum.peaks`.
The Spectrum class is used in the :py:class:`run.Run` class.
There each spectrum is accessible as a spectrum object.
Theoretical spectra can also be created using the setter functions.
For example, m/z values, intensities, and peaks can be set by the
corresponding properties: :py:attr:`spec.Spectrum.mz`,
:py:attr:`spec.Spectrum.i`, :py:attr:`spec.Spectrum.peaks`.
"""
#
# pymzml
#
# Copyright (C) 2010-2011 T. Bald, J. Barth, M. Specht, H. Roest, C. Fufezan
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from __future__ import print_function
import sys
import math
import copy
# import random
import re
from base64 import b64decode as b64dec
from struct import unpack as unpack
from collections import defaultdict as ddict
from operator import itemgetter as itemgetter
import zlib
PROTON = 1.00727646677
ISOTOPE_AVERAGE_DIFFERENCE = 1.002
class Spectrum(dict):
def __init__(self, measuredPrecision = None , param=None):
"""
.. function:: __init__( measuredPrecision = value* )
Initializes a pymzml.spec.Spectrum class.
:param measuredPrecision: in m/z, mandatory
:type measuredPrecision: float
"""
assert isinstance( measuredPrecision , float ), \
"Require measured precision as input parameter..."
self.measuredPrecision = measuredPrecision
# this will also set and update internalPrecision
self.clear()
self._mz = []
self._i = []
#self._time = self._mz
self.param = param
self.ms = {}
self.dataType = "?"
return
def __add__(self, otherSpec):
"""
Adds two pymzml spectra together.
:param otherSpec: Spectrum object
:type otherSpec: object
Example:
>>> import pymzml
>>> s = pymzml.spec.Spectrum( measuredPrescision = 20e-6 )
>>> file_to_read = "../mzML_example_files/xy.mzML.gz"
>>> run = pymzml.run.Reader(file_to_read , MS1_Precision = 5e-6 , MSn_Precision = 20e-6)
>>> for spec in run:
... s += spec
"""
assert isinstance(otherSpec, Spectrum), \
"can only add two pymzML spectra together ..."
tmp = self.deRef()
if tmp._reprofiledPeaks is None:
tmp._reprofiledPeaks = tmp._reprofile_Peaks()
for mz, i in otherSpec.reprofiledPeaks:
tmp._reprofiledPeaks[mz] += i
# deleting original data since we have now a combination of specs
tmp_reprofiledPeaks = tmp._reprofiledPeaks
tmp.clear()
tmp._reprofiledPeaks = tmp_reprofiledPeaks
tmp['reprofiled'] = True
return tmp
def __sub__(self,otherSpec):
"""
Subtracts two pymzml spectra.
:param otherSpec: Spectrum object
:type otherSpec: object
"""
assert isinstance(otherSpec,Spectrum) , "can only subtract two pymzML spectra ..."
tmp = self.deRef()
if tmp._reprofiledPeaks is None:
tmp._reprofiledPeaks = tmp._reprofile_Peaks()
for mz,i in otherSpec.reprofiledPeaks:
tmp._reprofiledPeaks[mz] -= i
# deleting original data since we have now a combination of specs
tmp_reprofiledPeaks = tmp._reprofiledPeaks
tmp.clear()
tmp._reprofiledPeaks = tmp_reprofiledPeaks
tmp['reprofiled'] = True
return tmp
def __mul__(self, value):
"""
Multiplies each intensity with a float, i.e. scales the spectrum.
:param value: Value to multiply the spectrum
:type value: float
"""
assert isinstance(value, (int, float)), "require float or int of intensity values ..."
tmp = self.deRef()
if tmp._peaks is not None:
tmp.peaks = [(mz, i * float(value)) for mz, i in tmp.peaks]
if tmp._centroidedPeaks is not None:
tmp.centroidedPeaks = [(mz, i * float(value)) for mz, i in tmp.centroidedPeaks]
if tmp._reprofiledPeaks is not None:
for mz in tmp._reprofiledPeaks.keys():
tmp._reprofiledPeaks[mz] *= float(value)
return tmp
def __truediv__(self,value):
"""
Divides each intensity by a float, i.e. scales the spectrum.
:param value: Value to divide the spectrum
:type value: float, int
"""
assert isinstance( value , ( int , float ) ), "require float or int of intensity values ..."
tmp = self.deRef()
if tmp._peaks is not None:
tmp.peaks = [ (mz,i/float(value)) for mz,i in tmp.peaks ]
if tmp._centroidedPeaks is not None:
tmp.centroidedPeaks = [ (mz,i/float(value)) for mz,i in tmp.centroidedPeaks ]
if tmp._reprofiledPeaks is not None:
for mz in tmp._reprofiledPeaks.keys():
tmp._reprofiledPeaks[mz] /= float(value)
return tmp
def __div__(self,value):
return self.__truediv__(value)
def __del__(self):
self.clear()
del self
return
def clear(self, scope = 'all'):
"""
Clears the current spectrum object which means that all variables are
set to default or ``None``
"""
if scope == 'all':
for k in list(self.keys()):
del self[k]
self._mz = None
self._i = None
self._peaks = None
self._centroidedPeaks = None
self._reprofiledPeaks = None
self._deconvolutedPeaks = None
self._transformedMzWithError = None
self._transformedPeaks = None
self._transformed_deconvolutedPeaks = None
self._transformedMassWithError = None
self._extremeValues = None
self._tmzSet = None
self._tmassSet = None
self._centroidedPeaksSortedByI = None
self._xmlTree = None
self._iter = None
self['BinaryArrayOrder'] = []
self.ms = {}
return
def strip(self, scope = 'all'):
"""
Reduces the size of the spectrum. Interesting if specs need to be added
or stored.
:param scope: accepts currently ["all"]
:type scope: string
"all" will remove the raw and profiled data and some internal lookup
tables as well.
"""
if scope == 'all':
if self._peaks is None:
# decode, just in case ...
self.peaks
self._tmzSet = None
self._tmassSet = None
self._transformedMzWithError = None
self._transformedPeaks = None
self._transformed_deconvolutedPeaks = None
self._transformedMassWithError = None
if 'encodedData' in self.keys():
del self['encodedData']
del self['PY:0000000']
# this is the ID tag corresponding to 'encodedData'
else:
print("Dont understand strip request ", file = sys.stderr)
@property
def mz(self):
"""
Returns the list of m/z values. If the m/z values are encoded, the
function :py:func:`_decode()` is used to decode the encoded data.\n
The mz property can also be setted, e.g. for theoretical data.
However, it is recommended to use the peaks property to set mz and
intesity tuples at same time.
:rtype: list
:return: Returns a list of mz from the actual analysed spectrum
"""
if self._mz is None:
self._decode()
return self._mz
@mz.setter
def mz(self, mzList):
assert isinstance( mzList, list ), "require list of mz values ..."
self._mz = mzList
return
@property
def time(self):
"""
Returns the list of time values (retention time for chromatograms). If
the time values are encoded, the function :py:func:`_decode()` is used
to decode the encoded data.\n
The time property can also be setted, e.g. for theoretical data.
However, it is recommended to use the peaks property to set time and
intesity tuples at same time.
:rtype: list
:return: Returns a list of mz from the actual analysed spectrum
"""
if self._mz is None:
self._decode()
return self._mz
@time.setter
def time(self, timeList):
assert isinstance(timeList, list), "require list of time (RT) values ..."
self._mz = timeList
return
def extremeValues(self, key):
"""
Find extreme values, minimal and maximum mz and intensity
:param key: m/z : "mz" or intensity : "i"
:type key: string
:rtype: tuple
:return: tuple of minimal and maximum m/z or intensity
"""
if key not in ['mz', 'i']:
print("Dont understand extreme request ", file = sys.stderr)
if self._extremeValues is None:
self._extremeValues = {}
try:
if key == 'mz':
self._extremeValues['mz'] = (
min([mz for mz, i in self.peaks]),
max([mz for mz, i in self.peaks])
)
else:
self._extremeValues['i'] = (
min([i for mz, i in self.peaks]),
max([i for mz, i in self.peaks])
)
except ValueError:
# emtpy spectrum
self._extremeValues[key] = ()
return self._extremeValues[key]
@property
def i(self):
"""
Returns the list of the intensity values.
If the intensity values are encoded, the function :py:func:`_decode()`
is used to decode the encoded data.\n
The i property can also be setted, e.g. for theoretical data.However, it
is recommended to use the peaks property to set mz and intesity tuples
at same time.
:rtype: list
:return: Returns a list of intensity values from the actual analysed
spectrum.
"""
if self._i is None:
self._decode()
return self._i
@i.setter
def i(self, intensityList):
assert isinstance(intensityList, list), "require list of intensity values ..."
self._i = intensityList
return
@property
def peaks(self):
"""
Returns the list of peaks of the spectrum as tuples (m/z, intensity).
:rtype: list of tuples
:return: Returns list of tuples (m/z, intensity)
Example:
>>> import pymzml
>>> run = pymzml.run.Reader(spectra.mzMl.gz, MS1_Precision = 5e-6, MSn_Precision = 20e-6)
>>> for spectrum in run:
... for mz, i in spectrum.peaks:
... print(mz, i)
.. note::
The peaks property can also be setted, e.g. for theoretical data.
It requires a list of mz/intensity tuples.
"""
if 'reprofiled' in self.keys():
self.peaks = self._centroid_peaks()
elif self._peaks is None:
if self._mz is None and 'encodedData' not in self.keys():
self._peaks = []
else:
self._peaks = list(zip(self.mz , self.i))
return self._peaks
@property
def profile(self):
"""
Returns the list of peaks of the chromatogram as tuples (time, intensity).
:rtype: list of tuples
:return: Returns list of tuples (time, intensity)
Example:
>>> import pymzml
>>> run = pymzml.run.Reader(spectra.mzMl.gz, MS1_Precision = 5e-6, MSn_Precision = 20e-6)
>>> for spectrum in run:
... for time, i in spectrum.profile:
... print(time, i)
"""
if 'reprofiled' in self.keys():
self.peaks = self._centroid_peaks()
elif self._peaks is None:
if self._mz is None and 'encodedData' not in self.keys():
self._peaks = []
else:
self._peaks = list(zip(self.mz , self.i))
return self._peaks
@peaks.setter
def peaks(self, mz_i_tuple_list):
assert isinstance(mz_i_tuple_list, list), "require list of tuples (mz,intensity) ..."
if len(mz_i_tuple_list) == 0:
return
self._mz, self._i = map(list, zip(*mz_i_tuple_list))
self._peaks = mz_i_tuple_list
return self
@property
def centroidedPeaks(self):
"""
Returns the centroided version of a profile spectrum. Performs a Gauss
fit to determine centroided mz and intensities, if the spectrum is in
measured profile mode.
Returns a list of tuples of fitted m/z-intesity values. If the spectrum
peaks are already centroided, these peaks are returned.
:rtype: list of tuples
:return: Returns list of tuples (m/z, intensity)
Example:
>>> import pymzml
>>> run = pymzml.run.Reader(spectra.mzMl.gz, MS1_Precision = 5e-6, MSn_Precision = 20e-6)
>>> for spectrum in run:
... for mz, i in spectrum.centroidedPeaks:
... print(mz, i)
"""
if 'reprofiled' in self.keys():
self.peaks = self._centroid_peaks()
self._centroidedPeaks = self._peaks
if self._centroidedPeaks is None: #or self._reprofiledPeaks is not None:
self._centroidedPeaks = self._centroid_peaks()
return self._centroidedPeaks
@centroidedPeaks.setter
def centroidedPeaks(self, mz_i_tuple_list):
assert isinstance(mz_i_tuple_list, list), "require list of tuples (mz,intensity) ..."
self._centroidedPeaks = mz_i_tuple_list
return
def _centroid_peaks(self):
"""
Perform a Gauss fit to centroid the peaks for the property
:py:attr:`centroidedPeaks`
"""
isProfile = False
for k in self.keys():
if isinstance(k,str):
if 'profile' in k:
isProfile = True
break
if isProfile:
tmp = []
if 'reprofiled' in self.keys():
intensity_array = [ i for mz, i in self.reprofiledPeaks ]
mz_array = [ mz for mz, i in self.reprofiledPeaks ]
del self['reprofiled']
else:
intensity_array = self.i
mz_array = self.mz
for pos , i in enumerate(intensity_array[:-1]):
if pos <= 1:
continue
if 0 < intensity_array[pos - 1] < i > intensity_array[pos + 1] > 0:
# local maximum ...
#if 827 <= mz_array[pos] <= 828:
# print("::",i,"@",mz_array[pos])
# print("Found maximum",i,"@",mz_array[pos],intensity_array[pos-1] ,'<' ,i ,"> ",intensity_array[pos+1] )
x1 = mz_array[pos - 1]
y1 = intensity_array[pos - 1]
x2 = mz_array[pos]
y2 = intensity_array[pos]
x3 = mz_array[pos + 1]
y3 = intensity_array[pos + 1]
if x2 - x1 > (x3 - x2) * 10 or (x2 - x1) * 10 < x3 - x2:
# no gauss fit if distance between mz values is too large
continue
if y3 == y1:
# i.e. a reprofiledSpec
# we start a bit closer to the mid point.
before = 3
after = 4
while (not 0 < y1 < y2 > y3 > 0) and y1 == y3 and after < 10: #we dont want to go too far
if pos - before < 0:
lower_pos = 0
else:
lower_pos = pos - before
if pos+after >= len(mz_array):
upper_pos = len(mz_array) - 1
else:
upper_pos = pos + after
x1 = mz_array[ lower_pos ]
y1 = intensity_array[ lower_pos ]
x3 = mz_array[ upper_pos ]
y3 = intensity_array[ upper_pos ]
if before % 2 == 0:
after += 1
else:
before += 1
if not (0 < y1 < y2 > y3 > 0) or y1 == y3:
#If we dont check this, there is a chance to apply gauss fit to a section
#where there is no peak.
continue
try:
doubleLog = math.log(y2 / y1) / math.log(y3 / y1)
mue = (doubleLog * ( x1 * x1 - x3 * x3 ) - x1 * x1 + x2 * x2 ) / (2 * (x2 - x1) - 2 * doubleLog * (x3 - x1))
cSquarred = ( x2*x2 - x1*x1 - 2*x2*mue + 2*x1*mue )/ ( 2* math.log(y1/y2 ))
A = y1 * math.exp( (x1 - mue) * (x1 - mue) / ( 2 * cSquarred ) )
#if A > 1e20:
#print(mue, A, doubleLog, cSquarred)
#print(x1, "\t", y1)
#print(x2, "\t", y2)
#print(x3, "\t", y3)
#print()
except:
continue
tmp.append((mue, A))
#for mue, A in tmp:
#print(mue, "\t", A)
return tmp
else:
return self.peaks
@property
def xmlTree(self):
"""
xmlTree property returns an iterator over the original
xmlTree structure the spectrum was initilized with.
Example:
>>> for element in spectrum.xmlTree:
... print( element, element.tag, element.items() )
please refer to the xml documentation of Python and cElementTree
for more details.
"""
return self._xmlTree.getiterator()
@property
def xmlTreeIterFree(self):
return self._xmlTree
def determine_swath_IDs(self):
ID_tagline=self._xmlTree.get('id')
for header in re.findall( r'([a-zA-Z]*)=', ID_tagline ):
self[ header ] = re.findall( r'{0}=([0-9]*)'.format( header ), ID_tagline )[0]
@property
def tmzSet(self):
'''Create set out of transformed m/z values
(including all values in the defined imprecision).
:rtype: set
'''
if self._tmzSet is None:
self._tmzSet = set()
for mz, i in self.centroidedPeaks:
self._tmzSet |= set(
range(
int(round(
(mz - (mz * self.measuredPrecision)) * self.internalPrecision
)),
int(round(
(mz + (mz * self.measuredPrecision)) * self.internalPrecision)) + 1)
)
return self._tmzSet
@property
def tmassSet(self):
'''create a set out of transformed mass values
(including all values in the defined imprecision).
:rtype: set
'''
if self._tmassSet is None:
self._tmassSet = set(self._transformed_mass_with_error.keys())
return self._tmassSet
def deRef( self ):
"""
Strip some heavy data and return deepcopy of spectrum.
Example:
>>> run = pymzml.run.Reader(file_to_read, MS1_Precision = 5e-6, MSn_Precision = 20e-6)
>>> for spec in run:
... tmp = spec.deRef()
"""
self.strip()
return copy.deepcopy(self)
def reduce(self, mzRange = (None,None) ):
"""
Works on peaks and reduces spectrum to a m/z range.
Example:
>>> run = pymzml.run.Reader(file_to_read, MS1_Precision = 5e-6, MSn_Precision = 20e-6)
>>> for spec in run:
... spec.reduce( mzRange = (100,200) )
"""
# NOTE Total ion current should be adjusted as well, I guess ;)
assert isinstance(mzRange, tuple), \
"require tuple of (min,max) mz range to reduce spectrum"
if mzRange != (None, None):
tmp_peaks = [ (mz,i) for mz, i in self.peaks if mzRange[0] <= mz <= mzRange[1] ]
self.clear(scope = 'not_all')
self.peaks = tmp_peaks
return self
def removeNoise(self, mode = 'median', noiseLevel = None):
"""
Function to remove noise from peaks, centroided peaks and reprofiled
peaks.
:param mode: define mode for removing noise. Default = "median"
(other modes: "mean", "mad")
:type mode: string
:rtype: list of tuples
:return: Returns a list with tuples of m/z-intensity pairs above the
noise threshold
mad < median < mean
Threshold is calculated over the mad/median/mean of all intensity values.
(mad = mean absolute deviation)
Example:
>>> import pymzml
>>> run = pymzml.run.Reader(spectra.mzML.gz, MS1_Precision = 5e-6, MSn_Precision = 20e-6)
>>> for spectrum in run:
... for mz, i in spectrum.removeNoise( mode = 'mean'):
... print(mz, i)
"""
need_to_be_called_before_nose_can_be_removed = self.peaks
need_to_be_called_before_nose_can_be_removed =self.centroidedPeaks
# Thanks to JD Hogan for pointing it out!
if noiseLevel is None:
noiseLevel = self.estimatedNoiseLevel(mode = mode)
if self._centroidedPeaks is not None:
self.centroidedPeaks = [ (mz, i) for mz, i in self.centroidedPeaks if i >= noiseLevel]
if self._peaks is not None:
self.peaks = [ (mz, i) for mz, i in self.peaks if i >= noiseLevel]
self._reprofiledPeaks = None
return self
def highestPeaks(self, n):
"""
Function to retrieve the n-highest centroided peaks of the spectrum.
:param n: Number of n-highest peaks
:type n: int
:rtype: list
:return: list of centroided peaks (mz, intensity tuples)
Example:
>>> run = pymzml.run.Reader("../mzML_example_files/deconvolution.mzML.gz", MS1_Precision = 5e-6, MSn_Precision = 20e-6)
>>> for spectrum in run:
... if spectrum["ms level"] == 2:
... if spectrum["id"] == 1770:
... for mz,i in spectrum.highestPeaks(5):
... print(mz,i)
"""
if self._centroidedPeaksSortedByI is None:
self._centroidedPeaksSortedByI = sorted(
self.centroidedPeaks, key = itemgetter(1)
)
return self._centroidedPeaksSortedByI[-n:]
def estimatedNoiseLevel(self, mode = 'median'):
"""
Calculates noise threshold for function :py:func:`removeNoise`
"""
if self.centroidedPeaks == []:
return 0
if 'noiseLevelEstimate' not in self.keys():
self['noiseLevelEstimate'] = {}
if mode not in self['noiseLevelEstimate'].keys():
if mode == 'median':
self['noiseLevelEstimate']['median'] = self._median([ i for mz, i in self.centroidedPeaks])
elif mode == 'mad':
median = self.estimatedNoiseLevel(mode='median')
self['noiseLevelEstimate']['mad'] = self._median(sorted([ abs(i - median) for mz,i in self.centroidedPeaks]))
elif mode == 'mean':
mean = sum([i for mz, i in self.centroidedPeaks]) / float(len(self.centroidedPeaks))
self['noiseLevelEstimate']['mean'] = mean
self['noiseLevelEstimate']['variance'] = sum([(i - mean) * (i - mean) for mz, i in self.centroidedPeaks]) / float(len(self.centroidedPeaks))
else:
print("dont understand noise level estimation method call", mode, file = sys.stderr)
return self['noiseLevelEstimate'][mode]
def _median(self, data):
if len(data) == 0:
return None
data.sort()
l = len(data)
if not l % 2:
median = (data[int(math.floor(float(l)/float(2)))] + data[int(math.ceil(float(l)/float(2)))] ) / float(2.0)
else:
median = data[int(l/2)]
return median
@property
def reprofiledPeaks(self):
"""
Returns the reprofiled version of a centroided spectrum.
:rtype: list of reprofiled mz,i tuples
:return: Reprofiled peaks as tuple list
Example:
>>> import pymzml
>>> run = pymzml.run.Reader(spectra.mzMl.gz, MS1_Precision = 5e-6, MSn_Precision = 20e-6)
>>> for spectrum in run:
... for mz, i in spectrum.reprofiledPeaks:
... print(mz, i)
"""
#NOTE self._reprofiledPeaks is a defaultdict(int) with k:mz, v:i
if self._reprofiledPeaks is None:
if self.mz != []:
self._reprofiledPeaks = self._reprofile_Peaks()
else:
self._reprofiledPeaks = ddict(int)
return sorted(self._reprofiledPeaks.items())
def _reprofile_Peaks(self):
"""
Performs reprofiling for property :py:func:`reprofiledPeaks`
"""
tmp = ddict(int)
for mz, i in self.centroidedPeaks:
# Let the measured precision be 2 sigma of the signal width
s = mz * self.measuredPrecision * 2
s2 = s * s
floor = mz - 5.0 * s # Gauss curve +- 3 sigma
ceil = mz + 5.0 * s
ip = self.internalPrecision / 4
# more spacing, i.e. less points describing the gauss curve -> faster adding
for _ in range( int(round(floor * ip)) , int(round(ceil * ip)) + 1 ):
if _ % int(5) == 0 :
a = float(_) / float(ip)
y = i * math.exp( -1 * ((mz - a) * (mz - a)) / (2 * s2) )
tmp[ a ] += y
self['reprofiled'] = True
return tmp
@property
def measuredPrecision(self):
"""
Sets the measured and internal precision
:param value: measured precision (e.g. 5e-6)
:type value: float
"""
return self._measuredPrecision
@measuredPrecision.setter
def measuredPrecision(self, value):
self._measuredPrecision = value
self.internalPrecision = int(round(50000.0 / (value * 1e6)))
return
def _link(self, idTag=None, value = None, name = None):
try:
v = float(value)
except:
v = value
if idTag not in self:
self[idTag] = v
else:
oldValue = self[idTag]
self[idTag] = [oldValue]
self[idTag].append(v)
self[name] = self[idTag]
return
def _decodeNumpress(self, inData, compression):
"""
Decodes numpress encoded base 64 data.
:param inData: Input string, base64 encoded and numpress compressed
:type mz2find: string
:param compression: De-Compression algorithm to be used (valid are 'ms-np-linear', 'ms-np-pic', 'ms-np-slof')
:type mz2find: string
:rtype: array
:return: Returns the unpacked data as an array of floats.
"""
try:
import pyopenms
except ImportError:
print("Could not import pyOpenMS to decode numpress-encoded data -- please install the module to enable this functionality.")
exit(1)
result = []
coder = pyopenms.MSNumpressCoder()
np_config = pyopenms.NumpressConfig()
np_config.estimate_fixed_point = True
if compression == 'ms-np-linear':
np_config.np_compression = pyopenms.MSNumpressCoder.NumpressCompression.LINEAR
elif compression == 'ms-np-pic':
np_config.np_compression = pyopenms.MSNumpressCoder.NumpressCompression.PIC
elif compression == 'ms-np-slof':
np_config.np_compression = pyopenms.MSNumpressCoder.NumpressCompression.SLOF
coder.decodeNP(inData, result, False, np_config)
return result
def _decode(self):
"""
Decodes the base 64 encoded and packed strings from the data.
:rtype: tuple
:return: Returns the unpacked data as a tuple. Returns an empty list if
there is no raw data or raises an exception if data could not be
decoded.
"""
if 'encodedData' in self.keys():
compressionStated = True
n_BinaryArrayOrder = len(self['BinaryArrayOrder'])
if n_BinaryArrayOrder == 4:
compressionStated = False
#
for pos in range(0, n_BinaryArrayOrder, int(n_BinaryArrayOrder / 2)):
if compressionStated:
arrayType, compression, encodingType = [value for key, value in sorted([self['BinaryArrayOrder'][pos] , self['BinaryArrayOrder'][pos + 1], self['BinaryArrayOrder'][pos + 2]])]
else:
arrayType, encodingType = [value for key, value in sorted([self['BinaryArrayOrder'][pos] , self['BinaryArrayOrder'][pos + 1]])]
compression = 'no'
if encodingType == '32-bit float':
floattype = 'f'
elif encodingType == '64-bit float':
floattype = 'd'
else:
floattype = None
print("New data encoding detected, please adjust parser",
file = sys.stderr
)
unpackedData = []
if self['encodedData'][int(pos*0.5)] is None:
pass
elif len(self['encodedData'][int(pos*0.5)]) == 0:
pass
elif len(self['encodedData'][int(pos*0.5)]) != 0:
base64Data = self['encodedData'][int(pos * 0.5)].encode("utf-8")
decodedData = b64dec(base64Data)
if compression == 'zlib':
decodedData = zlib.decompress(decodedData)
elif compression in ['ms-np-linear', 'ms-np-pic', 'ms-np-slof']:
unpackedData = self._decodeNumpress(base64Data, compression)
elif compression == 'no':
pass
else:
print("New data compression ({0}) detected, please adjust parser".format(compression), file = sys.stderr)
exit(1)
fmt = "{endian}{arraylength}{floattype}".format( endian = "<" , arraylength = self['defaultArrayLength'] , floattype = floattype )
try:
if compression in ["no", "zlib"]:
unpackedData = unpack(fmt, decodedData)
except: # NOTE raises struct.error, but cannot be checked for here
print("Couldn't extract data {0} fmt: {1}".format(arrayType, fmt), file = sys.stderr)
print(len(self['encodedData'][int(pos * 0.5)]), file = sys.stderr)
exit(1)
if arrayType == 'mz' or arrayType == 'time':
self._mz = unpackedData
elif arrayType == 'i':
self._i = unpackedData
else:
print("Arraytype {0} not supported ...".format(arrayType), file = sys.stderr)
exit(1)
return
def hasPeak(self, mz2find):
"""
Checks if a Spectrum has a certain peak.
Needs a certain mz value as input and returns a list of peaks if a peak
is found in the spectrum, otherwise ``[]`` is returned.
Every peak is a tuple of m/z and intensity.
:param mz2find: mz value which should be found
:type mz2find: float
:rtype: list
:return: m/z and intensity as tuple in list
Example:
>>> import pymzml, get_example_file
>>> example_file = get_example_file.open_example('deconvolution.mzML.gz')
>>> run = pymzml.run.Reader(example_file, MS1_Precision = 5e-6, MSn_Precision = 20e-6)
>>> for spectrum in run:
... if spectrum["ms level"] == 2:
... peak_to_find = spectrum.hasPeak(1016.5404)
... print(peak_to_find)
[(1016.5404, 19141.735187697403)]
"""
value = self.transformMZ(mz2find)
return self._transformed_mz_with_error[value]
# NOTE this can return a result if a peak is found within 20.08 ppm (for a 20 ppm spectrum) ...
def hasDeconvolutedPeak(self, mass2find):
"""
Checks if a deconvoluted spectrum contains a certain peak.
Needs a mass value as input and returns a list of peaks if a peak
is found in the spectrum. If the mass is not found ``[]`` is
returned.
Every peak is a tuple of m/z and intensity.
:param mass2find: mass value which should be found
:type mass2find: float
:rtype: list
:return: mass and intensity as tuple in list if mass is found,
otherwise ``[]``
Example:
>>> import pymzml, get_example_file
>>> example_file = get_example_file.open_example('deconvolution.mzML.gz')
>>> run = pymzml.run.Reader(example_file, MS1_Precision = 5e-6, MSn_Precision = 20e-6)
>>> for spectrum in run:
... if spectrum["ms level"] == 2:
... peak_to_find = spectrum.hasDeconvolutedPeak(1044.5804)
... print(peak_to_find)
[(1044.5596, 3809.4356300564586)]
"""
value = self.transformMZ(mass2find)
return self._transformed_mass_with_error[value]
@property
def _transformed_mz_with_error(self):
"""
Returns transformed m/z value with error
:rtype: dictionary
:return: Transformed m/z values in dictionary {m/z_with_error :
[(m/z,intensity), ...], ...}
"""
if self._transformedMzWithError is None:
self._transformedMzWithError = ddict(list)
for mz, i in self.centroidedPeaks:
for t_mz_with_error in range(int(round((mz - (mz * self.measuredPrecision)) * self.internalPrecision)),
int(round((mz + (mz * self.measuredPrecision)) * self.internalPrecision)) + 1):
self._transformedMzWithError[t_mz_with_error].append((mz, i))
return self._transformedMzWithError
@property
def _transformed_mass_with_error(self):
"""
Returns transformed mass value with error
:rtype: dictionary
:return: Transformed mass values in dictionary {mass_with_error:
(mass,intensity), ...}
"""
if self._transformedMassWithError is None:
self._transformedMassWithError = ddict(list)
for mass, i in self.deconvolutedPeaks:
for t_mass_with_error in range(int(round((mass - (mass * self.measuredPrecision)) * self.internalPrecision)),
int(round((mass + (mass * self.measuredPrecision)) * self.internalPrecision)) + 1):
self._transformedMassWithError[t_mass_with_error].append((mass, i))
return self._transformedMassWithError
@property
def transformedPeaks(self):
"""
m/z value is multiplied by the internal precision
:rtype: list of tuples
:return: Returns a list of peaks (tuples of mz and intensity). Float m/z
values are adjusted by the internal precision to integers.
"""
if self._transformedPeaks is None:
self._transformedPeaks = [(self.transformMZ(mz), i) for mz, i in self.centroidedPeaks]
return self._transformedPeaks
@property
def transformed_deconvolutedPeaks(self):
"""
Deconvoluted mz value is multiplied by the internal precision
:rtype: list of tuples
:return: Returns a list of peaks (tuples of mz and intensity). Float m/z
values are adjusted by the internal precision to integers.
"""
if self._transformed_deconvolutedPeaks is None:
self._transformed_deconvolutedPeaks = [(self.transformMZ(mass), i) for mass, i in self.deconvolutedPeaks]
return self._transformed_deconvolutedPeaks
def _mz2mass(self, mz, charge):
"""
Calculate the uncharged mass for a given mz value
:param mz: m/z value
:type mz: float
:param charge: charge
:type charge: int
:rtype: float
:return: Returns mass of a given m/z value
"""
return ((mz - PROTON) * charge)
def _group(self, peaks):
"""
Group mz (or mass) values according to the given ppm value. The mean
value of grouped peaks is stored. When an intensity tuple is given, the
corresponding intensity are summed up and stored.
:rtype: list
:return: list of peaks
"""
mz_tuple, intensity_tuple = zip(*peaks)
count_ungrouped = 0
mz_list_grouped = []
i = 0
# iterate over all entries for grouping
while i < len(mz_tuple):
target = self.ppm2abs(mz_tuple[i], self.measuredPrecision, 1, 1)
j = i + 1
while j < len(mz_tuple) and mz_tuple[j] <= target:
j += 1
j = j- 1
if i == j:
# no peaks have to be grouped, just add the current peak to the result and go in with the next peak
mz_list_grouped.append(tuple([mz_tuple[i], intensity_tuple[i]]))
i += 1
else:
# potential overlapping peaks are found.
# check whether the mz value of the j index does not overlap with the next j+1 index
k = j + 1
group = True
if k < len(mz_tuple):
target_new = self.ppm2abs(mz_tuple[j], self.measuredPrecision, 1, 1)
if target_new >= mz_tuple[k]:
group = False
if group:
# group the peaks, calculate mean
mean = sum(mz_tuple[i:j+1])/len(mz_tuple[i:j+1])
intensity_sum = sum(intensity_tuple[i:j+1])
mz_list_grouped.append(tuple([mean, intensity_sum]))
i = j + 1
else:
# peaks are ambiguous, no grouping is applied --> every peak is stored
# this incident is counted.
count_ungrouped += j - i
# adding each element between i and j
for k in range(i, j + 1):
mz_list_grouped.append(tuple([mz_tuple[k], intensity_tuple[k]]))
i = j + 1
if count_ungrouped:
# if ungrouped entries occurred, this is reported
print('{0} elements could not be grouped due to an overlap.'.format(count_ungrouped), file = sys.stderr)
return mz_list_grouped
def _get_deisotopedMZ_for_chargeDeconvolution(self, ppmFactor = 4, minCharge = 1, maxCharge = 8, maxNextPeaks = 100):
"""
Calculates the deisotoped m/z value as an input for the charge deconvolution
:param ppmFactor: ppm factor
:type ppmFactor: int
:param minCharge: minimum charge considered
:type minCharge: int
:param maxCharge: maximum charge considered
:type maxCharge: int
:param maxNextPeaks: maximum length for isotope envelope
:type maxNextPaks: int
:rtype: list of tuples
:return: Monoisotopic peak [(m/z, intensity_sum, charge, found),...]
.. note::
The argument *maxNextPeaks* is just to make sure that the isotope
envelope doesnt get too long. This limit is not reached usually.
"""
try:
mz_list, intensities_list = zip(*self.centroidedPeaks)
except ValueError:
# empty spectrum
sys.exit()
mz = []
intensities = []
monoisotopicPeaks = []
length = len(mz_list)
override = False
for i in range(length):
for charge in range(maxCharge, minCharge - 1, -1):
# check absence of isotope envelope peaks before the current peak
#print("Analyzing mz_list, charge:", mz_list[i], charge)
found = False
if i == 0:
# the current peak is the first peak, no preceding peak is available, so this is a monoisotopic candidate
pass
else:
j = i - 1
target = mz_list[i] - ISOTOPE_AVERAGE_DIFFERENCE / charge
target_min = self.ppm2abs(target, self.measuredPrecision, -1, ppmFactor) # min and max should be calculated in one step (so that self.ppm() is not called twice)
target_max = self.ppm2abs(target, self.measuredPrecision, 1, ppmFactor)
while j >= 0 and mz_list[j] >= target_min:
if mz_list[j] <= target_max:
found = True
# Found preceeding peak, break goes to the next peak
break
j = j - 1
# if a potential preceding peak for the current peak is found, jump to the next peak
if found:
break
''' check presence of isotope envelope after the current peak'''
found = 1
intensity_sum = intensities_list[i]
last_intensity = intensities_list[i]
#last_mz = mz_list[i]
local_max = False
for i_envelope in range(1, maxNextPeaks + 1):
if (i + i_envelope) >= len(mz_list):
break
target = mz_list[i] + (ISOTOPE_AVERAGE_DIFFERENCE * i_envelope)/ charge
#target = last_mz + ISOTOPE_AVERAGE_DIFFERENCE / charge
hasPeak_result = self.hasPeak(target)
if len(hasPeak_result) > 1:
print("Found more than one peak. This is not expected")
sys.exit(1)
elif len(hasPeak_result) == 0:
break
# an isotope envelope is not supposed to have missing peaks
else:
mz, intensity = hasPeak_result[0]
if intensity < last_intensity:
# the peak before was the local maximum
local_max = True
elif local_max == True and intensity > last_intensity:
# this would be a second local max, so stop searching the isotope envelope
break
found += 1
intensity_sum += intensity
#last_mz = mz
if found > 1:
monoisotopicPeaks.append(tuple([mz_list[i], intensity_sum, charge, found]))
break
# as the first peak of the isotope envelope is added here, this is a monoisotopic peak.
# the charge derived from the isotope envelope is the highest charge which is possible.
return monoisotopicPeaks
@property
def deconvolutedPeaks(self):
"""
Calling :py:func:`spec.Spectrum.deconvolute_peaks` with standard
parameters, which calculates uncharged masses and returns deconvoluted
peaks.
:rtype: list
:return: list of deconvoluted peaks (mass (instead of m/z) / intensity tuples)
"""
if self._deconvolutedPeaks is None:
self._deconvolutedPeaks = self.deconvolute_peaks(ppmFactor = 4, minCharge = 1, maxCharge = 8, maxNextPeaks = 100)
return self._deconvolutedPeaks
def deconvolute_peaks(self, ppmFactor = 4, minCharge = 1, maxCharge = 8, maxNextPeaks = 100, returnCharge = False, debug = False):
"""
Calculating uncharged masses and returning deconvoluted peaks.
The deconvolution of spectra is done by first identifying isotope envelopes and
the charge state of this envelopes. The first peak of an isotope envelope is choosen
as the monoisotopic peak for which the mass is calculated from the m/z ratio.
Isotope envelopes are identified by searching the centroided spectrum for peaks
which show no preceding isotope peak within a specified mass accuracy. To be
sure, the measured mass accuracy is multiplied by a user adjustable factor
(``ppmFactor``). When the current peak meets the criteria with no preceding peaks, the
following peaks are analysed. The following peaks are considered to be part of
the isotope envelope, as long as they fit within the measured precision and
only one local maximum is present. The second local maximum is not considered
as the starting point of a new isotope envelope as one cannot be sure were this
isotope envelope starts. However, the last peak before the second local maximum
is considered to be part of the isotope envelope from the first local maximum,
as the intensity of this peak shouldn't have a big influence on the whole
isotope envelope intensity.
The charge range for detecting isotope envelopes can be specified (``minCharge``,
``maxCharge``). An isotope envelope always gets the highest possible charge.
With the charge the mass can be calculated from the m/z value of the first peak
of the isotope envelope. The intensity of the deconvoluted peak results from
the sum of all isotope envelope peaks.
In a last step, deconvoluted peaks are grouped together within the measured
precision. This is necessary because isotope envelopes from the same fragment
but with different charge states can leed to slightly different deconvoluted
peaks.
:param ppmFactor: ppm factor (imprecision factor)
:type ppmFactor: int
:param minCharge: minimum charge considered
:type minCharge: int
:param maxCharge: maximum charge considered
:type maxCharge: int
:param maxNextPeaks: maximum length for isotope envelope
:type maxNextPaks: int
:rtype: tuple (mass, intensity)
:return: Deconvoluted peaks, mass (instead of m/z) and intensity are
returned
"""
if self.measuredPrecision > 50e-6:
print("{0} ppm is too high for deconvolution. Please make sure to use spectra with < 50 ppm.".format(self.measuredPrecision * 1e6), file = sys.stderr)
exit(1)
if debug == True:
masses2mz = ddict(list)
# calculate monoisotopic m/z and charge
interestingPeaks = self._get_deisotopedMZ_for_chargeDeconvolution(ppmFactor, minCharge, maxCharge, maxNextPeaks)
# charge deconvolution
result = []
if returnCharge == True:
for mz, intensity, charge, n in interestingPeaks:
mass = self._mz2mass(mz, charge)
result.append(tuple([mass, intensity, charge]))
# sort the result corresponding to the mass (due to the mz to mass conversion, the values are no longer sorted)
result = sorted(result)
# check on empty result list
if len(result) == 0:
# no peaks could be identified for charge deconvolution.
return []
# group peaks
return result
else:
for mz, intensity, charge, n in interestingPeaks:
mass = self._mz2mass(mz, charge)
result.append(tuple([mass, intensity]))
if debug == True:
masses2mz[mass].append((mz, intensity, charge, n))
# sort the result corresponding to the mass (due to the mz to mass conversion, the values are no longer sorted)
result = sorted(result)
# check on empty result list
if len(result) == 0:
# no peaks could be identified for charge deconvolution.
return []
if debug is True:
return self._group(result), masses2mz
# group peaks
return self._group(result)
def ppm2abs(self, value, ppmValue, direction = 1, factor = 1):
'''
Returns the value plus (or minus, dependent on direction) the
imprecession for this value.
:param value: m/z value
:type value: float
:param ppmvalue: ppm value
:type ppmvalue: int
:param direction: plus or minus the considered m/z value. The argument
*direction* should be 1 or -1
:type direction: int
:param factor: multiplication factor for the imprecision.The argument
*factor* should be bigger than 0.
:type factor: int
:rtype: float
:return: imprecision for a given value
'''
result = value + (value * (ppmValue * factor)) * direction
return result
def hasOverlappingPeak(self, mz):
"""
Checks if a spetrum has more than one peak for a given m/z value and within the measured precision
:param mz: m/z value which should be checked
:type mz: float
:return: Returns ``True`` if a nearby peak is detected, otherwise ``False``
:rtype: bool
"""
for minus_or_plus in [-1, 1]:
target = self.ppm2abs(mz, self.measuredPrecision, minus_or_plus, 1)
temp = self.hasPeak(self.ppm2abs(mz, self.measuredPrecision) )
if temp and len(temp) > 1:
return True
return False
def similarityTo(self,spec2):
"""
Compares two spectra and returns cosine
:param spec2: another pymzml spectrum that is compated to the current spectrum.
:type spec2: pymzml.spec.Spectrum
:return: value between 0 and 1, i.e. the cosine between the two spectra.
:rtype: float
.. note::
Spectra data is transformed into an n-dimensional vector,
whereas mz values are binned in bins of 10 m/z and the intensities are added up.
Then the cosine is calculated between those two vectors.
The more similar the specs are, the closer the value is to 1.
"""
assert isinstance(spec2, Spectrum), "Spectrum2 is not a pymzML spectrum"
vector1 = ddict(int)
vector2 = ddict(int)
mzs = set()
for mz, i in self.peaks:
vector1[round(mz, 1)] += i
mzs.add(round(mz, 1))
for mz, i in spec2.peaks:
vector2[round(mz, 1)] += i
mzs.add(round(mz, 1))
z = 0
n_v1 = 0
n_v2 = 0
for mz in mzs:
int1 = vector1[mz]
int2 = vector2[mz]
z += int1 * int2
n_v1 += int1 * int1
n_v2 += int2 * int2
try:
cosine = z / (math.sqrt(n_v1) * math.sqrt(n_v2))
except:
cosine = 0.0
return cosine
def transformMZ(self, value):
"""
pymzml uses an internal precision to different tasks. This precision depends on the
measured prescision and is calculated when :py:func:`spec.Spectrum.measuredPrecision` is invoked.
transformMZ can be used to transform mz values into the internal standard.
:param value: mz value
:type value: float
:return: transformed value
:rtype: float
this value can be used to probe internal dictionaries, lists or sets, e.g. spectrum.tmzSet.
Example:
>>> import pymzml
>>> mzValues_to_test = set()
>>> run = pymzml.run.Reader( "test.mzML.gz" , MS1_Precision = 5e-6, MSn_Precision = 20e-6)
>>>
>>> for spectrum in run:
... if spectrum["ms level"] == 2:
... peak_to_find = spectrum.hasDeconvolutedPeak(1044.5804)
... print(peak_to_find)
[(1044.5596, 3809.4356300564586)]
"""
return int(round(value * self.internalPrecision))
def initFromTreeObjectWithRef(self, treeObject, refObject):
"""
initializes first from the treeObject and then goes
through the refObject and assigns any other parameters from there...
"""
self.initFromTreeObject(treeObject)
reference = ""
for element in treeObject.getiterator():
if element.tag.endswith('}referenceableParamGroupRef'):
reference = element.get('ref')
break
for element in refObject:
if element.tag.endswith('}referenceableParamGroup'):
refid = element.get('id')
if refid == reference:
self.readAccession(element)
return
def readAccession(self, parElement):
for element in parElement.getiterator():
accession = element.get('accession')
self.ms[accession] = element
if element.tag.endswith('cvParam'):
if accession in self.param['accessions']:
for mzmlTag in self.param['accessions'][accession]['valuesToExtract']:
try:
self._link(idTag = accession,
value = element.get(mzmlTag),
name = self.param['accessions'][accession]['name']
)
except KeyError:
if mzmlTag == 'unitName':
continue
# this allows parsing of mzML files generated with ProteomeDiscoverer
else:
print("kind of 'unitName' issue again ... with {0}".format(mzmlTag))
sys.exit()
if self.param['accessions'][accession]['name'] == 'intensity array':
self['BinaryArrayOrder'].append(('arrayType', 'i'))
elif self.param['accessions'][accession]['name'] == 'm/z array':
self['BinaryArrayOrder'].append(('arrayType', 'mz'))
elif self.param['accessions'][accession]['name'] == 'time array':
self['BinaryArrayOrder'].append(('arrayType', 'time'))
elif self.param['accessions'][accession]['name'] == '32-bit float':
self['BinaryArrayOrder'].append(('encoding', '32-bit float'))
elif self.param['accessions'][accession]['name'] == '64-bit float':
self['BinaryArrayOrder'].append(('encoding', '64-bit float'))
elif self.param['accessions'][accession]['name'] == 'zlib compression':
self['BinaryArrayOrder'].append(('compression', 'zlib'))
elif self.param['accessions'][accession]['name'] == 'no compression':
self['BinaryArrayOrder'].append(('compression', 'no'))
elif self.param['accessions'][accession]['name'] == 'MS-Numpress linear prediction compression':
self['BinaryArrayOrder'].append(('compression', 'ms-np-linear'))
elif self.param['accessions'][accession]['name'] == 'MS-Numpress positive integer compression':
self['BinaryArrayOrder'].append(('compression', 'ms-np-pic'))
elif self.param['accessions'][accession]['name'] == 'MS-Numpress short logged float compression':
self['BinaryArrayOrder'].append(('compression', 'ms-np-slof'))
elif element.tag.endswith('precursorList'):
# TODO remove this completely?
self['precursors'] = []
elif element.tag.endswith('selectedIon'):
if 'precursors' not in self.keys():
self['precursors'] = []
self['precursors'].append({'mz': None, 'charge': None})
for subElement in element.getiterator():
if subElement.tag.endswith('cvParam'):
accession = subElement.get('accession')
if accession == 'MS:1000040':
try:
self['precursors'][-1]['mz'] = float(subElement.get('value'))
except ValueError:
self['precursors'][-1]['mz'] = subElement.get('value')
elif accession == 'MS:1000041':
try:
self['precursors'][-1]['charge'] = int(subElement.get('value'))
except ValueError:
self['precursors'][-1]['charge'] = subElement.get('value')
elif accession == 'MS:1000744':
try:
self['precursors'][-1]['mz'] = float(subElement.get('value'))
except ValueError:
self['precursors'][-1]['mz'] = subElement.get('value')
else:
pass
elif element.tag.endswith('binary'):
self._link(
idTag = 'PY:0000000',
value = element.text,
name = 'encodedData'
)
return
def initFromTreeObject(self, treeObject):
"""
treeObject.get('nativeID')
print(treeObject)
print(treeObject.items())
for _ in treeObject.getiterator():
print(_.tag,_.items())
"""
self.clear()
self._xmlTree = treeObject
#
if treeObject.tag.endswith('chromatogram'):
self['id'] = treeObject.get('id')
self['ms level'] = None
self.dataType = "chromatogram"
else:
try:
'''
1.1.0 >> <spectrum id="spectrum=1019" index="8" defaultArrayLength="431">
1.1.0 >> <spectrum id="scan=3" index="0" sourceFileRef="SF1" defaultArrayLength="92">
1.0.0 >> <spectrum index="317" id="S318" nativeID="318" defaultArrayLength="34">
0.99.1 >> <spectrum id="S20" scanNumber="20" msLevel="2">
so far regex hold for this ...
'''
self['id'] = int(re.search( r'[0-9]*$', treeObject.get('id') ).group())
except:
self['id'] = None
self.dataType = "spectrum"
self['defaultArrayLength'] = int(treeObject.get('defaultArrayLength'))
self.readAccession(treeObject)
try:
if self['ms level'] == 1:
self.measuredPrecision = self.param['MS1_Precision']
else:
self.measuredPrecision = self.param['MSn_Precision']
except KeyError:
pass
return
if __name__ == '__main__':
print(__doc__)
|