This file is indexed.

/usr/lib/python2.7/dist-packages/pyqtgraph/graphicsItems/PlotDataItem.py is in python-pyqtgraph 0.9.10-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
from .. import metaarray as metaarray
from ..Qt import QtCore
from .GraphicsObject import GraphicsObject
from .PlotCurveItem import PlotCurveItem
from .ScatterPlotItem import ScatterPlotItem
import numpy as np
from .. import functions as fn
from .. import debug as debug
from .. import getConfigOption

class PlotDataItem(GraphicsObject):
    """
    **Bases:** :class:`GraphicsObject <pyqtgraph.GraphicsObject>`
    
    GraphicsItem for displaying plot curves, scatter plots, or both. 
    While it is possible to use :class:`PlotCurveItem <pyqtgraph.PlotCurveItem>` or
    :class:`ScatterPlotItem <pyqtgraph.ScatterPlotItem>` individually, this class
    provides a unified interface to both. Instances of :class:`PlotDataItem` are 
    usually created by plot() methods such as :func:`pyqtgraph.plot` and
    :func:`PlotItem.plot() <pyqtgraph.PlotItem.plot>`.
    
    ============================== ==============================================
    **Signals:**
    sigPlotChanged(self)           Emitted when the data in this item is updated.  
    sigClicked(self)               Emitted when the item is clicked.
    sigPointsClicked(self, points) Emitted when a plot point is clicked
                                   Sends the list of points under the mouse.
    ============================== ==============================================
    """
    
    sigPlotChanged = QtCore.Signal(object)
    sigClicked = QtCore.Signal(object)
    sigPointsClicked = QtCore.Signal(object, object)
    
    def __init__(self, *args, **kargs):
        """
        There are many different ways to create a PlotDataItem:
        
        **Data initialization arguments:** (x,y data only)
        
            =================================== ======================================
            PlotDataItem(xValues, yValues)      x and y values may be any sequence (including ndarray) of real numbers
            PlotDataItem(yValues)               y values only -- x will be automatically set to range(len(y))
            PlotDataItem(x=xValues, y=yValues)  x and y given by keyword arguments
            PlotDataItem(ndarray(Nx2))          numpy array with shape (N, 2) where x=data[:,0] and y=data[:,1]
            =================================== ======================================
        
        **Data initialization arguments:** (x,y data AND may include spot style)
        
            ===========================   =========================================
            PlotDataItem(recarray)        numpy array with dtype=[('x', float), ('y', float), ...]
            PlotDataItem(list-of-dicts)   [{'x': x, 'y': y, ...},   ...] 
            PlotDataItem(dict-of-lists)   {'x': [...], 'y': [...],  ...}           
            PlotDataItem(MetaArray)       1D array of Y values with X sepecified as axis values 
                                          OR 2D array with a column 'y' and extra columns as needed.
            ===========================   =========================================
        
        **Line style keyword arguments:**

            ==========   ==============================================================================
            connect      Specifies how / whether vertexes should be connected. See
                         :func:`arrayToQPath() <pyqtgraph.arrayToQPath>`
            pen          Pen to use for drawing line between points.
                         Default is solid grey, 1px width. Use None to disable line drawing.
                         May be any single argument accepted by :func:`mkPen() <pyqtgraph.mkPen>`
            shadowPen    Pen for secondary line to draw behind the primary line. disabled by default.
                         May be any single argument accepted by :func:`mkPen() <pyqtgraph.mkPen>`
            fillLevel    Fill the area between the curve and fillLevel
            fillBrush    Fill to use when fillLevel is specified. 
                         May be any single argument accepted by :func:`mkBrush() <pyqtgraph.mkBrush>`
            stepMode     If True, two orthogonal lines are drawn for each sample
                         as steps. This is commonly used when drawing histograms.
                         Note that in this case, `len(x) == len(y) + 1`
                         (added in version 0.9.9)
            ==========   ==============================================================================
        
        **Point style keyword arguments:**  (see :func:`ScatterPlotItem.setData() <pyqtgraph.ScatterPlotItem.setData>` for more information)
        
            ============   =====================================================
            symbol         Symbol to use for drawing points OR list of symbols, 
                           one per point. Default is no symbol.
                           Options are o, s, t, d, +, or any QPainterPath
            symbolPen      Outline pen for drawing points OR list of pens, one 
                           per point. May be any single argument accepted by 
                           :func:`mkPen() <pyqtgraph.mkPen>`
            symbolBrush    Brush for filling points OR list of brushes, one per 
                           point. May be any single argument accepted by 
                           :func:`mkBrush() <pyqtgraph.mkBrush>`
            symbolSize     Diameter of symbols OR list of diameters.
            pxMode         (bool) If True, then symbolSize is specified in 
                           pixels. If False, then symbolSize is 
                           specified in data coordinates.
            ============   =====================================================
        
        **Optimization keyword arguments:**
        
            ================ =====================================================================
            antialias        (bool) By default, antialiasing is disabled to improve performance.
                             Note that in some cases (in particluar, when pxMode=True), points 
                             will be rendered antialiased even if this is set to False.
            decimate         deprecated.
            downsample       (int) Reduce the number of samples displayed by this value
            downsampleMethod 'subsample': Downsample by taking the first of N samples. 
                             This method is fastest and least accurate.
                             'mean': Downsample by taking the mean of N samples.
                             'peak': Downsample by drawing a saw wave that follows the min 
                             and max of the original data. This method produces the best 
                             visual representation of the data but is slower.
            autoDownsample   (bool) If True, resample the data before plotting to avoid plotting
                             multiple line segments per pixel. This can improve performance when
                             viewing very high-density data, but increases the initial overhead 
                             and memory usage.
            clipToView       (bool) If True, only plot data that is visible within the X range of
                             the containing ViewBox. This can improve performance when plotting
                             very large data sets where only a fraction of the data is visible
                             at any time.
            identical        *deprecated*
            ================ =====================================================================
        
        **Meta-info keyword arguments:**
        
            ==========   ================================================
            name         name of dataset. This would appear in a legend
            ==========   ================================================
        """
        GraphicsObject.__init__(self)
        self.setFlag(self.ItemHasNoContents)
        self.xData = None
        self.yData = None
        self.xDisp = None
        self.yDisp = None
        #self.dataMask = None
        #self.curves = []
        #self.scatters = []
        self.curve = PlotCurveItem()
        self.scatter = ScatterPlotItem()
        self.curve.setParentItem(self)
        self.scatter.setParentItem(self)
        
        self.curve.sigClicked.connect(self.curveClicked)
        self.scatter.sigClicked.connect(self.scatterClicked)
        
        
        #self.clear()
        self.opts = {
            'connect': 'all',
            
            'fftMode': False,
            'logMode': [False, False],
            'alphaHint': 1.0,
            'alphaMode': False,
            
            'pen': (200,200,200),
            'shadowPen': None,
            'fillLevel': None,
            'fillBrush': None,
            'stepMode': None, 
            
            'symbol': None,
            'symbolSize': 10,
            'symbolPen': (200,200,200),
            'symbolBrush': (50, 50, 150),
            'pxMode': True,
            
            'antialias': getConfigOption('antialias'),
            'pointMode': None,
            
            'downsample': 1,
            'autoDownsample': False,
            'downsampleMethod': 'peak',
            'autoDownsampleFactor': 5.,  # draw ~5 samples per pixel
            'clipToView': False,
            
            'data': None,
        }
        self.setData(*args, **kargs)
    
    def implements(self, interface=None):
        ints = ['plotData']
        if interface is None:
            return ints
        return interface in ints
    
    def name(self):
        return self.opts.get('name', None)
    
    def boundingRect(self):
        return QtCore.QRectF()  ## let child items handle this

    def setAlpha(self, alpha, auto):
        if self.opts['alphaHint'] == alpha and self.opts['alphaMode'] == auto:
            return
        self.opts['alphaHint'] = alpha
        self.opts['alphaMode'] = auto
        self.setOpacity(alpha)
        #self.update()
        
    def setFftMode(self, mode):
        if self.opts['fftMode'] == mode:
            return
        self.opts['fftMode'] = mode
        self.xDisp = self.yDisp = None
        self.xClean = self.yClean = None
        self.updateItems()
        self.informViewBoundsChanged()
    
    def setLogMode(self, xMode, yMode):
        if self.opts['logMode'] == [xMode, yMode]:
            return
        self.opts['logMode'] = [xMode, yMode]
        self.xDisp = self.yDisp = None
        self.xClean = self.yClean = None
        self.updateItems()
        self.informViewBoundsChanged()
    
    def setPointMode(self, mode):
        if self.opts['pointMode'] == mode:
            return
        self.opts['pointMode'] = mode
        self.update()
        
    def setPen(self, *args, **kargs):
        """
        | Sets the pen used to draw lines between points.
        | *pen* can be a QPen or any argument accepted by :func:`pyqtgraph.mkPen() <pyqtgraph.mkPen>`
        """
        pen = fn.mkPen(*args, **kargs)
        self.opts['pen'] = pen
        #self.curve.setPen(pen)
        #for c in self.curves:
            #c.setPen(pen)
        #self.update()
        self.updateItems()
        
    def setShadowPen(self, *args, **kargs):
        """
        | Sets the shadow pen used to draw lines between points (this is for enhancing contrast or 
          emphacizing data). 
        | This line is drawn behind the primary pen (see :func:`setPen() <pyqtgraph.PlotDataItem.setPen>`)
          and should generally be assigned greater width than the primary pen.
        | *pen* can be a QPen or any argument accepted by :func:`pyqtgraph.mkPen() <pyqtgraph.mkPen>`
        """
        pen = fn.mkPen(*args, **kargs)
        self.opts['shadowPen'] = pen
        #for c in self.curves:
            #c.setPen(pen)
        #self.update()
        self.updateItems()
        
    def setFillBrush(self, *args, **kargs):
        brush = fn.mkBrush(*args, **kargs)
        if self.opts['fillBrush'] == brush:
            return
        self.opts['fillBrush'] = brush
        self.updateItems()
        
    def setBrush(self, *args, **kargs):
        return self.setFillBrush(*args, **kargs)
    
    def setFillLevel(self, level):
        if self.opts['fillLevel'] == level:
            return
        self.opts['fillLevel'] = level
        self.updateItems()

    def setSymbol(self, symbol):
        if self.opts['symbol'] == symbol:
            return
        self.opts['symbol'] = symbol
        #self.scatter.setSymbol(symbol)
        self.updateItems()
        
    def setSymbolPen(self, *args, **kargs):
        pen = fn.mkPen(*args, **kargs)
        if self.opts['symbolPen'] == pen:
            return
        self.opts['symbolPen'] = pen
        #self.scatter.setSymbolPen(pen)
        self.updateItems()
        
    
    
    def setSymbolBrush(self, *args, **kargs):
        brush = fn.mkBrush(*args, **kargs)
        if self.opts['symbolBrush'] == brush:
            return
        self.opts['symbolBrush'] = brush
        #self.scatter.setSymbolBrush(brush)
        self.updateItems()
    
    
    def setSymbolSize(self, size):
        if self.opts['symbolSize'] == size:
            return
        self.opts['symbolSize'] = size
        #self.scatter.setSymbolSize(symbolSize)
        self.updateItems()

    def setDownsampling(self, ds=None, auto=None, method=None):
        """
        Set the downsampling mode of this item. Downsampling reduces the number
        of samples drawn to increase performance. 
        
        ==============  =================================================================
        **Arguments:**
        ds              (int) Reduce visible plot samples by this factor. To disable,
                        set ds=1.
        auto            (bool) If True, automatically pick *ds* based on visible range
        mode            'subsample': Downsample by taking the first of N samples.
                        This method is fastest and least accurate.
                        'mean': Downsample by taking the mean of N samples.
                        'peak': Downsample by drawing a saw wave that follows the min
                        and max of the original data. This method produces the best
                        visual representation of the data but is slower.
        ==============  =================================================================
        """
        changed = False
        if ds is not None:
            if self.opts['downsample'] != ds:
                changed = True
                self.opts['downsample'] = ds
                
        if auto is not None and self.opts['autoDownsample'] != auto:
            self.opts['autoDownsample'] = auto
            changed = True
                
        if method is not None:
            if self.opts['downsampleMethod'] != method:
                changed = True
                self.opts['downsampleMethod'] = method
        
        if changed:
            self.xDisp = self.yDisp = None
            self.updateItems()
        
    def setClipToView(self, clip):
        if self.opts['clipToView'] == clip:
            return
        self.opts['clipToView'] = clip
        self.xDisp = self.yDisp = None
        self.updateItems()
        
        
    def setData(self, *args, **kargs):
        """
        Clear any data displayed by this item and display new data.
        See :func:`__init__() <pyqtgraph.PlotDataItem.__init__>` for details; it accepts the same arguments.
        """
        #self.clear()
        profiler = debug.Profiler()
        y = None
        x = None
        if len(args) == 1:
            data = args[0]
            dt = dataType(data)
            if dt == 'empty':
                pass
            elif dt == 'listOfValues':
                y = np.array(data)
            elif dt == 'Nx2array':
                x = data[:,0]
                y = data[:,1]
            elif dt == 'recarray' or dt == 'dictOfLists':
                if 'x' in data:
                    x = np.array(data['x'])
                if 'y' in data:
                    y = np.array(data['y'])
            elif dt ==  'listOfDicts':
                if 'x' in data[0]:
                    x = np.array([d.get('x',None) for d in data])
                if 'y' in data[0]:
                    y = np.array([d.get('y',None) for d in data])
                for k in ['data', 'symbolSize', 'symbolPen', 'symbolBrush', 'symbolShape']:
                    if k in data:
                        kargs[k] = [d.get(k, None) for d in data]
            elif dt == 'MetaArray':
                y = data.view(np.ndarray)
                x = data.xvals(0).view(np.ndarray)
            else:
                raise Exception('Invalid data type %s' % type(data))
            
        elif len(args) == 2:
            seq = ('listOfValues', 'MetaArray', 'empty')
            dtyp = dataType(args[0]), dataType(args[1])
            if dtyp[0] not in seq or dtyp[1] not in seq:
                raise Exception('When passing two unnamed arguments, both must be a list or array of values. (got %s, %s)' % (str(type(args[0])), str(type(args[1]))))
            if not isinstance(args[0], np.ndarray):
                #x = np.array(args[0])
                if dtyp[0] == 'MetaArray':
                    x = args[0].asarray()
                else:
                    x = np.array(args[0])
            else:
                x = args[0].view(np.ndarray)
            if not isinstance(args[1], np.ndarray):
                #y = np.array(args[1])
                if dtyp[1] == 'MetaArray':
                    y = args[1].asarray()
                else:
                    y = np.array(args[1])
            else:
                y = args[1].view(np.ndarray)
            
        if 'x' in kargs:
            x = kargs['x']
        if 'y' in kargs:
            y = kargs['y']

        profiler('interpret data')
        ## pull in all style arguments. 
        ## Use self.opts to fill in anything not present in kargs.
        
        if 'name' in kargs:
            self.opts['name'] = kargs['name']
        if 'connect' in kargs:
            self.opts['connect'] = kargs['connect']

        ## if symbol pen/brush are given with no symbol, then assume symbol is 'o'
        
        if 'symbol' not in kargs and ('symbolPen' in kargs or 'symbolBrush' in kargs or 'symbolSize' in kargs):
            kargs['symbol'] = 'o'
            
        if 'brush' in kargs:
            kargs['fillBrush'] = kargs['brush']
            
        for k in list(self.opts.keys()):
            if k in kargs:
                self.opts[k] = kargs[k]
                
        #curveArgs = {}
        #for k in ['pen', 'shadowPen', 'fillLevel', 'brush']:
            #if k in kargs:
                #self.opts[k] = kargs[k]
            #curveArgs[k] = self.opts[k]
            
        #scatterArgs = {}
        #for k,v in [('symbolPen','pen'), ('symbolBrush','brush'), ('symbol','symbol')]:
            #if k in kargs:
                #self.opts[k] = kargs[k]
            #scatterArgs[v] = self.opts[k]
        

        if y is None:
            return
        if y is not None and x is None:
            x = np.arange(len(y))
        
        if isinstance(x, list):
            x = np.array(x)
        if isinstance(y, list):
            y = np.array(y)
        
        self.xData = x.view(np.ndarray)  ## one last check to make sure there are no MetaArrays getting by
        self.yData = y.view(np.ndarray)
        self.xClean = self.yClean = None
        self.xDisp = None
        self.yDisp = None
        profiler('set data')
        
        self.updateItems()
        profiler('update items')
        
        self.informViewBoundsChanged()
        #view = self.getViewBox()
        #if view is not None:
            #view.itemBoundsChanged(self)  ## inform view so it can update its range if it wants
        
        self.sigPlotChanged.emit(self)
        profiler('emit')

    def updateItems(self):
        
        curveArgs = {}
        for k,v in [('pen','pen'), ('shadowPen','shadowPen'), ('fillLevel','fillLevel'), ('fillBrush', 'brush'), ('antialias', 'antialias'), ('connect', 'connect'), ('stepMode', 'stepMode')]:
            curveArgs[v] = self.opts[k]
        
        scatterArgs = {}
        for k,v in [('symbolPen','pen'), ('symbolBrush','brush'), ('symbol','symbol'), ('symbolSize', 'size'), ('data', 'data'), ('pxMode', 'pxMode'), ('antialias', 'antialias')]:
            if k in self.opts:
                scatterArgs[v] = self.opts[k]
        
        x,y = self.getData()
        #scatterArgs['mask'] = self.dataMask
        
        if curveArgs['pen'] is not None or (curveArgs['brush'] is not None and curveArgs['fillLevel'] is not None):
            self.curve.setData(x=x, y=y, **curveArgs)
            self.curve.show()
        else:
            self.curve.hide()
        
        if scatterArgs['symbol'] is not None:
            self.scatter.setData(x=x, y=y, **scatterArgs)
            self.scatter.show()
        else:
            self.scatter.hide()


    def getData(self):
        if self.xData is None:
            return (None, None)
        
        #if self.xClean is None:
            #nanMask = np.isnan(self.xData) | np.isnan(self.yData) | np.isinf(self.xData) | np.isinf(self.yData)
            #if nanMask.any():
                #self.dataMask = ~nanMask
                #self.xClean = self.xData[self.dataMask]
                #self.yClean = self.yData[self.dataMask]
            #else:
                #self.dataMask = None
                #self.xClean = self.xData
                #self.yClean = self.yData
            
        if self.xDisp is None:
            x = self.xData
            y = self.yData
            
            
            #ds = self.opts['downsample']
            #if isinstance(ds, int) and ds > 1:
                #x = x[::ds]
                ##y = resample(y[:len(x)*ds], len(x))  ## scipy.signal.resample causes nasty ringing
                #y = y[::ds]
            if self.opts['fftMode']:
                x,y = self._fourierTransform(x, y)
            if self.opts['logMode'][0]:
                x = np.log10(x)
            if self.opts['logMode'][1]:
                y = np.log10(y)
            #if any(self.opts['logMode']):  ## re-check for NANs after log
                #nanMask = np.isinf(x) | np.isinf(y) | np.isnan(x) | np.isnan(y)
                #if any(nanMask):
                    #self.dataMask = ~nanMask
                    #x = x[self.dataMask]
                    #y = y[self.dataMask]
                #else:
                    #self.dataMask = None
                    
            ds = self.opts['downsample']
            if not isinstance(ds, int):
                ds = 1
                
            if self.opts['autoDownsample']:
                # this option presumes that x-values have uniform spacing
                range = self.viewRect()
                if range is not None:
                    dx = float(x[-1]-x[0]) / (len(x)-1)
                    x0 = (range.left()-x[0]) / dx
                    x1 = (range.right()-x[0]) / dx
                    width = self.getViewBox().width()
                    if width != 0.0:
                        ds = int(max(1, int((x1-x0) / (width*self.opts['autoDownsampleFactor']))))
                    ## downsampling is expensive; delay until after clipping.
            
            if self.opts['clipToView']:
                view = self.getViewBox()
                if view is None or not view.autoRangeEnabled()[0]:
                    # this option presumes that x-values have uniform spacing
                    range = self.viewRect()
                    if range is not None and len(x) > 1:
                        dx = float(x[-1]-x[0]) / (len(x)-1)
                        # clip to visible region extended by downsampling value
                        x0 = np.clip(int((range.left()-x[0])/dx)-1*ds , 0, len(x)-1)
                        x1 = np.clip(int((range.right()-x[0])/dx)+2*ds , 0, len(x)-1)
                        x = x[x0:x1]
                        y = y[x0:x1]
                    
            if ds > 1:
                if self.opts['downsampleMethod'] == 'subsample':
                    x = x[::ds]
                    y = y[::ds]
                elif self.opts['downsampleMethod'] == 'mean':
                    n = len(x) / ds
                    x = x[:n*ds:ds]
                    y = y[:n*ds].reshape(n,ds).mean(axis=1)
                elif self.opts['downsampleMethod'] == 'peak':
                    n = len(x) / ds
                    x1 = np.empty((n,2))
                    x1[:] = x[:n*ds:ds,np.newaxis]
                    x = x1.reshape(n*2)
                    y1 = np.empty((n,2))
                    y2 = y[:n*ds].reshape((n, ds))
                    y1[:,0] = y2.max(axis=1)
                    y1[:,1] = y2.min(axis=1)
                    y = y1.reshape(n*2)
                
                    
            self.xDisp = x
            self.yDisp = y
        #print self.yDisp.shape, self.yDisp.min(), self.yDisp.max()
        #print self.xDisp.shape, self.xDisp.min(), self.xDisp.max()
        return self.xDisp, self.yDisp

    def dataBounds(self, ax, frac=1.0, orthoRange=None):
        """
        Returns the range occupied by the data (along a specific axis) in this item.
        This method is called by ViewBox when auto-scaling.

        =============== =============================================================
        **Arguments:**
        ax              (0 or 1) the axis for which to return this item's data range
        frac            (float 0.0-1.0) Specifies what fraction of the total data 
                        range to return. By default, the entire range is returned.
                        This allows the ViewBox to ignore large spikes in the data
                        when auto-scaling.
        orthoRange      ([min,max] or None) Specifies that only the data within the
                        given range (orthogonal to *ax*) should me measured when 
                        returning the data range. (For example, a ViewBox might ask
                        what is the y-range of all data with x-values between min
                        and max)
        =============== =============================================================
        """
        
        range = [None, None]
        if self.curve.isVisible():
            range = self.curve.dataBounds(ax, frac, orthoRange)
        elif self.scatter.isVisible():
            r2 = self.scatter.dataBounds(ax, frac, orthoRange)
            range = [
                r2[0] if range[0] is None else (range[0] if r2[0] is None else min(r2[0], range[0])),
                r2[1] if range[1] is None else (range[1] if r2[1] is None else min(r2[1], range[1]))
                ]
        return range
    
    def pixelPadding(self):
        """
        Return the size in pixels that this item may draw beyond the values returned by dataBounds().
        This method is called by ViewBox when auto-scaling.
        """
        pad = 0
        if self.curve.isVisible():
            pad = max(pad, self.curve.pixelPadding())
        elif self.scatter.isVisible():
            pad = max(pad, self.scatter.pixelPadding())
        return pad
        

    def clear(self):
        #for i in self.curves+self.scatters:
            #if i.scene() is not None:
                #i.scene().removeItem(i)
        #self.curves = []
        #self.scatters = []
        self.xData = None
        self.yData = None
        #self.xClean = None
        #self.yClean = None
        self.xDisp = None
        self.yDisp = None
        self.curve.setData([])
        self.scatter.setData([])
            
    def appendData(self, *args, **kargs):
        pass
    
    def curveClicked(self):
        self.sigClicked.emit(self)
        
    def scatterClicked(self, plt, points):
        self.sigClicked.emit(self)
        self.sigPointsClicked.emit(self, points)
    
    def viewRangeChanged(self):
        # view range has changed; re-plot if needed
        if self.opts['clipToView'] or self.opts['autoDownsample']:
            self.xDisp = self.yDisp = None
            self.updateItems()
            
    def _fourierTransform(self, x, y):
        ## Perform fourier transform. If x values are not sampled uniformly,
        ## then use np.interp to resample before taking fft.
        dx = np.diff(x)
        uniform = not np.any(np.abs(dx-dx[0]) > (abs(dx[0]) / 1000.))
        if not uniform:
            x2 = np.linspace(x[0], x[-1], len(x))
            y = np.interp(x2, x, y)
            x = x2
        f = np.fft.fft(y) / len(y)
        y = abs(f[1:len(f)/2])
        dt = x[-1] - x[0]
        x = np.linspace(0, 0.5*len(x)/dt, len(y))
        return x, y
    
def dataType(obj):
    if hasattr(obj, '__len__') and len(obj) == 0:
        return 'empty'
    if isinstance(obj, dict):
        return 'dictOfLists'
    elif isSequence(obj):
        first = obj[0]
        
        if (hasattr(obj, 'implements') and obj.implements('MetaArray')):
            return 'MetaArray'
        elif isinstance(obj, np.ndarray):
            if obj.ndim == 1:
                if obj.dtype.names is None:
                    return 'listOfValues'
                else:
                    return 'recarray'
            elif obj.ndim == 2 and obj.dtype.names is None and obj.shape[1] == 2:
                return 'Nx2array'
            else:
                raise Exception('array shape must be (N,) or (N,2); got %s instead' % str(obj.shape))
        elif isinstance(first, dict):
            return 'listOfDicts'
        else:
            return 'listOfValues'
        
        
def isSequence(obj):
    return hasattr(obj, '__iter__') or isinstance(obj, np.ndarray) or (hasattr(obj, 'implements') and obj.implements('MetaArray'))
    
            
            
#class TableData:
    #"""
    #Class for presenting multiple forms of tabular data through a consistent interface.
    #May contain:
        #- numpy record array
        #- list-of-dicts (all dicts are _not_ required to have the same keys)
        #- dict-of-lists
        #- dict (single record)
               #Note: if all the values in this record are lists, it will be interpreted as multiple records
        
    #Data can be accessed and modified by column, by row, or by value
        #data[columnName]
        #data[rowId]
        #data[columnName, rowId] = value
        #data[columnName] = [value, value, ...]
        #data[rowId] = {columnName: value, ...}
    #"""
    
    #def __init__(self, data):
        #self.data = data
        #if isinstance(data, np.ndarray):
            #self.mode = 'array'
        #elif isinstance(data, list):
            #self.mode = 'list'
        #elif isinstance(data, dict):
            #types = set(map(type, data.values()))
            ### dict may be a dict-of-lists or a single record
            #types -= set([list, np.ndarray]) ## if dict contains any non-sequence values, it is probably a single record.
            #if len(types) != 0:
                #self.data = [self.data]
                #self.mode = 'list'
            #else:
                #self.mode = 'dict'
        #elif isinstance(data, TableData):
            #self.data = data.data
            #self.mode = data.mode
        #else:
            #raise TypeError(type(data))
        
        #for fn in ['__getitem__', '__setitem__']:
            #setattr(self, fn, getattr(self, '_TableData'+fn+self.mode))
        
    #def originalData(self):
        #return self.data
    
    #def toArray(self):
        #if self.mode == 'array':
            #return self.data
        #if len(self) < 1:
            ##return np.array([])  ## need to return empty array *with correct columns*, but this is very difficult, so just return None
            #return None
        #rec1 = self[0]
        #dtype = functions.suggestRecordDType(rec1)
        ##print rec1, dtype
        #arr = np.empty(len(self), dtype=dtype)
        #arr[0] = tuple(rec1.values())
        #for i in xrange(1, len(self)):
            #arr[i] = tuple(self[i].values())
        #return arr
            
    #def __getitem__array(self, arg):
        #if isinstance(arg, tuple):
            #return self.data[arg[0]][arg[1]]
        #else:
            #return self.data[arg]
            
    #def __getitem__list(self, arg):
        #if isinstance(arg, basestring):
            #return [d.get(arg, None) for d in self.data]
        #elif isinstance(arg, int):
            #return self.data[arg]
        #elif isinstance(arg, tuple):
            #arg = self._orderArgs(arg)
            #return self.data[arg[0]][arg[1]]
        #else:
            #raise TypeError(type(arg))
        
    #def __getitem__dict(self, arg):
        #if isinstance(arg, basestring):
            #return self.data[arg]
        #elif isinstance(arg, int):
            #return dict([(k, v[arg]) for k, v in self.data.iteritems()])
        #elif isinstance(arg, tuple):
            #arg = self._orderArgs(arg)
            #return self.data[arg[1]][arg[0]]
        #else:
            #raise TypeError(type(arg))

    #def __setitem__array(self, arg, val):
        #if isinstance(arg, tuple):
            #self.data[arg[0]][arg[1]] = val
        #else:
            #self.data[arg] = val

    #def __setitem__list(self, arg, val):
        #if isinstance(arg, basestring):
            #if len(val) != len(self.data):
                #raise Exception("Values (%d) and data set (%d) are not the same length." % (len(val), len(self.data)))
            #for i, rec in enumerate(self.data):
                #rec[arg] = val[i]
        #elif isinstance(arg, int):
            #self.data[arg] = val
        #elif isinstance(arg, tuple):
            #arg = self._orderArgs(arg)
            #self.data[arg[0]][arg[1]] = val
        #else:
            #raise TypeError(type(arg))
        
    #def __setitem__dict(self, arg, val):
        #if isinstance(arg, basestring):
            #if len(val) != len(self.data[arg]):
                #raise Exception("Values (%d) and data set (%d) are not the same length." % (len(val), len(self.data[arg])))
            #self.data[arg] = val
        #elif isinstance(arg, int):
            #for k in self.data:
                #self.data[k][arg] = val[k]
        #elif isinstance(arg, tuple):
            #arg = self._orderArgs(arg)
            #self.data[arg[1]][arg[0]] = val
        #else:
            #raise TypeError(type(arg))

    #def _orderArgs(self, args):
        ### return args in (int, str) order
        #if isinstance(args[0], basestring):
            #return (args[1], args[0])
        #else:
            #return args
        
    #def __iter__(self):
        #for i in xrange(len(self)):
            #yield self[i]

    #def __len__(self):
        #if self.mode == 'array' or self.mode == 'list':
            #return len(self.data)
        #else:
            #return max(map(len, self.data.values()))

    #def columnNames(self):
        #"""returns column names in no particular order"""
        #if self.mode == 'array':
            #return self.data.dtype.names
        #elif self.mode == 'list':
            #names = set()
            #for row in self.data:
                #names.update(row.keys())
            #return list(names)
        #elif self.mode == 'dict':
            #return self.data.keys()
            
    #def keys(self):
        #return self.columnNames()