This file is indexed.

/usr/lib/python2.7/dist-packages/pyqtgraph/examples/optics/pyoptic.py is in python-pyqtgraph 0.9.10-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
# -*- coding: utf-8 -*-
from PyQt4 import QtGui, QtCore
import pyqtgraph as pg
#from pyqtgraph.canvas import Canvas, CanvasItem
import numpy as np
import csv, gzip, os
from pyqtgraph import Point

class GlassDB:
    """
    Database of dispersion coefficients for Schott glasses
     + Corning 7980
    """
    def __init__(self, fileName='schott_glasses.csv'):
        path = os.path.dirname(__file__)
        fh = gzip.open(os.path.join(path, 'schott_glasses.csv.gz'), 'rb')
        r = csv.reader(map(str, fh.readlines()))
        lines = [x for x in r]
        self.data = {}
        header = lines[0]
        for l in lines[1:]:
            info = {}
            for i in range(1, len(l)):
                info[header[i]] = l[i]
            self.data[l[0]] = info
        self.data['Corning7980'] = {   ## Thorlabs UV fused silica--not in schott catalog.
            'B1': 0.68374049400,
            'B2': 0.42032361300,
            'B3': 0.58502748000,
            'C1': 0.00460352869,
            'C2': 0.01339688560,
            'C3': 64.49327320000,
            'TAUI25/250': 0.95,    ## transmission data is fabricated, but close.
            'TAUI25/1400': 0.98,
        }
        
        for k in self.data:
            self.data[k]['ior_cache'] = {}
            

    def ior(self, glass, wl):
        """
        Return the index of refraction for *glass* at wavelength *wl*.
        
        The *glass* argument must be a key in self.data.
        """
        info = self.data[glass]
        cache = info['ior_cache']
        if wl not in cache:
            B = list(map(float, [info['B1'], info['B2'], info['B3']]))
            C = list(map(float, [info['C1'], info['C2'], info['C3']]))
            w2 = (wl/1000.)**2
            n = np.sqrt(1.0 + (B[0]*w2 / (w2-C[0])) + (B[1]*w2 / (w2-C[1])) + (B[2]*w2 / (w2-C[2])))
            cache[wl] = n
        return cache[wl]
        
    def transmissionCurve(self, glass):
        data = self.data[glass]
        keys = [int(x[7:]) for x in data.keys() if 'TAUI25' in x]
        keys.sort()
        curve = np.empty((2,len(keys)))
        for i in range(len(keys)):
            curve[0][i] = keys[i]
            key = 'TAUI25/%d' % keys[i]
            val = data[key]
            if val == '':
                val = 0
            else:
                val = float(val)
            curve[1][i] = val
        return curve
            

GLASSDB = GlassDB()


def wlPen(wl):
    """Return a pen representing the given wavelength"""
    l1 = 400
    l2 = 700
    hue = np.clip(((l2-l1) - (wl-l1)) * 0.8 / (l2-l1), 0, 0.8)
    val = 1.0
    if wl > 700:
        val = 1.0 * (((700-wl)/700.) + 1)
    elif wl < 400:
        val = wl * 1.0/400.
    #print hue, val
    color = pg.hsvColor(hue, 1.0, val)
    pen = pg.mkPen(color)
    return pen


class ParamObj:
    # Just a helper for tracking parameters and responding to changes
    def __init__(self):
        self.__params = {}
    
    def __setitem__(self, item, val):
        self.setParam(item, val)
        
    def setParam(self, param, val):
        self.setParams(**{param:val})
        
    def setParams(self, **params):
        """Set parameters for this optic. This is a good function to override for subclasses."""
        self.__params.update(params)
        self.paramStateChanged()

    def paramStateChanged(self):
        pass

    def __getitem__(self, item):
        return self.getParam(item)

    def getParam(self, param):
        return self.__params[param]


class Optic(pg.GraphicsObject, ParamObj):
    
    sigStateChanged = QtCore.Signal()
    
    
    def __init__(self, gitem, **params):
        ParamObj.__init__(self)
        pg.GraphicsObject.__init__(self) #, [0,0], [1,1])

        self.gitem = gitem
        self.surfaces = gitem.surfaces
        gitem.setParentItem(self)
        
        self.roi = pg.ROI([0,0], [1,1])
        self.roi.addRotateHandle([1, 1], [0.5, 0.5])
        self.roi.setParentItem(self)
        
        defaults = {
            'pos': Point(0,0),
            'angle': 0,
        }
        defaults.update(params)
        self._ior_cache = {}
        self.roi.sigRegionChanged.connect(self.roiChanged)
        self.setParams(**defaults)
        
    def updateTransform(self):
        self.resetTransform()
        self.setPos(0, 0)
        self.translate(Point(self['pos']))
        self.rotate(self['angle'])
        
    def setParam(self, param, val):
        ParamObj.setParam(self, param, val)

    def paramStateChanged(self):
        """Some parameters of the optic have changed."""
        # Move graphics item
        self.gitem.setPos(Point(self['pos']))
        self.gitem.resetTransform()
        self.gitem.rotate(self['angle'])
        
        # Move ROI to match
        try:
            self.roi.sigRegionChanged.disconnect(self.roiChanged)
            br = self.gitem.boundingRect()
            o = self.gitem.mapToParent(br.topLeft())
            self.roi.setAngle(self['angle'])
            self.roi.setPos(o)
            self.roi.setSize([br.width(), br.height()])
        finally:
            self.roi.sigRegionChanged.connect(self.roiChanged)
        
        self.sigStateChanged.emit()

    def roiChanged(self, *args):
        pos = self.roi.pos()
        # rotate gitem temporarily so we can decide where it will need to move
        self.gitem.resetTransform()
        self.gitem.rotate(self.roi.angle())
        br = self.gitem.boundingRect()
        o1 = self.gitem.mapToParent(br.topLeft())
        self.setParams(angle=self.roi.angle(), pos=pos + (self.gitem.pos() - o1))
        
    def boundingRect(self):
        return QtCore.QRectF()
        
    def paint(self, p, *args):
        pass

    def ior(self, wavelength):
        return GLASSDB.ior(self['glass'], wavelength)
        


class Lens(Optic):
    def __init__(self, **params):
        defaults = {
            'dia': 25.4,  ## diameter of lens
            'r1': 50.,    ## positive means convex, use 0 for planar
            'r2': 0,   ## negative means convex
            'd': 4.0,
            'glass': 'N-BK7',
            'reflect': False,
        }
        defaults.update(params)
        d = defaults.pop('d')
        defaults['x1'] = -d/2.
        defaults['x2'] = d/2.
        
        gitem = CircularSolid(brush=(100, 100, 130, 100), **defaults)
        Optic.__init__(self, gitem, **defaults)
        
    def propagateRay(self, ray):
        """Refract, reflect, absorb, and/or scatter ray. This function may create and return new rays"""

        """
        NOTE:: We can probably use this to compute refractions faster: (from GLSL 120 docs)

        For the incident vector I and surface normal N, and the
        ratio of indices of refraction eta, return the refraction
        vector. The result is computed by
        k = 1.0 - eta * eta * (1.0 - dot(N, I) * dot(N, I))
        if (k < 0.0)
            return genType(0.0)
        else
            return eta * I - (eta * dot(N, I) + sqrt(k)) * N
        The input parameters for the incident vector I and the
        surface normal N must already be normalized to get the
        desired results. eta == ratio of IORs


        For reflection:
        For the incident vector I and surface orientation N,
        returns the reflection direction:
        I – 2 ∗ dot(N, I) ∗ N
        N must already be normalized in order to achieve the
        desired result.
        """



        iors = [self.ior(ray['wl']), 1.0]
        for i in [0,1]:
            surface = self.surfaces[i]
            ior = iors[i]
            p1, ai = surface.intersectRay(ray)
            #print "surface intersection:", p1, ai*180/3.14159
            #trans = self.sceneTransform().inverted()[0] * surface.sceneTransform()
            #p1 = trans.map(p1)
            if p1 is None:
                ray.setEnd(None)
                break
            p1 = surface.mapToItem(ray, p1)
            
            #print "adjusted position:", p1
            #ior = self.ior(ray['wl'])
            rd = ray['dir']
            a1 = np.arctan2(rd[1], rd[0])
            ar = a1 - ai + np.arcsin((np.sin(ai) * ray['ior'] / ior))
            #print [x for x in [a1, ai, (np.sin(ai) * ray['ior'] / ior), ar]]
            #print ai, np.sin(ai), ray['ior'],  ior
            ray.setEnd(p1)
            dp = Point(np.cos(ar), np.sin(ar))
            #p2 = p1+dp
            #p1p = self.mapToScene(p1)
            #p2p = self.mapToScene(p2)
            #dpp = Point(p2p-p1p)
            ray = Ray(parent=ray, ior=ior, dir=dp)
        return [ray]
        

class Mirror(Optic):
    def __init__(self, **params):
        defaults = {
            'r1': 0,
            'r2': 0,
            'd': 0.01,
        }
        defaults.update(params)
        d = defaults.pop('d')
        defaults['x1'] = -d/2.
        defaults['x2'] = d/2.
        gitem = CircularSolid(brush=(100,100,100,255), **defaults)
        Optic.__init__(self, gitem, **defaults)
        
    def propagateRay(self, ray):
        """Refract, reflect, absorb, and/or scatter ray. This function may create and return new rays"""
        
        surface = self.surfaces[0]
        p1, ai = surface.intersectRay(ray)
        if p1 is not None:
            p1 = surface.mapToItem(ray, p1)
            rd = ray['dir']
            a1 = np.arctan2(rd[1], rd[0])
            ar = a1  + np.pi - 2*ai
            ray.setEnd(p1)
            dp = Point(np.cos(ar), np.sin(ar))
            ray = Ray(parent=ray, dir=dp)
        else:
            ray.setEnd(None)
        return [ray]


class CircularSolid(pg.GraphicsObject, ParamObj):
    """GraphicsObject with two circular or flat surfaces."""
    def __init__(self, pen=None, brush=None, **opts):
        """
        Arguments for each surface are:
           x1,x2 - position of center of _physical surface_
           r1,r2 - radius of curvature
           d1,d2 - diameter of optic
        """
        defaults = dict(x1=-2, r1=100, d1=25.4, x2=2, r2=100, d2=25.4)
        defaults.update(opts)
        ParamObj.__init__(self)
        self.surfaces = [CircleSurface(defaults['r1'], defaults['d1']), CircleSurface(-defaults['r2'], defaults['d2'])]
        pg.GraphicsObject.__init__(self)
        for s in self.surfaces:
            s.setParentItem(self)
        
        if pen is None:
            self.pen = pg.mkPen((220,220,255,200), width=1, cosmetic=True)
        else:
            self.pen = pg.mkPen(pen)
        
        if brush is None: 
            self.brush = pg.mkBrush((230, 230, 255, 30))
        else:
            self.brush = pg.mkBrush(brush)

        self.setParams(**defaults)

    def paramStateChanged(self):
        self.updateSurfaces()

    def updateSurfaces(self):
        self.surfaces[0].setParams(self['r1'], self['d1'])
        self.surfaces[1].setParams(-self['r2'], self['d2'])
        self.surfaces[0].setPos(self['x1'], 0)
        self.surfaces[1].setPos(self['x2'], 0)
        
        self.path = QtGui.QPainterPath()
        self.path.connectPath(self.surfaces[0].path.translated(self.surfaces[0].pos()))
        self.path.connectPath(self.surfaces[1].path.translated(self.surfaces[1].pos()).toReversed())
        self.path.closeSubpath()
        
    def boundingRect(self):
        return self.path.boundingRect()
        
    def shape(self):
        return self.path
    
    def paint(self, p, *args):
        p.setRenderHints(p.renderHints() | p.Antialiasing)
        p.setPen(self.pen)
        p.fillPath(self.path, self.brush)
        p.drawPath(self.path)
        

class CircleSurface(pg.GraphicsObject):
    def __init__(self, radius=None, diameter=None):
        """center of physical surface is at 0,0
        radius is the radius of the surface. If radius is None, the surface is flat. 
        diameter is of the optic's edge."""
        pg.GraphicsObject.__init__(self)
        
        self.r = radius
        self.d = diameter
        self.mkPath()
        
    def setParams(self, r, d):
        self.r = r
        self.d = d
        self.mkPath()
        
    def mkPath(self):
        self.prepareGeometryChange()
        r = self.r
        d = self.d
        h2 = d/2.
        self.path = QtGui.QPainterPath()
        if r == 0:  ## flat surface
            self.path.moveTo(0, h2)
            self.path.lineTo(0, -h2)
        else:
            ## half-height of surface can't be larger than radius
            h2 = min(h2, abs(r))
            
            #dx = abs(r) - (abs(r)**2 - abs(h2)**2)**0.5
            #p.moveTo(-d*w/2.+ d*dx, d*h2)
            arc = QtCore.QRectF(0, -r, r*2, r*2)
            #self.surfaces.append((arc.center(), r, h2))
            a1 = np.arcsin(h2/r) * 180. / np.pi
            a2 = -2*a1
            a1 += 180.
            self.path.arcMoveTo(arc, a1)
            self.path.arcTo(arc, a1, a2)
            #if d == -1:
                #p1 = QtGui.QPainterPath()
                #p1.addRect(arc)
                #self.paths.append(p1)
        self.h2 = h2
        
    def boundingRect(self):
        return self.path.boundingRect()
        
    def paint(self, p, *args):
        return  ## usually we let the optic draw.
        #p.setPen(pg.mkPen('r'))
        #p.drawPath(self.path)
            
    def intersectRay(self, ray):
        ## return the point of intersection and the angle of incidence
        #print "intersect ray"
        h = self.h2
        r = self.r
        p, dir = ray.currentState(relativeTo=self)  # position and angle of ray in local coords.
        #print "  ray: ", p, dir
        p = p - Point(r, 0)  ## move position so center of circle is at 0,0
        #print "  adj: ", p, r
        
        if r == 0:
            #print "  flat"
            if dir[0] == 0:
                y = 0
            else:
                y = p[1] - p[0] * dir[1]/dir[0]
            if abs(y) > h:
                return None, None
            else:
                return (Point(0, y), np.arctan2(dir[1], dir[0]))
        else:
            #print "  curve"
            ## find intersection of circle and line (quadratic formula)
            dx = dir[0]
            dy = dir[1]
            dr = (dx**2 + dy**2) ** 0.5
            D = p[0] * (p[1]+dy) - (p[0]+dx) * p[1]
            idr2 = 1.0 / dr**2
            disc = r**2 * dr**2 - D**2
            if disc < 0:
                return None, None
            disc2 = disc**0.5
            if dy < 0:
                sgn = -1
            else:
                sgn = 1
            
        
            br = self.path.boundingRect()
            x1 = (D*dy + sgn*dx*disc2) * idr2
            y1 = (-D*dx + abs(dy)*disc2) * idr2
            if br.contains(x1+r, y1):
                pt = Point(x1, y1)
            else:
                x2 = (D*dy - sgn*dx*disc2) * idr2
                y2 = (-D*dx - abs(dy)*disc2) * idr2
                pt = Point(x2, y2)
                if not br.contains(x2+r, y2):
                    return None, None
                    raise Exception("No intersection!")
                
            norm = np.arctan2(pt[1], pt[0])
            if r < 0:
                norm += np.pi
            #print "  norm:", norm*180/3.1415
            dp = p - pt
            #print "  dp:", dp
            ang = np.arctan2(dp[1], dp[0]) 
            #print "  ang:", ang*180/3.1415
            #print "  ai:", (ang-norm)*180/3.1415
            
            #print "  intersection:", pt
            return pt + Point(r, 0), ang-norm

            
class Ray(pg.GraphicsObject, ParamObj):
    """Represents a single straight segment of a ray"""
    
    sigStateChanged = QtCore.Signal()
    
    def __init__(self, **params):
        ParamObj.__init__(self)
        defaults = {
            'ior': 1.0,
            'wl': 500,
            'end': None,
            'dir': Point(1,0),
        }
        self.params = {}
        pg.GraphicsObject.__init__(self)
        self.children = []
        parent = params.get('parent', None)
        if parent is not None:
            defaults['start'] = parent['end']
            defaults['wl'] = parent['wl']
            self['ior'] = parent['ior']
            self['dir'] = parent['dir']
            parent.addChild(self)
        
        defaults.update(params)
        defaults['dir'] = Point(defaults['dir'])
        self.setParams(**defaults)
        self.mkPath()
        
    def clearChildren(self):
        for c in self.children:
            c.clearChildren()
            c.setParentItem(None)
            self.scene().removeItem(c)
        self.children = []
        
    def paramStateChanged(self):
        pass
        
    def addChild(self, ch):
        self.children.append(ch)
        ch.setParentItem(self)
        
    def currentState(self, relativeTo=None):
        pos = self['start']
        dir = self['dir']
        if relativeTo is None:
            return pos, dir
        else:
            trans = self.itemTransform(relativeTo)[0]
            p1 = trans.map(pos)
            p2 = trans.map(pos + dir)
            return Point(p1), Point(p2-p1)
            
            
    def setEnd(self, end):
        self['end'] = end
        self.mkPath()

    def boundingRect(self):
        return self.path.boundingRect()
        
    def paint(self, p, *args):
        #p.setPen(pg.mkPen((255,0,0, 150)))
        p.setRenderHints(p.renderHints() | p.Antialiasing)
        p.setCompositionMode(p.CompositionMode_Plus)
        p.setPen(wlPen(self['wl']))
        p.drawPath(self.path)
        
    def mkPath(self):
        self.prepareGeometryChange()
        self.path = QtGui.QPainterPath()
        self.path.moveTo(self['start'])
        if self['end'] is not None:
            self.path.lineTo(self['end'])
        else:
            self.path.lineTo(self['start']+500*self['dir'])


def trace(rays, optics):
    if len(optics) < 1 or len(rays) < 1:
        return
    for r in rays:
        r.clearChildren()
        o = optics[0]
        r2 = o.propagateRay(r)
        trace(r2, optics[1:])

class Tracer(QtCore.QObject):
    """
    Simple ray tracer. 
    
    Initialize with a list of rays and optics; 
    calling trace() will cause rays to be extended by propagating them through
    each optic in sequence.
    """
    def __init__(self, rays, optics):
        QtCore.QObject.__init__(self)
        self.optics = optics
        self.rays = rays
        for o in self.optics:
            o.sigStateChanged.connect(self.trace)
        self.trace()
            
    def trace(self):
        trace(self.rays, self.optics)