This file is indexed.

/usr/lib/python2.7/dist-packages/pyqtgraph/opengl/MeshData.py is in python-pyqtgraph 0.9.10-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
from ..Qt import QtGui
from .. import functions as fn
import numpy as np

class MeshData(object):
    """
    Class for storing and operating on 3D mesh data. May contain:
    
    - list of vertex locations
    - list of edges
    - list of triangles
    - colors per vertex, edge, or tri
    - normals per vertex or tri
    
    This class handles conversion between the standard [list of vertexes, list of faces]
    format (suitable for use with glDrawElements) and 'indexed' [list of vertexes] format
    (suitable for use with glDrawArrays). It will automatically compute face normal
    vectors as well as averaged vertex normal vectors. 
    
    The class attempts to be as efficient as possible in caching conversion results and
    avoiding unnecessary conversions.
    """

    def __init__(self, vertexes=None, faces=None, edges=None, vertexColors=None, faceColors=None):
        """
        ==============  =====================================================
        **Arguments:**
        vertexes        (Nv, 3) array of vertex coordinates.
                        If faces is not specified, then this will instead be
                        interpreted as (Nf, 3, 3) array of coordinates.
        faces           (Nf, 3) array of indexes into the vertex array.
        edges           [not available yet]
        vertexColors    (Nv, 4) array of vertex colors.
                        If faces is not specified, then this will instead be
                        interpreted as (Nf, 3, 4) array of colors.
        faceColors      (Nf, 4) array of face colors.
        ==============  =====================================================
        
        All arguments are optional.
        """
        self._vertexes = None  # (Nv,3) array of vertex coordinates
        self._vertexesIndexedByFaces = None   #  (Nf, 3, 3) array of vertex coordinates
        self._vertexesIndexedByEdges = None   #  (Ne, 2, 3) array of vertex coordinates
        
        ## mappings between vertexes, faces, and edges
        self._faces = None   # Nx3 array of indexes into self._vertexes specifying three vertexes for each face
        self._edges = None   # Nx2 array of indexes into self._vertexes specifying two vertexes per edge
        self._vertexFaces = None  ## maps vertex ID to a list of face IDs (inverse mapping of _faces)
        self._vertexEdges = None  ## maps vertex ID to a list of edge IDs (inverse mapping of _edges)
        
        ## Per-vertex data
        self._vertexNormals = None                # (Nv, 3) array of normals, one per vertex
        self._vertexNormalsIndexedByFaces = None  # (Nf, 3, 3) array of normals
        self._vertexColors = None                 # (Nv, 3) array of colors
        self._vertexColorsIndexedByFaces = None   # (Nf, 3, 4) array of colors
        self._vertexColorsIndexedByEdges = None   # (Nf, 2, 4) array of colors
        
        ## Per-face data
        self._faceNormals = None                # (Nf, 3) array of face normals
        self._faceNormalsIndexedByFaces = None  # (Nf, 3, 3) array of face normals
        self._faceColors = None                 # (Nf, 4) array of face colors
        self._faceColorsIndexedByFaces = None   # (Nf, 3, 4) array of face colors
        self._faceColorsIndexedByEdges = None   # (Ne, 2, 4) array of face colors
        
        ## Per-edge data
        self._edgeColors = None                # (Ne, 4) array of edge colors
        self._edgeColorsIndexedByEdges = None  # (Ne, 2, 4) array of edge colors
        #self._meshColor = (1, 1, 1, 0.1)  # default color to use if no face/edge/vertex colors are given
        
        
        
        if vertexes is not None:
            if faces is None:
                self.setVertexes(vertexes, indexed='faces')
                if vertexColors is not None:
                    self.setVertexColors(vertexColors, indexed='faces')
                if faceColors is not None:
                    self.setFaceColors(faceColors, indexed='faces')
            else:
                self.setVertexes(vertexes)
                self.setFaces(faces)
                if vertexColors is not None:
                    self.setVertexColors(vertexColors)
                if faceColors is not None:
                    self.setFaceColors(faceColors)
            
    def faces(self):
        """Return an array (Nf, 3) of vertex indexes, three per triangular face in the mesh.
        
        If faces have not been computed for this mesh, the function returns None.
        """
        return self._faces
    
    def edges(self):
        """Return an array (Nf, 3) of vertex indexes, two per edge in the mesh."""
        if self._edges is None:
            self._computeEdges()
        return self._edges
        
    def setFaces(self, faces):
        """Set the (Nf, 3) array of faces. Each rown in the array contains
        three indexes into the vertex array, specifying the three corners 
        of a triangular face."""
        self._faces = faces
        self._edges = None
        self._vertexFaces = None
        self._vertexesIndexedByFaces = None
        self.resetNormals()
        self._vertexColorsIndexedByFaces = None
        self._faceColorsIndexedByFaces = None
    
    def vertexes(self, indexed=None):
        """Return an array (N,3) of the positions of vertexes in the mesh. 
        By default, each unique vertex appears only once in the array.
        If indexed is 'faces', then the array will instead contain three vertexes
        per face in the mesh (and a single vertex may appear more than once in the array)."""
        if indexed is None:
            if self._vertexes is None and self._vertexesIndexedByFaces is not None:
                self._computeUnindexedVertexes()
            return self._vertexes
        elif indexed == 'faces':
            if self._vertexesIndexedByFaces is None and self._vertexes is not None:
                self._vertexesIndexedByFaces = self._vertexes[self.faces()]
            return self._vertexesIndexedByFaces
        else:
            raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
        
    def setVertexes(self, verts=None, indexed=None, resetNormals=True):
        """
        Set the array (Nv, 3) of vertex coordinates.
        If indexed=='faces', then the data must have shape (Nf, 3, 3) and is
        assumed to be already indexed as a list of faces.
        This will cause any pre-existing normal vectors to be cleared
        unless resetNormals=False.
        """
        if indexed is None:
            if verts is not None:
                self._vertexes = verts
            self._vertexesIndexedByFaces = None
        elif indexed=='faces':
            self._vertexes = None
            if verts is not None:
                self._vertexesIndexedByFaces = verts
        else:
            raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
        
        if resetNormals:
            self.resetNormals()
    
    def resetNormals(self):
        self._vertexNormals = None
        self._vertexNormalsIndexedByFaces = None
        self._faceNormals = None
        self._faceNormalsIndexedByFaces = None
        
    def hasFaceIndexedData(self):
        """Return True if this object already has vertex positions indexed by face"""
        return self._vertexesIndexedByFaces is not None
    
    def hasEdgeIndexedData(self):
        return self._vertexesIndexedByEdges is not None
    
    def hasVertexColor(self):
        """Return True if this data set has vertex color information"""
        for v in (self._vertexColors, self._vertexColorsIndexedByFaces, self._vertexColorsIndexedByEdges):
            if v is not None:
                return True
        return False
        
    def hasFaceColor(self):
        """Return True if this data set has face color information"""
        for v in (self._faceColors, self._faceColorsIndexedByFaces, self._faceColorsIndexedByEdges):
            if v is not None:
                return True
        return False
    
    def faceNormals(self, indexed=None):
        """
        Return an array (Nf, 3) of normal vectors for each face.
        If indexed='faces', then instead return an indexed array
        (Nf, 3, 3)  (this is just the same array with each vector
        copied three times).
        """
        if self._faceNormals is None:
            v = self.vertexes(indexed='faces')
            self._faceNormals = np.cross(v[:,1]-v[:,0], v[:,2]-v[:,0])
        
        if indexed is None:
            return self._faceNormals
        elif indexed == 'faces':
            if self._faceNormalsIndexedByFaces is None:
                norms = np.empty((self._faceNormals.shape[0], 3, 3))
                norms[:] = self._faceNormals[:,np.newaxis,:]
                self._faceNormalsIndexedByFaces = norms
            return self._faceNormalsIndexedByFaces
        else:
            raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
        
    def vertexNormals(self, indexed=None):
        """
        Return an array of normal vectors.
        By default, the array will be (N, 3) with one entry per unique vertex in the mesh.
        If indexed is 'faces', then the array will contain three normal vectors per face
        (and some vertexes may be repeated).
        """
        if self._vertexNormals is None:
            faceNorms = self.faceNormals()
            vertFaces = self.vertexFaces()
            self._vertexNormals = np.empty(self._vertexes.shape, dtype=float)
            for vindex in xrange(self._vertexes.shape[0]):
                faces = vertFaces[vindex]
                if len(faces) == 0:
                    self._vertexNormals[vindex] = (0,0,0)
                    continue
                norms = faceNorms[faces]  ## get all face normals
                norm = norms.sum(axis=0)       ## sum normals
                norm /= (norm**2).sum()**0.5  ## and re-normalize
                self._vertexNormals[vindex] = norm
                
        if indexed is None:
            return self._vertexNormals
        elif indexed == 'faces':
            return self._vertexNormals[self.faces()]
        else:
            raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
        
    def vertexColors(self, indexed=None):
        """
        Return an array (Nv, 4) of vertex colors.
        If indexed=='faces', then instead return an indexed array
        (Nf, 3, 4). 
        """
        if indexed is None:
            return self._vertexColors
        elif indexed == 'faces':
            if self._vertexColorsIndexedByFaces is None:
                self._vertexColorsIndexedByFaces = self._vertexColors[self.faces()]
            return self._vertexColorsIndexedByFaces
        else:
            raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
        
    def setVertexColors(self, colors, indexed=None):
        """
        Set the vertex color array (Nv, 4).
        If indexed=='faces', then the array will be interpreted
        as indexed and should have shape (Nf, 3, 4)
        """
        if indexed is None:
            self._vertexColors = colors
            self._vertexColorsIndexedByFaces = None
        elif indexed == 'faces':
            self._vertexColors = None
            self._vertexColorsIndexedByFaces = colors
        else:
            raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
        
    def faceColors(self, indexed=None):
        """
        Return an array (Nf, 4) of face colors.
        If indexed=='faces', then instead return an indexed array
        (Nf, 3, 4)  (note this is just the same array with each color
        repeated three times). 
        """
        if indexed is None:
            return self._faceColors
        elif indexed == 'faces':
            if self._faceColorsIndexedByFaces is None and self._faceColors is not None:
                Nf = self._faceColors.shape[0]
                self._faceColorsIndexedByFaces = np.empty((Nf, 3, 4), dtype=self._faceColors.dtype)
                self._faceColorsIndexedByFaces[:] = self._faceColors.reshape(Nf, 1, 4)
            return self._faceColorsIndexedByFaces
        else:
            raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
        
    def setFaceColors(self, colors, indexed=None):
        """
        Set the face color array (Nf, 4).
        If indexed=='faces', then the array will be interpreted
        as indexed and should have shape (Nf, 3, 4)
        """
        if indexed is None:
            self._faceColors = colors
            self._faceColorsIndexedByFaces = None
        elif indexed == 'faces':
            self._faceColors = None
            self._faceColorsIndexedByFaces = colors
        else:
            raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
        
    def faceCount(self):
        """
        Return the number of faces in the mesh.
        """
        if self._faces is not None:
            return self._faces.shape[0]
        elif self._vertexesIndexedByFaces is not None:
            return self._vertexesIndexedByFaces.shape[0]
        
    def edgeColors(self):
        return self._edgeColors
        
    #def _setIndexedFaces(self, faces, vertexColors=None, faceColors=None):
        #self._vertexesIndexedByFaces = faces
        #self._vertexColorsIndexedByFaces = vertexColors
        #self._faceColorsIndexedByFaces = faceColors
        
    def _computeUnindexedVertexes(self):
        ## Given (Nv, 3, 3) array of vertexes-indexed-by-face, convert backward to unindexed vertexes
        ## This is done by collapsing into a list of 'unique' vertexes (difference < 1e-14) 
        
        ## I think generally this should be discouraged..
        faces = self._vertexesIndexedByFaces
        verts = {}  ## used to remember the index of each vertex position
        self._faces = np.empty(faces.shape[:2], dtype=np.uint)
        self._vertexes = []
        self._vertexFaces = []
        self._faceNormals = None
        self._vertexNormals = None
        for i in xrange(faces.shape[0]):
            face = faces[i]
            inds = []
            for j in range(face.shape[0]):
                pt = face[j]
                pt2 = tuple([round(x*1e14) for x in pt])  ## quantize to be sure that nearly-identical points will be merged
                index = verts.get(pt2, None)
                if index is None:
                    #self._vertexes.append(QtGui.QVector3D(*pt))
                    self._vertexes.append(pt)
                    self._vertexFaces.append([])
                    index = len(self._vertexes)-1
                    verts[pt2] = index
                self._vertexFaces[index].append(i)  # keep track of which vertexes belong to which faces
                self._faces[i,j] = index
        self._vertexes = np.array(self._vertexes, dtype=float)
    
    #def _setUnindexedFaces(self, faces, vertexes, vertexColors=None, faceColors=None):
        #self._vertexes = vertexes #[QtGui.QVector3D(*v) for v in vertexes]
        #self._faces = faces.astype(np.uint)
        #self._edges = None
        #self._vertexFaces = None
        #self._faceNormals = None
        #self._vertexNormals = None
        #self._vertexColors = vertexColors
        #self._faceColors = faceColors

    def vertexFaces(self):
        """
        Return list mapping each vertex index to a list of face indexes that use the vertex.
        """
        if self._vertexFaces is None:
            self._vertexFaces = [[] for i in xrange(len(self.vertexes()))]
            for i in xrange(self._faces.shape[0]):
                face = self._faces[i]
                for ind in face:
                    self._vertexFaces[ind].append(i)
        return self._vertexFaces
        
    #def reverseNormals(self):
        #"""
        #Reverses the direction of all normal vectors.
        #"""
        #pass
        
    #def generateEdgesFromFaces(self):
        #"""
        #Generate a set of edges by listing all the edges of faces and removing any duplicates.
        #Useful for displaying wireframe meshes.
        #"""
        #pass
        
    def _computeEdges(self):
        if not self.hasFaceIndexedData:
            ## generate self._edges from self._faces
            nf = len(self._faces)
            edges = np.empty(nf*3, dtype=[('i', np.uint, 2)])
            edges['i'][0:nf] = self._faces[:,:2]
            edges['i'][nf:2*nf] = self._faces[:,1:3]
            edges['i'][-nf:,0] = self._faces[:,2]
            edges['i'][-nf:,1] = self._faces[:,0]
            
            # sort per-edge
            mask = edges['i'][:,0] > edges['i'][:,1]
            edges['i'][mask] = edges['i'][mask][:,::-1]
            
            # remove duplicate entries
            self._edges = np.unique(edges)['i']
            #print self._edges
        elif self._vertexesIndexedByFaces is not None:
            verts = self._vertexesIndexedByFaces
            edges = np.empty((verts.shape[0], 3, 2), dtype=np.uint)
            nf = verts.shape[0]
            edges[:,0,0] = np.arange(nf) * 3
            edges[:,0,1] = edges[:,0,0] + 1
            edges[:,1,0] = edges[:,0,1]
            edges[:,1,1] = edges[:,1,0] + 1
            edges[:,2,0] = edges[:,1,1]
            edges[:,2,1] = edges[:,0,0]
            self._edges = edges
        else:
            raise Exception("MeshData cannot generate edges--no faces in this data.")
        
        
    def save(self):
        """Serialize this mesh to a string appropriate for disk storage"""
        import pickle
        if self._faces is not None:
            names = ['_vertexes', '_faces']
        else:
            names = ['_vertexesIndexedByFaces']
            
        if self._vertexColors is not None:
            names.append('_vertexColors')
        elif self._vertexColorsIndexedByFaces is not None:
            names.append('_vertexColorsIndexedByFaces')
            
        if self._faceColors is not None:
            names.append('_faceColors')
        elif self._faceColorsIndexedByFaces is not None:
            names.append('_faceColorsIndexedByFaces')
            
        state = dict([(n,getattr(self, n)) for n in names])
        return pickle.dumps(state)
        
    def restore(self, state):
        """Restore the state of a mesh previously saved using save()"""
        import pickle
        state = pickle.loads(state)
        for k in state:
            if isinstance(state[k], list):
                if isinstance(state[k][0], QtGui.QVector3D):
                    state[k] = [[v.x(), v.y(), v.z()] for v in state[k]]
                state[k] = np.array(state[k])
            setattr(self, k, state[k])



    @staticmethod
    def sphere(rows, cols, radius=1.0, offset=True):
        """
        Return a MeshData instance with vertexes and faces computed
        for a spherical surface.
        """
        verts = np.empty((rows+1, cols, 3), dtype=float)
        
        ## compute vertexes
        phi = (np.arange(rows+1) * np.pi / rows).reshape(rows+1, 1)
        s = radius * np.sin(phi)
        verts[...,2] = radius * np.cos(phi)
        th = ((np.arange(cols) * 2 * np.pi / cols).reshape(1, cols)) 
        if offset:
            th = th + ((np.pi / cols) * np.arange(rows+1).reshape(rows+1,1))  ## rotate each row by 1/2 column
        verts[...,0] = s * np.cos(th)
        verts[...,1] = s * np.sin(th)
        verts = verts.reshape((rows+1)*cols, 3)[cols-1:-(cols-1)]  ## remove redundant vertexes from top and bottom
        
        ## compute faces
        faces = np.empty((rows*cols*2, 3), dtype=np.uint)
        rowtemplate1 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 0]])) % cols) + np.array([[0, 0, cols]])
        rowtemplate2 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 1]])) % cols) + np.array([[cols, 0, cols]])
        for row in range(rows):
            start = row * cols * 2 
            faces[start:start+cols] = rowtemplate1 + row * cols
            faces[start+cols:start+(cols*2)] = rowtemplate2 + row * cols
        faces = faces[cols:-cols]  ## cut off zero-area triangles at top and bottom
        
        ## adjust for redundant vertexes that were removed from top and bottom
        vmin = cols-1
        faces[faces<vmin] = vmin
        faces -= vmin  
        vmax = verts.shape[0]-1
        faces[faces>vmax] = vmax
        
        return MeshData(vertexes=verts, faces=faces)
        
    @staticmethod
    def cylinder(rows, cols, radius=[1.0, 1.0], length=1.0, offset=False):
        """
        Return a MeshData instance with vertexes and faces computed
        for a cylindrical surface.
        The cylinder may be tapered with different radii at each end (truncated cone)
        """
        verts = np.empty((rows+1, cols, 3), dtype=float)
        if isinstance(radius, int):
            radius = [radius, radius] # convert to list
        ## compute vertexes
        th = np.linspace(2 * np.pi, 0, cols).reshape(1, cols)
        r = np.linspace(radius[0],radius[1],num=rows+1, endpoint=True).reshape(rows+1, 1) # radius as a function of z
        verts[...,2] = np.linspace(0, length, num=rows+1, endpoint=True).reshape(rows+1, 1) # z
        if offset:
            th = th + ((np.pi / cols) * np.arange(rows+1).reshape(rows+1,1))  ## rotate each row by 1/2 column
        verts[...,0] = r * np.cos(th) # x = r cos(th)
        verts[...,1] = r * np.sin(th) # y = r sin(th)
        verts = verts.reshape((rows+1)*cols, 3) # just reshape: no redundant vertices...
        ## compute faces
        faces = np.empty((rows*cols*2, 3), dtype=np.uint)
        rowtemplate1 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 0]])) % cols) + np.array([[0, 0, cols]])
        rowtemplate2 = ((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 1]])) % cols) + np.array([[cols, 0, cols]])
        for row in range(rows):
            start = row * cols * 2 
            faces[start:start+cols] = rowtemplate1 + row * cols
            faces[start+cols:start+(cols*2)] = rowtemplate2 + row * cols
        
        return MeshData(vertexes=verts, faces=faces)