This file is indexed.

/usr/lib/python2.7/dist-packages/pyqtgraph/flowchart/library/Filters.py is in python-pyqtgraph 0.9.10-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
# -*- coding: utf-8 -*-
from ...Qt import QtCore, QtGui
from ..Node import Node
from . import functions
from ... import functions as pgfn
from .common import *
import numpy as np

from ... import PolyLineROI
from ... import Point
from ... import metaarray as metaarray


class Downsample(CtrlNode):
    """Downsample by averaging samples together."""
    nodeName = 'Downsample'
    uiTemplate = [
        ('n', 'intSpin', {'min': 1, 'max': 1000000})
    ]
    
    def processData(self, data):
        return functions.downsample(data, self.ctrls['n'].value(), axis=0)


class Subsample(CtrlNode):
    """Downsample by selecting every Nth sample."""
    nodeName = 'Subsample'
    uiTemplate = [
        ('n', 'intSpin', {'min': 1, 'max': 1000000})
    ]
    
    def processData(self, data):
        return data[::self.ctrls['n'].value()]


class Bessel(CtrlNode):
    """Bessel filter. Input data must have time values."""
    nodeName = 'BesselFilter'
    uiTemplate = [
        ('band', 'combo', {'values': ['lowpass', 'highpass'], 'index': 0}),
        ('cutoff', 'spin', {'value': 1000., 'step': 1, 'dec': True, 'range': [0.0, None], 'suffix': 'Hz', 'siPrefix': True}),
        ('order', 'intSpin', {'value': 4, 'min': 1, 'max': 16}),
        ('bidir', 'check', {'checked': True})
    ]
    
    def processData(self, data):
        s = self.stateGroup.state()
        if s['band'] == 'lowpass':
            mode = 'low'
        else:
            mode = 'high'
        return functions.besselFilter(data, bidir=s['bidir'], btype=mode, cutoff=s['cutoff'], order=s['order'])


class Butterworth(CtrlNode):
    """Butterworth filter"""
    nodeName = 'ButterworthFilter'
    uiTemplate = [
        ('band', 'combo', {'values': ['lowpass', 'highpass'], 'index': 0}),
        ('wPass', 'spin', {'value': 1000., 'step': 1, 'dec': True, 'range': [0.0, None], 'suffix': 'Hz', 'siPrefix': True}),
        ('wStop', 'spin', {'value': 2000., 'step': 1, 'dec': True, 'range': [0.0, None], 'suffix': 'Hz', 'siPrefix': True}),
        ('gPass', 'spin', {'value': 2.0, 'step': 1, 'dec': True, 'range': [0.0, None], 'suffix': 'dB', 'siPrefix': True}),
        ('gStop', 'spin', {'value': 20.0, 'step': 1, 'dec': True, 'range': [0.0, None], 'suffix': 'dB', 'siPrefix': True}),
        ('bidir', 'check', {'checked': True})
    ]
    
    def processData(self, data):
        s = self.stateGroup.state()
        if s['band'] == 'lowpass':
            mode = 'low'
        else:
            mode = 'high'
        ret = functions.butterworthFilter(data, bidir=s['bidir'], btype=mode, wPass=s['wPass'], wStop=s['wStop'], gPass=s['gPass'], gStop=s['gStop'])
        return ret

        
class ButterworthNotch(CtrlNode):
    """Butterworth notch filter"""
    nodeName = 'ButterworthNotchFilter'
    uiTemplate = [
        ('low_wPass', 'spin', {'value': 1000., 'step': 1, 'dec': True, 'range': [0.0, None], 'suffix': 'Hz', 'siPrefix': True}),
        ('low_wStop', 'spin', {'value': 2000., 'step': 1, 'dec': True, 'range': [0.0, None], 'suffix': 'Hz', 'siPrefix': True}),
        ('low_gPass', 'spin', {'value': 2.0, 'step': 1, 'dec': True, 'range': [0.0, None], 'suffix': 'dB', 'siPrefix': True}),
        ('low_gStop', 'spin', {'value': 20.0, 'step': 1, 'dec': True, 'range': [0.0, None], 'suffix': 'dB', 'siPrefix': True}),
        ('high_wPass', 'spin', {'value': 3000., 'step': 1, 'dec': True, 'range': [0.0, None], 'suffix': 'Hz', 'siPrefix': True}),
        ('high_wStop', 'spin', {'value': 4000., 'step': 1, 'dec': True, 'range': [0.0, None], 'suffix': 'Hz', 'siPrefix': True}),
        ('high_gPass', 'spin', {'value': 2.0, 'step': 1, 'dec': True, 'range': [0.0, None], 'suffix': 'dB', 'siPrefix': True}),
        ('high_gStop', 'spin', {'value': 20.0, 'step': 1, 'dec': True, 'range': [0.0, None], 'suffix': 'dB', 'siPrefix': True}),
        ('bidir', 'check', {'checked': True})
    ]
    
    def processData(self, data):
        s = self.stateGroup.state()
        
        low = functions.butterworthFilter(data, bidir=s['bidir'], btype='low', wPass=s['low_wPass'], wStop=s['low_wStop'], gPass=s['low_gPass'], gStop=s['low_gStop'])
        high = functions.butterworthFilter(data, bidir=s['bidir'], btype='high', wPass=s['high_wPass'], wStop=s['high_wStop'], gPass=s['high_gPass'], gStop=s['high_gStop'])
        return low + high
    

class Mean(CtrlNode):
    """Filters data by taking the mean of a sliding window"""
    nodeName = 'MeanFilter'
    uiTemplate = [
        ('n', 'intSpin', {'min': 1, 'max': 1000000})
    ]
    
    @metaArrayWrapper
    def processData(self, data):
        n = self.ctrls['n'].value()
        return functions.rollingSum(data, n) / n


class Median(CtrlNode):
    """Filters data by taking the median of a sliding window"""
    nodeName = 'MedianFilter'
    uiTemplate = [
        ('n', 'intSpin', {'min': 1, 'max': 1000000})
    ]
    
    @metaArrayWrapper
    def processData(self, data):
        try:
            import scipy.ndimage
        except ImportError:
            raise Exception("MedianFilter node requires the package scipy.ndimage.")
        return scipy.ndimage.median_filter(data, self.ctrls['n'].value())

class Mode(CtrlNode):
    """Filters data by taking the mode (histogram-based) of a sliding window"""
    nodeName = 'ModeFilter'
    uiTemplate = [
        ('window', 'intSpin', {'value': 500, 'min': 1, 'max': 1000000}),
    ]
    
    @metaArrayWrapper
    def processData(self, data):
        return functions.modeFilter(data, self.ctrls['window'].value())


class Denoise(CtrlNode):
    """Removes anomalous spikes from data, replacing with nearby values"""
    nodeName = 'DenoiseFilter'
    uiTemplate = [
        ('radius', 'intSpin', {'value': 2, 'min': 0, 'max': 1000000}),
        ('threshold', 'doubleSpin', {'value': 4.0, 'min': 0, 'max': 1000})
    ]
    
    def processData(self, data):
        #print "DENOISE"
        s = self.stateGroup.state()
        return functions.denoise(data, **s)


class Gaussian(CtrlNode):
    """Gaussian smoothing filter."""
    nodeName = 'GaussianFilter'
    uiTemplate = [
        ('sigma', 'doubleSpin', {'min': 0, 'max': 1000000})
    ]
    
    @metaArrayWrapper
    def processData(self, data):
        try:
            import scipy.ndimage
        except ImportError:
            raise Exception("GaussianFilter node requires the package scipy.ndimage.")
        return pgfn.gaussianFilter(data, self.ctrls['sigma'].value())


class Derivative(CtrlNode):
    """Returns the pointwise derivative of the input"""
    nodeName = 'DerivativeFilter'
    
    def processData(self, data):
        if hasattr(data, 'implements') and data.implements('MetaArray'):
            info = data.infoCopy()
            if 'values' in info[0]:
                info[0]['values'] = info[0]['values'][:-1]
            return metaarray.MetaArray(data[1:] - data[:-1], info=info)
        else:
            return data[1:] - data[:-1]


class Integral(CtrlNode):
    """Returns the pointwise integral of the input"""
    nodeName = 'IntegralFilter'
    
    @metaArrayWrapper
    def processData(self, data):
        data[1:] += data[:-1]
        return data


class Detrend(CtrlNode):
    """Removes linear trend from the data"""
    nodeName = 'DetrendFilter'
    
    @metaArrayWrapper
    def processData(self, data):
        try:
            from scipy.signal import detrend
        except ImportError:
            raise Exception("DetrendFilter node requires the package scipy.signal.")
        return detrend(data)

class RemoveBaseline(PlottingCtrlNode):
    """Remove an arbitrary, graphically defined baseline from the data."""
    nodeName = 'RemoveBaseline'
    
    def __init__(self, name):
        ## define inputs and outputs (one output needs to be a plot)
        PlottingCtrlNode.__init__(self, name)
        self.line = PolyLineROI([[0,0],[1,0]])
        self.line.sigRegionChanged.connect(self.changed)
        
        ## create a PolyLineROI, add it to a plot -- actually, I think we want to do this after the node is connected to a plot (look at EventDetection.ThresholdEvents node for ideas), and possible after there is data. We will need to update the end positions of the line each time the input data changes
        #self.line = None ## will become a PolyLineROI
        
    def connectToPlot(self, node):
        """Define what happens when the node is connected to a plot"""

        if node.plot is None:
            return
        node.getPlot().addItem(self.line)
       
    def disconnectFromPlot(self, plot):
        """Define what happens when the node is disconnected from a plot"""
        plot.removeItem(self.line)    
    
    def processData(self, data):
        ## get array of baseline (from PolyLineROI)
        h0 = self.line.getHandles()[0]
        h1 = self.line.getHandles()[-1]
        
        timeVals = data.xvals(0)
        h0.setPos(timeVals[0], h0.pos()[1])
        h1.setPos(timeVals[-1], h1.pos()[1])      
        
        pts = self.line.listPoints() ## lists line handles in same coordinates as data
        pts, indices = self.adjustXPositions(pts, timeVals) ## maxe sure x positions match x positions of data points
        
        ## construct an array that represents the baseline
        arr = np.zeros(len(data), dtype=float)
        n = 1
        arr[0] = pts[0].y()
        for i in range(len(pts)-1):
            x1 = pts[i].x()
            x2 = pts[i+1].x()
            y1 = pts[i].y()
            y2 = pts[i+1].y()
            m = (y2-y1)/(x2-x1)
            b = y1
            
            times = timeVals[(timeVals > x1)*(timeVals <= x2)]
            arr[n:n+len(times)] = (m*(times-times[0]))+b
            n += len(times)
                
        return data - arr ## subract baseline from data
        
    def adjustXPositions(self, pts, data):
        """Return a list of Point() where the x position is set to the nearest x value in *data* for each point in *pts*."""
        points = []
        timeIndices = []
        for p in pts:
            x = np.argwhere(abs(data - p.x()) == abs(data - p.x()).min())
            points.append(Point(data[x], p.y()))
            timeIndices.append(x)
            
        return points, timeIndices



class AdaptiveDetrend(CtrlNode):
    """Removes baseline from data, ignoring anomalous events"""
    nodeName = 'AdaptiveDetrend'
    uiTemplate = [
        ('threshold', 'doubleSpin', {'value': 3.0, 'min': 0, 'max': 1000000})
    ]
    
    def processData(self, data):
        return functions.adaptiveDetrend(data, threshold=self.ctrls['threshold'].value())

class HistogramDetrend(CtrlNode):
    """Removes baseline from data by computing mode (from histogram) of beginning and end of data."""
    nodeName = 'HistogramDetrend'
    uiTemplate = [
        ('windowSize', 'intSpin', {'value': 500, 'min': 10, 'max': 1000000, 'suffix': 'pts'}),
        ('numBins', 'intSpin', {'value': 50, 'min': 3, 'max': 1000000}),
        ('offsetOnly', 'check', {'checked': False}),
    ]
    
    def processData(self, data):
        s = self.stateGroup.state()
        #ws = self.ctrls['windowSize'].value()
        #bn = self.ctrls['numBins'].value()
        #offset = self.ctrls['offsetOnly'].checked()
        return functions.histogramDetrend(data, window=s['windowSize'], bins=s['numBins'], offsetOnly=s['offsetOnly'])


    
class RemovePeriodic(CtrlNode):
    nodeName = 'RemovePeriodic'
    uiTemplate = [
        #('windowSize', 'intSpin', {'value': 500, 'min': 10, 'max': 1000000, 'suffix': 'pts'}),
        #('numBins', 'intSpin', {'value': 50, 'min': 3, 'max': 1000000})
        ('f0', 'spin', {'value': 60, 'suffix': 'Hz', 'siPrefix': True, 'min': 0, 'max': None}),
        ('harmonics', 'intSpin', {'value': 30, 'min': 0}),
        ('samples', 'intSpin', {'value': 1, 'min': 1}),
    ]

    def processData(self, data):
        times = data.xvals('Time')
        dt = times[1]-times[0]
        
        data1 = data.asarray()
        ft = np.fft.fft(data1)
        
        ## determine frequencies in fft data
        df = 1.0 / (len(data1) * dt)
        freqs = np.linspace(0.0, (len(ft)-1) * df, len(ft))
        
        ## flatten spikes at f0 and harmonics
        f0 = self.ctrls['f0'].value()
        for i in xrange(1, self.ctrls['harmonics'].value()+2):
            f = f0 * i # target frequency
            
            ## determine index range to check for this frequency
            ind1 = int(np.floor(f / df))
            ind2 = int(np.ceil(f / df)) + (self.ctrls['samples'].value()-1)
            if ind1 > len(ft)/2.:
                break
            mag = (abs(ft[ind1-1]) + abs(ft[ind2+1])) * 0.5
            for j in range(ind1, ind2+1):
                phase = np.angle(ft[j])   ## Must preserve the phase of each point, otherwise any transients in the trace might lead to large artifacts.
                re = mag * np.cos(phase)
                im = mag * np.sin(phase)
                ft[j] = re + im*1j
                ft[len(ft)-j] = re - im*1j
                
        data2 = np.fft.ifft(ft).real
        
        ma = metaarray.MetaArray(data2, info=data.infoCopy())
        return ma