/usr/lib/python2.7/dist-packages/scitools/TkGUI.py is in python-scitools 0.9.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 | """
Module with functions and classes used in the GUI chapters of
the book "Python Scripting for Computational Science".
"""
# NOTE: This file merges the previous modules
# CanvasCoords, FunctionSelector, DrawFunction, FuncDependenceViz,
# ParameterInterface
#
import Tkinter, os
from scitools.misc import import_module
Pmw = import_module('Pmw')
class DrawFunction:
"""
Interactive drawing of y=f(x) functions.
The drawing takes place in a Pmw.Blt.Graph widget.
"""
def __init__(self, xcoor, parent,
ymin=0.0, ymax=1.0,
width=500, height=200,
curvename=' ', ylabel='', xlabel='',
curvecolor='green', curvewidth=4,
yrange_widgets=True):
"""
Interactive drawing of a function.
xcoor grid points (on the x axsis) for interpolation
parent parent widget
ymin, ymax initial extent of the y axis
width, height size of widget
curvename name of function to be drawn
xlabel, ylabel labels on the axis
curvecolor color of the drawn curve
curvewidth line thickness of the drawn curve
yrange_widgets True: add text entries for range of y axis
These parameters, except for parent and yrange_widgets,
can also be set as keyword arguments in the configure method.
"""
self.master = parent
self.top = Tkinter.Frame(self.master)
# packed in self.pack(); the user can then place this
# DrawFunction wherever it is desired in a big GUI
frame1 = Tkinter.Frame(self.top); frame1.pack(side='top')
if yrange_widgets:
column1 = Tkinter.Frame(frame1)
column1.pack(side='left')
if ylabel: yl = ylabel
else: yl = 'y'
self.ymin_widget = Pmw.EntryField(column1,
labelpos='n', label_text=yl+' min',
entry_width=6, command=self.__ymin)
self.ymin_widget.pack(side='top',padx=2,pady=2)
self.ymax_widget = Pmw.EntryField(column1,
labelpos='n', label_text=yl+' max',
entry_width=6, command=self.__ymax)
self.ymax_widget.pack(side='top',padx=2,pady=2)
Pmw.alignlabels([self.ymin_widget,self.ymax_widget])
self.g = Pmw.Blt.Graph(frame1,
width=width, height=height)
self.g.pack(side='left', expand=1, fill='both')
if yrange_widgets:
self.set_yaxis(ymin, ymax)
self.configure(xcoor=xcoor, width=width, height=height,
curvename=curvename, curvecolor=curvecolor,
curvewidth=curvewidth,
xlabel=xlabel, ylabel=ylabel)
self.g.grid_on()
self.g.bind('<ButtonPress>', self.mouse_down)
self.g.bind('<ButtonRelease>', self.mouse_up)
row1 = Tkinter.Frame(self.top)
row1.pack(side='top')
Tkinter.Button(row1, text='Interpolate to grid',
width=20, command=self.interpolate).pack(side='left',padx=2)
Tkinter.Button(row1, text='Erase drawing',
width=20, command=self.erase).pack(side='left',padx=2)
self.erase() # some init
def pack(self, **kwargs):
self.top.pack(kwargs, expand=1, fill='both')
def configure(self, **kwargs):
"""
Legal parameters (kwargs):
xcoor grid points (on the x axsis) for interpolation
width, height size of widget
curvename name of function to be drawn
xlabel, ylabel labels on the axis
curvecolor color of the drawn curve
curvewidth line thickness of the drawn curve
ymin and ymax are set in set_yaxis method.
"""
for name in kwargs:
if name == 'xcoor':
xcoor = kwargs['xcoor']
self.xcoor = xcoor
self.xmin = min(xcoor); self.xmax = max(xcoor)
self.g.xaxis_configure(min=self.xmin, max=self.xmax)
elif name == 'width':
self.g.configure(width=kwargs['width'])
elif name == 'height':
self.g.configure(width=kwargs['height'])
elif name == 'curvename':
self.curvename = kwargs['curvename']
elif name == 'curvecolor':
self.curvecolor = kwargs['curvecolor']
elif name == 'curvewidth':
self.curvewidth = kwargs['curvewidth']
elif name == 'xlabel':
self.g.xaxis_configure(title=kwargs['xlabel'])
elif name == 'ylabel':
self.g.xaxis_configure(title=kwargs['ylabel'])
if self.curvename == ' ':
self.legend = ''
else:
self.legend = self.curvename
def set_yaxis(self, ymin, ymax):
try:
self.ymax_widget.setvalue(ymax)
self.ymin_widget.setvalue(ymin)
except:
# no widgets for ymin, ymax
pass
self.g.yaxis_configure(min=ymin, max=ymax)
def __ymin(self):
self.g.yaxis_configure(min=float(self.ymin_widget.get()))
def __ymax(self):
self.g.yaxis_configure(max=float(self.ymax_widget.get()))
def erase(self):
"""delete all curves and make new empty self.x and self.y"""
for curvename in self.g.element_show():
self.g.element_delete(curvename)
self.x = Pmw.Blt.Vector()
self.y = Pmw.Blt.Vector()
self.g.configure(title='0 drawn points')
def mouse_drag(self, event):
# transform screen coordinates of the mouse position,
# (event.x,event.y) to physical coordinates (x,y):
x = self.g.xaxis_invtransform(event.x)
y = self.g.yaxis_invtransform(event.y)
self.x.append(x); self.y.append(y)
# plot the curve as soon as we have two points, BLT vectors
# will automatically update the graph when they get new
# elements...
if len(self.x) == 2:
if self.g.element_exists(self.curvename):
self.g.element_delete(self.curvename)
self.g.line_create(self.curvename,
label=self.legend,
xdata=self.x,
ydata=self.y,
color=self.curvecolor,
linewidth=self.curvewidth,
outlinewidth=0, fill='')
self.g.configure(title='%d points drawn' % len(self.x))
def mouse_down(self, event):
self.g.bind('<Motion>', self.mouse_drag)
def mouse_up(self, event):
self.g.unbind('<Motion>')
def interpolate(self):
# first build a new list with the approved (x,y) pairs:
# if the drawn curve is too short, stretch the end points:
if self.x[0] > self.xmin: self.x[0] = self.xmin
if self.x[-1] < self.xmax: self.x[-1] = self.xmax
x = []; y = []; current_xmax = -9.9E+20
for i in range(len(self.x)):
# skip points outside [xmin,xmax]:
if self.x[i] >= self.xmin and self.x[i] <= self.xmax:
if self.x[i] > current_xmax:
x.append(self.x[i]); y.append(self.y[i])
current_xmax = self.x[i]
# ensure that the end points are included:
if x[0] > self.xmin:
x.insert(0,self.xmin); y.insert(0,y[0])
if x[-1] < self.xmax:
x.append(self.xmax); y.append(y[-1])
self.f = points2grid(x, y, self.xcoor)
# the interpolated curve is now (self.xcoor,self.f)
# both are NumPy arrays
if self.g.element_exists(self.curvename + '_i'):
self.g.element_delete(self.curvename + '_i')
if len(self.xcoor) > 30:
# many points, remove drawn curve, replace by interpolated data:
self.g.element_delete(self.curvename)
circles = 0
else:
# keep drawn curve, add circles at interpolation points:
circles = 1
self.g.line_create(self.curvename + '_i',
label=self.legend,
xdata=tuple(self.xcoor),
ydata=tuple(self.f),
color='blue',
linewidth=1,
outlinewidth=circles, fill='')
def get(self):
"""
return points (x,y), interpolated to the grid, where
x and y are NumPy arrays of coordinates
"""
try:
return self.xcoor, self.f
except:
raise AttributeError('No drawing! Draw the curve first!')
def points2grid(x, y, xcoor):
"Transform points (x,y) to a uniform grid with coordinates xcoor."
L = 0; R = 0
n = len(xcoor)
m = len(x)
from numpy import zeros
f = zeros(n)
for i in range(n):
xi = xcoor[i]
# find j such that xi is between x[j-1] and x[j]
j = L # we know that xcoor[i-1]>L so x[i]>L
while j < m-1 and x[j] <= xi:
j += 1
if j < m:
L = j-1; R = j
#print "i=%d xi=%g; in between x[%d]=%g and x[%d]=%g" % (i,xi,L,x[L],R,x[R])
# linear interpolation:
f[i] = y[L] + (y[R]-y[L])/(x[R]-x[L])*(xi-x[L])
else:
raise ValueError("bug")
return f
class DrawFunctionDialog:
def __init__(self, xcoor, parent=None):
"""Dialog box with DrawFunction widget"""
self.d = Pmw.Dialog(parent,
title='Programmer-Defined Dialog',
buttons=('Approved', 'Cancel'),
command=self.action)
self.d_gui = DrawFunction(xcoor, self.d.interior())
self.d_gui.pack(padx=10,pady=10)
def action(self, result):
if result == 'Approved':
self.x, self.f = self.d_gui.get()
self.d.destroy()
def get(self):
return self.x, self.f
def _test_DrawFunction():
root = Tkinter.Tk()
Pmw.initialise(root)
import scitools.misc; scitools.misc.fontscheme6(root)
root.title('DrawFunction demo')
from numpy import linspace
x = linspace(0, 1, 21)
df = DrawFunction(x, root)
df.pack()
# Tkinter.Button(root, text='Print coordinates (interpolated to grid)',
# command=lambda o=df: sys.stdout.write(str(o.get()[1]))).pack(pady=2)
root.mainloop()
def roundInt(a): return int(a+0.5)
class CanvasCoords:
"""
Utilities for transforming between canvas coordinates and
physical (real) coordinates.
"""
def __init__(self):
# 400x400 pixels is default:
self.canvas_x = self.canvas_y = 400
# origin: lower left corner:
self.x_origin = 0; self.y_origin = self.canvas_y
# x and y measured in pixels:
self.x_range = self.canvas_x
self.xy_scale = self.canvas_x/self.x_range
def set_coordinate_system(self, canvas_width, canvas_height,
x_origin, y_origin, x_range = 1.0):
"""
Define parameters in the physical coordinate system
(origin, width) expressed in canvas coordinates.
x_range is the width of canvas window in physical coordinates.
"""
self.canvas_x = canvas_width # width of canvas window
self.canvas_y = canvas_height # height of canvas window
# the origin in canvas coordinates:
self.x_origin = x_origin
self.y_origin = y_origin
# x range (canvas_x in physical coords):
self.x_range = x_range
self.xy_scale = self.canvas_x/self.x_range
def print_coordinate_system(self):
print "canvas = (%d,%d)" % (self.canvas_x, self.canvas_y)
print "canvas origin = (%d,%d)" % (self.x_origin, self.y_origin)
print "range of physical x coordinate =", self.x_range
print "xy_scale (from physical to canvas): ", self.xy_scale
# --- transformations between physical and canvas coordinates: ---
def physical2canvas(self, x, y):
"""Transform physical (x,y) to canvas 2-tuple."""
return (roundInt(self.x_origin + x*self.xy_scale),
roundInt(self.y_origin - y*self.xy_scale))
def cx(self,x):
"""Transform physical x to canvas x."""
return roundInt(self.x_origin + x*self.xy_scale)
def cy(self,y):
"""Transform physical y to canvas y."""
return roundInt(self.y_origin - y*self.xy_scale)
def physical2canvas4(self, coords):
"""
Transform physical 4-tuple (x1,x2,y1,y2) to
canvas 4-tuple.
"""
return (roundInt(self.x_origin + coords[0]*self.xy_scale),
roundInt(self.y_origin - coords[1]*self.xy_scale),
roundInt(self.x_origin + coords[2]*self.xy_scale),
roundInt(self.y_origin - coords[3]*self.xy_scale))
def canvas2physical(self, x, y):
"""Inverse of physical2canvas."""
return (float((x - self.x_origin)/self.xy_scale),
float((self.y_origin - y)/self.xy_scale))
def canvas2physical4(self, coords):
"""Inverse of physical2canvas4."""
return (float((coords[0] - self.x_origin)/self.xy_scale),
float((self.y_origin - coords[1])/self.xy_scale),
float((coords[2] - self.x_origin)/self.xy_scale),
float((self.y_origin - coords[3])/self.xy_scale))
def scale(self, dx):
"""
Transform a length in canvas coordinates
to a length in physical coordinates.
"""
return self.xy_scale*dx
# short forms:
c2p = canvas2physical
c2p4 = canvas2physical4
p2c = physical2canvas
p2c4 = physical2canvas4
def _CanvasCoords_test():
root = Tkinter.Tk()
c = Tkinter.Canvas(root,width=400, height=400)
c.pack()
# let physical (x,y) be at (200,200) and let the x range be 2:
C.set_coordinate_system(400,400, 200,200, 2.0)
cc = C.p2c4((0.2, 0.2, 0.6, 0.6))
c.create_oval(cc[0],cc[1],cc[2],cc[3],fill='red',outline='blue')
c1, c2 = C.physical2canvas(0.2,0.2)
c.create_text(c1, c2, text='(0.2,0.2)')
c1, c2 = C.physical2canvas(0.6,0.6)
c.create_text(c1, c2, text='(0.6,0.6)')
c.create_line(C.cx(0.2), C.cy(0.2),
C.cx(0.6), C.cy(0.2),
C.cx(0.6), C.cy(0.6),
C.cx(0.2), C.cy(0.6),
C.cx(0.2), C.cy(0.2))
"""
Utilities for holding and displaying data about input parameters.
"""
import re
import scitools.modulecheck
import scitools.misc
try:
PQ = import_module('Scientific.Physics.PhysicalQuantities')
except ImportError:
pass
from scitools.misc import str2bool, str2obj
class InputPrm:
"""Class for holding data about a parameter."""
def __init__(self, name=None, default=0.0, str2type=None,
help=None, unit=None, cmlarg=None, prmclass=None):
"""
default default value
str2type string to type conversion
(float, int, str, str2bool)
name parameter name
help description of parameter
unit physical unit (dimension)
cmlarg command-line argument for sending
this prm to an external program
prmclass classification of this parameter, e.g.,
'numerics', 'physics', 'material', etc.
Note: value with unit only works if str is float or int
>>> p=InputPrm('q', 1, float, unit='m')
>>> p.set(6)
>>> p.get()
6.0
>>> p.set('6 cm')
>>> p.get()
0.059999999999999998
>>> p=InputPrm('q', '1 m', float, unit='m')
>>> p.set('1 km')
>>> p.get()
1000.0
>>> p.get_wunit()
'1000.0 m'
>>> p.unit
'm'
"""
self.str2type = str2type
self.name = name
self.help = help
self.unit = unit
self.cmlarg = cmlarg
self.prmclass = prmclass
if str2type is None:
self.str2type = scitools.misc.str2obj
# check that unit is a valid physical dimension:
if self.unit is not None:
try:
q = PQ.PhysicalQuantity('1.0 ' + str(self.unit))
except:
raise ValueError(
'unit=%s is an illegal physical unit' % str(self.unit))
if self.str2type is float or self.str2type is int:
pass # must have float or int when units are present
else:
raise ValueError(
'str2type must be float or int, not %s' % \
str(self.str2type))
self.set(default) # set parameter value
scitools.modulecheck.exception('InputPrm constructor', 'Scientific')
def get(self):
"""Return the value of the parameter."""
return self._v
def set(self, value):
"""Set the value of the parameter."""
self._v = self.str2type(self._scan(value))
v = property(fget=get, fset=set, doc='value of parameter')
def get_wunit(self):
"""
Return value with unit (dimension) as string, if it has.
Otherwise, return value (with the right type).
"""
if self.unit is not None:
return str(self.get()) + ' ' + self.unit
else:
return self.get()
def __repr__(self):
"""Application of eval to this output creates the instance."""
return "InputPrm(name='%s', default=%s, str2type=%s, "\
"help=%s, unit=%s, cmlarg=%s)" % \
(self.name, self.__str__(), self.str2type.__name__,
self.help, self.unit, self.cmlarg)
def __str__(self):
"""
Compact output; just the value as a formatted string.
Note that __str__ is used by __repr__ so strings must
be enclosed in quotes.
"""
return repr(self._v) # ensure quotes in strings
def _handle_unit(self, v):
"""
Check if v is of the form 'value unit', extract value, after
conversion to correct unit (if necessary).
"""
if isinstance(v, PQ.PhysicalQuantity):
v = str(v) # convert to 'value unit' string
if isinstance(v, str) and isinstance(self.unit, str) and \
(self.str2type is float or self.str2type is int):
if ' ' in v: # 'value unit' string?
try:
self.pq = PQ.PhysicalQuantity(v)
except:
raise ValueError('%s should be %s; illegal syntax' % \
(v, self.str2type.__name__))
if not self.pq.isCompatible(self.unit):
raise ValueError(
'illegal unit (%s); %s is registered with unit %s' % \
(v, self.name, self.unit))
self.pq.convertToUnit(self.unit)
v = self.str2type(str(self.pq).split()[0])
return v
else:
# string value without unit given:
return self.str2type(v)
else: # no unit handling
if isinstance(v, str):
# check if a unit was given:
try:
PQ.PhysicalQuantity(v)
raise ValueError(
'parameter %s given with dimension: %s, but '\
'dimension is not registered' % (self.name,v))
except:
pass
return self.str2type(v)
def getPhysicalQuantity(self):
if self.unit is not None:
try:
return self.pq # may be computed in _handle_unit
except:
return PQ.PhysicalQuantity(self.get_wunit())
else:
raise AttributeError('parameter %s has no registered unit' % \
self.name)
def _scan(self, s):
"""Interpret string s. Return number (for self._v)."""
# multiple loops?
v = self._handle_unit(s)
return self.str2type(v)
def commandline2dict(argv, parameters):
"""
Load data from the command line into a dictionary of
parameter values. The argv argument is typically sys.argv[1:].
Each option --opt in argv is extracted and the
proceeding value v is assigned to parameters:
parameters[opt].set(v)
Hence, parameters must hold objects that have a set
function. Normally, parameters is a dictionary of
InputPrm objects.
"""
p = scitools.misc.cmldict(sys.argv[1:], cmlargs=None, validity=0)
# p[key] holds all command-line args, we are only interested
# in those keys corresponding to parameters.keys()
for key in p.keys():
if key in parameters.keys():
parameters[key].set(p[key])
class InputPrmGUI(InputPrm):
"""Represent an input parameter by a widget."""
GUI_toolkit = 'Tkinter/Pmw'
def __init__(self, name=None, default=0.0, str2type=None,
widget_type='entry', values=None, parent=None,
help=None, unit=None, cmlarg=None):
"""
@param default: default value
@param str2type: function from string to type
@param name: name of parameter
@param widget_type: entry, slider, option, checkbutton
@param values: (min,max) interval or options
@param parent: parent widget
@param help: description of parameter
@param unit: physical unit (dimension)
@param cmlarg: command-line argument for sending
this prm to an external program
"""
if str2type is None:
str2type = scitools.misc.str2obj
# bind self._v to an object with get and set methods
# for assigning and extracting the parameter value
# in the associated widget:
if InputPrmGUI.GUI_toolkit.startswith('Tk'):
# use Tkinter variables
self.make_GUI_variable_Tk(str2type, unit, name)
else:
raise ValueError(
'The desired GUI toolkit %s is not supported' % \
InputPrmGUI.GUI_toolkit)
# How to implement support for other toolkits:
# self._v must point to an object with a get and set method
# for extracting and setting the value of the parameter in
# the associated widget. In Tkinter self._v is a Tkinter
# variable (DoubleVar, StringVar, IntVar). In another toolkit
# one can just create a corresponding class:
# class GUIVariable:
# def __init__(self): pass
# def attach(self, widget):
# self.widget = widget # can be done in make_widget_*
# def get(self):
# self.widget.get() # for example
# def set(self, value):
# self.widget.set(value) # for example
InputPrm.__init__(self, name, default,
str2type, help, unit, cmlarg)
self._widget_type = widget_type
self.parent = parent
self._values = values # (from, to) interval for parameter
self.widget = None # no widget created (yet)
self._validate = None # no validation of answers by default
if str2type == str2bool and self._widget_type != 'checkbutton':
self._widget_type = 'checkbutton'
# no warning because minimal input, just name and a
# bool value, leads us here - which is okay - all other
# widgets become entries
def get_widget_type(self): return self._widget_type
widget_type = property(fget=get_widget_type) # read-only
def make_GUI_variable_Tk(self, str2type, unit, name):
"""
Bind self._v to a variable with set and get methods for
setting and getting the value in/from a GUI.
"""
if unit is not None:
self._v = Tkinter.StringVar() # value with unit
else:
if str2type == float:
self._v = Tkinter.DoubleVar()
self._validate = {'validator' : 'real'}
elif str2type == str:
self._v = Tkinter.StringVar()
elif str2type == int:
self._v = Tkinter.IntVar()
self._validate = {'validator' : 'int'}
elif str2type == str2bool:
self._v = Tkinter.StringVar()
elif str2type == complex:
self._v = Tkinter.StringVar()
elif str2type == str2obj:
self._v = Tkinter.StringVar()
else:
raise ValueError(
'str2type %s for parameter %s is not supported' % \
(str2type, name))
def make_widget(self):
if InputPrmGUI.GUI_toolkit.startswith('Tk'):
self.make_widget_Tk()
else:
raise ValueError(
'The desired GUI toolkit %s is not supported' % \
InputPrmGUI.GUI_toolkit)
def make_widget_Tk(self):
"""Make Tk widget according to self._widget_type."""
if self.name is None:
raise TypeError("name attribute must be set before "\
"widget can be created")
if self.parent is None:
raise TypeError("parent attribute must be set before "\
"widget can be created")
# consistency/type check of values, if it is supplied:
if self._values is not None:
if type(self._values) != type([]) and \
type(self._values) != type(()):
raise TypeError("values attribute must be list or tuple")
if self.unit is None:
label = self.name
else:
label = '%s (%s)' % (self.name, self.unit)
if self._widget_type == 'entry':
if self._validate is not None and self._values is not None:
self._validate['min'] = self._values[0]
self._validate['max'] = self._values[1]
self.widget = Pmw.EntryField(self.parent,
labelpos='w',
label_text=label,
validate=self._validate,
entry_width=15,
entry_textvariable=self._v)
elif self._widget_type == 'slider':
# we require values:
if self._values is None:
raise TypeError(
"values attribute must be set for slider '%s'" % \
self.name)
min = float(self._values[0]); max = float(self._values[1])
try:
step = float(self._values[2]) # try if present
except:
step = (max - min)/100.0 # default
self.widget = Tkinter.Scale(self.parent,
orient='horizontal',
from_=min, to=max,
tickinterval=(max - min)/5.0,
resolution=step,
label=label,
#font="helvetica 12 italic",
length=300,
variable=self._v)
elif self._widget_type == 'option':
# we require values, which now contains the option values
if self._values is None:
raise TypeError(
"values attribute must be set for option menu '%s'" % \
self.name)
self.widget = Pmw.OptionMenu(self.parent,
labelpos='w', # n, nw, ne, e and so on
label_text=label,
items=self._values,
menubutton_textvariable=self._v
)
elif self._widget_type == 'checkbutton':
self.widget = Tkinter.Checkbutton(self.parent,
text=label,
variable=self._v)
# no packing of widgets
return self.widget # if desired (it's stored in the class too)
def get(self):
"""
Get GUI text/number, handle special input like numbers
with units, if necessary.
"""
# self.str2type(self._scan(gui)) is sufficient here
# but we check if we have a unit and then if the unit
# is registered:
try:
gui = self._v.get() # fails if value has unit
except ValueError, msg:
if self.unit is None:
print msg, '\nvalue with unit, but no registered unit!'
sys.exit(1)
# else: ok, go on with self._scan and interpret
r = self._scan(gui)
return r
def set(self, value):
self._v.set(self.str2type(self._scan(value)))
def __repr__(self):
"""Application of eval to this output creates the object."""
return "InputPrmGUI(name='%s', default=%s, str2type=%s, "\
"widget_type='%s', parent=None, values=%s, "\
"help=%s, unit=%s, cmlarg=%s)" % \
(self.name, self.__str__(), self.str2type.__name__,
self._widget_type, str(self._values),
self.help, self.unit, self.cmlarg)
class InputPrmCGI(InputPrm):
"""Represent a parameter by a form variable in HTML."""
def __init__(self, name=None, default=0.0, str2type=None,
widget_type='entry', values=None, form=None,
help=None, unit=None, cmlarg=None):
"""
default default value
str2type function from string to type
name name of parameter
widget_type entry, slider, option, checkbutton
values option values
form cgi.FieldStorage object
help description of parameter
unit physical unit (dimension)
cmlarg command-line argument for sending
this prm to an external program
"""
InputPrm.__init__(self, name, default, str2type,
help, unit, cmlarg)
self._widget_type = widget_type
self._form = form
self._values = values
def make_form_entry(self):
"""Write the form's input field, according to widget_type."""
if self.name is None:
raise TypeError("name attribute must be set before "\
"widget can be created")
value = str(self.get())
s = "" # HTML code to be returned is stored in s
if self._widget_type == 'entry' or self._widget_type == 'slider':
s += """<input type="text" name="%s" size=15 value="%s">""" % \
(self.name, value)
elif self._widget_type == 'option':
# we require values, which now contains the option values
if self._values is None:
raise TypeError(
"values attribute must be set for option menu '%s'" % \
self.name)
s += """<select name="%s" size=1 value="%s">\n""" % \
(self.name, value)
for v in self._values:
s += """<option value="%s">%s </option>\n""" % \
(v,v)
s += """</select><br>\n"""
elif self._widget_type == 'checkbutton':
s += """<input type="checkbox" name="%s" value="%s">"""\
""" <br>\n""" % \
(self.name, value)
return s
def get(self):
if self._form is not None:
InputPrm.set(self,\
self._form.getvalue(self.name, str(self._v)))
# InputPrm.set handles units
return self._v
# just inherit def set(self, value):
def __repr__(self):
"""Application of eval to this output creates the object."""
return "InputPrmCGI(name='%s', default=%s, str2type=%s, "\
"widget_type='%s', form=None, values=%s, "\
"help=%s, unit=%s, cmlarg=%s)" % \
(self.name, self.__str__(), self.str2type.__name__,
self._widget_type, str(self._values),
self.help, self.unit, self.cmlarg)
def createInputPrm(interface, name, default, str2type=None,
widget_type='entry', values=None,
parent=None, form=None,
help=None, unit=None, cmlarg=None):
"""Unified interface to parameter classes InputPrm/GUI/CGI."""
if interface == '' or interface == 'plain':
p = InputPrm(name=name, default=default,
str2type=str2type,
help=help, unit=unit, cmlarg=cmlarg)
elif interface == 'GUI':
p = InputPrmGUI(name=name, default=default,
str2type=str2type,
widget_type=widget_type,
values=values, parent=parent,
help=help, unit=unit, cmlarg=cmlarg)
elif interface == 'CGI':
p = InputPrmCGI(name=name, default=default,
str2type=str2type,
widget_type=widget_type,
values=values, form=form,
help=help, unit=unit, cmlarg=cmlarg)
else:
raise ValueError("interface '%s' not supported" % interface)
return p
class Parameters:
"""
Class for holding a set of InputPrm-type parameters.
See src/py/examples/simviz/simviz1cp.py for examples
on usage.
Some attributes may be useful in application code:
self.dict is a dictionary of InputPrm-type objects.
self.parameters_sequence (and self._seq) is a list of
InputPrm-type objects in the sequence they were registered.
self.sliders_sequence is a list of InputPrm-type objects,
with slider widget representation in a GUI, in the sequence
they were registered.
self.entries_sequence, self.checkbt_sequence,
self.options_sequence are similar for text entries, checkbuttons,
and option menus.
The self.*_sequence lists can be used to build GUIs or CGI scripts.
Normally, this is automated in classes like AutoSimVizGUI and
AutoSimVizCGI.
"""
def __init__(self, interface='plain', form=None, prm_dict={}):
"""
@param interface: 'plain', 'CGI', or 'GUI'
@param form: cgi.FieldStorage() object
@param prm_dict: dictionary with (name,value) pairs
(will be added using the add method)
"""
self.dict = {} # holds InputPrm/GUI/CGI objects
self._seq = [] # holds self.dict items in sequence
self._interface = interface
self._form = form # used for CGI
for prm in prm_dict:
self.add(prm, prm_dict[prm])
def add(self, name, default, str2type=None,
widget_type='entry', values=None,
help=None, unit=None, cmlarg=None):
"""Add a new parameter."""
self.dict[name] = createInputPrm(self._interface, name,
default, str2type, widget_type=widget_type,
values=values, help=help, unit=unit, cmlarg=cmlarg)
self._seq.append(self.dict[name])
def endadd(self):
"""Process parameters, make internal data structures."""
self.parameters_sequence = self._seq
if self._interface == 'GUI':
self.sliders_sequence = []
self.entries_sequence = []
self.options_sequence = []
self.checkbt_sequence = []
for p in self._seq:
if p.widget_type == 'slider':
self.sliders_sequence.append(p) # add instance ref.
elif p.widget_type == 'entry':
self.entries_sequence.append(p)
elif p.widget_type == 'option':
self.options_sequence.append(p)
elif p.widget_type == 'checkbutton':
self.checkbt_sequence.append(p)
else:
raise ValueError('unknown widget_type "%s"' \
% p.widget_type)
elif self._interface == 'CGI':
for p in self._seq:
p.form = self._form
def __setitem__(self, name, value):
self.dict[name].set(value)
if name in self.__dict__: # is item attribute too (name2attr)?
# self.__dict__[name] = value # will not handle string w/unit
self.__dict__[name] = self.dict[name].get()
def __getitem__(self, name):
return self.dict[name].get()
def keys(self):
"""
Return parameter names. With this method Parameter objects p
can be used in dictionary update functions: somedict.update(p).
"""
return self.dict.keys()
def __iter__(self):
"""Iterate over keys in self.dict."""
# short cut using generator function
for name in self.dict:
yield name
def get(self):
"""Return dictionary with (name,value) pairs."""
d = {}
for name in self:
d[name] = self[name] # same as self.dict[name].get()
return d
def name2attr(self):
"""
Turn all item keys into attributes.
Warning: values are copied! __setitem__ and
__setattr__ (or properties) must
take care of parallel updates.
"""
for name in self.dict:
self.__dict__[name] = self.dict[name].get()
def __setattr__(self, name, value):
"""
If name2attr is called, self.m = 2.3 (using this
function) is safe, because this also implies update of
the corresponding InputPrm-type object in self.dict.
"""
self.__dict__[name] = value
if name in self.dict:
self.dict[name].set(value)
#if str(a) in self.dict:
# self.dict[str(a)].set(value)
def parse_options(self, argv):
"""
Examine the command line and for each -opt val pair,
set the value of parameter opt to val, if opt is a
registered parameter.
argv is typically sys.argv[1:]
Note that the name of a parameter may contain blanks.
A blank is replaced by two underscores in the command-line
options.
"""
p = scitools.misc.cmldict(argv, cmlargs=None, validity=0)
# p[key] holds all command-line args, we are only interested
# in those keys corresponding to self.dict.keys()
for key in p.keys():
if key.find('__') != -1:
key_blanks = key.replace('__', ' ')
else:
key_blanks = key
if key_blanks in self.dict:
self.dict[key_blanks].set(p[key])
def usage(self):
"""Print legal command-line options."""
s = '' # returned message
for p in self.dict:
if p.find(' ') != -1:
opt = p.replace(' ', '__')
else:
opt = p
if self.dict[p].help is not None:
s += '--' + '%-30s' % opt + ' ' + self.dict[p].help + '\n'
else:
s += '--' + opt + ' value '
return s
def dump(self):
s = ''
for p in self.dict:
s += repr(self.dict[p]) + '\n'
return s
def __str__(self):
return str(self.get())
def __repr__(self):
s = 'Parameters: interface="%s"\n' % self._interface
for name in self.dict:
s += repr(self.dict[name]) + '\n'
return s
def parametersGUI(p, parent, pack_side='top',
scrolled={'height': 400, 'width': 350}):
"""
Load all parameters in a Parameters object p into a GUI.
parent parent widget
pack_side packing is donw with
widget.pack(side=pack_side, expand=1, fill='both')
scrolled False: use standard Tk Frame
non-empty dict: use Pmw.ScrolledFrame with the
prescribed height and width
"""
p.endadd() # for safety
if scrolled:
frame = Pmw.ScrolledFrame(parent,
usehullsize=1, hull_width=scrolled['width'],
hull_height=scrolled['height'])
frame.pack(side=pack_side, fill='both', expand=1)
frame = frame.interior()
else:
frame = Tkinter.Frame(parent, borderwidth=2)
frame.pack(side=pack_side, fill='both', expand=1)
widgets = [] # for alignment
for obj in p.parameters_sequence:
# must be set on beforehand: obj.widget_type = 'entry'
if obj.widget_type is None:
raise TypeError("widget_type attribute "\
"must be set for InputPrmGUI '%s'" % obj.name)
obj.parent = frame
obj.make_widget()
#obj.widget.pack(side='top', padx=5, pady=5, fill='x', expand=1)
obj.widget.pack(side='top', padx=5, pady=3, anchor='w')
if obj.widget_type == 'entry' or \
obj.widget_type == 'option':
widgets.append(obj.widget)
Pmw.alignlabels(widgets) # nice alignment
class AutoSimVizGUI:
"""
Organize a set of widgets for input data together with
buttons for running a simulator and performing visualizations.
The input data are represented by a Parameters object
from the ParameterInterface module.
The individual parameters in this object are represented as
InputPrmGUI instances.
The application code creates Parameters object
(recall to call addend() after all parameters are registered).
The method make_prmGUI takes the Parameters objects,
makes the associated widgets and packs them in an appropriate
GUI. All widgets may appear in one column, in the order the
parameters were registered in the Parameters object, if
sort_widgets is false. Otherwise, two column of widgets are
made: one with sliders and one with the rest (checkbuttons,
entries, options). The sequence of widgets in the latter case
is determined by the sequence of registration in the Parameters,
e.g., all sliders are grouped in their original sequence,
all option menus are grouped in their original sequence, and so on.
The method make_buttonGUI creates buttons for simulation and
visualization, plus an optional logo and a help button.
If more buttons are wanted, one can add these to the
button_frame Tkinter.Frame attribute.
There is an optional column of widgets with BLT graphs for
curve plotting, enabled by the make_curveplotGUI method.
The great advantage of this class is that the application code
can concentrate on defining input parameters to a problem,
the simulation and visualization functions, and leave it to
this class to put everything together. It is then an easy task
to change the layout of the whole GUI in one common place.
"""
def __init__(self):
import modulecheck
modulecheck.exception("Class AutoSimVizGUI", 'Pmw', 'Tkinter')
return
def make_prmGUI(self,
parent,
parameters,
sort_widgets=0,
height=None,
pane=0
):
"""
The height parameter controls the height (in pixels) of
the GUI.
The columns are realized by Pmw.ScrolledFrame widgets.
"""
self.p = parameters # scitools.ParameterInterface.Parameters instance
self.p.endadd()
if sort_widgets:
self.sliders_sequence = self.p.sliders_sequence
else:
self.sliders_sequence = None
if sort_widgets:
self.entries_sequence = self.p.entries_sequence
else:
self.entries_sequence = None
if sort_widgets:
self.options_sequence = self.p.options_sequence
else:
self.options_sequence = None
if sort_widgets:
self.checkbuttons_sequence = self.p.checkbt_sequence
else:
self.checkbuttons_sequence = None
if not sort_widgets:
self.parameters_sequence = self.p.parameters_sequence
else:
self.parameters_sequence = None
self.master = parent
self.top = Tkinter.Frame(self.master)
self.top.pack(expand=1, fill='both') # could be moved to pack method...
self.top_columns = Tkinter.Frame(self.top)
self.top_columns.pack(expand=1, fill='both')
self.pane = pane
if self.pane:
self.top_pane = Pmw.PanedWidget(self.top_columns,
orient='horizontal')
### hull_width=900, hull_height=600)
self.top_pane.pack(expand=1, fill='both')
if self.sliders_sequence is not None:
# create a scrolled frame with a set of slider widgets
# below each other:
if self.pane:
self.top_pane.add('sliders', min=340)
parent = self.top_pane.pane('sliders')
else:
parent = self.top_columns
self.sliders_frame = Pmw.ScrolledFrame(parent,
usehullsize=1, hull_width=320, hull_height=height)
self.sliders_frame.pack(side='left', fill='both', expand=1)
self.sliders_frame = self.sliders_frame.interior()
for obj in self.sliders_sequence:
if obj.widget_type is None:
obj.widget_type = 'slider'
obj.parent = self.sliders_frame
obj.make_widget()
obj.widget.pack(side='top', padx=5, pady=3,
fill='x', expand=1)
if self.entries_sequence is not None or \
self.options_sequence is not None or \
self.checkbuttons_sequence is not None:
if self.pane:
self.top_pane.add('entries', min=175)
parent = self.top_pane.pane('entries')
else:
parent = self.top_columns
self.entries_frame = Pmw.ScrolledFrame(parent,
usehullsize=1, hull_width=240, hull_height=height)
self.entries_frame.pack(side='left', fill='both', expand=1)
self.entries_frame = self.entries_frame.interior()
widgets = []
if self.entries_sequence is not None:
for obj in self.entries_sequence:
if obj.widget_type is None:
obj.widget_type = 'entry'
obj.parent = self.entries_frame
obj.make_widget()
obj.widget.pack(side='top', padx=5, pady=3,
fill='x', expand=1, anchor='w')
widgets.append(obj.widget)
# add option menus under the entries in the second column:
if self.options_sequence is not None:
for obj in self.options_sequence:
if obj.widget_type is None:
obj.widget_type = 'option'
obj.parent = self.entries_frame
obj.make_widget()
obj.widget.pack(side='top', padx=5, pady=3, anchor='w')
widgets.append(obj.widget)
Pmw.alignlabels(widgets) # nice alignment
# add checkbuttons under the options/entries in the second column:
if self.checkbuttons_sequence is not None:
for obj in self.checkbuttons_sequence:
if obj.widget_type is None:
obj.widget_type = 'checkbutton'
obj.parent = self.entries_frame
obj.make_widget()
obj.widget.pack(side='top', padx=5, pady=3, anchor='w')
if self.parameters_sequence is not None:
if self.pane:
self.top_pane.add('parameters', min=350)
parent = self.top_pane.pane('parameters')
else:
parent = self.top_columns
if height is None:
height = min(len(self.parameters_sequence)*80, 700)
parametersGUI(self.p, parent,
pack_side='left',
scrolled={'height':height, 'width':350})
# note: if we use Pmw.ScrolledCanvas, call canvas.resizescrollregion()
def make_buttonGUI(self, parent, buttons=[], logo=None, help=None):
if self.pane:
#self.top_pane.add('buttons', min=300)
self.top_pane.add('buttons')
parent = self.top_pane.pane('buttons')
else:
parent = self.top_columns
self.button_frame = Tkinter.Frame(parent)
self.button_frame.pack(side='left')
# put a help button first:
if type(help) is type(""): # description given?
self.description = help
Tkinter.Button(self.button_frame, text="Help", width=10,
command=self._helpwindow).\
pack(side='top', padx=5, pady=3, anchor="n")
if logo is not None:
self.logo = Tkinter.PhotoImage(file=logo)
Tkinter.Label(self.button_frame, image=self.logo).\
pack(side='top', pady=20)
if buttons:
for button_name, func in buttons:
width = max(len(button_name), 10)
Tkinter.Button(self.button_frame, text=button_name,
width=width, command=func).\
pack(side='top', padx=5, pady=3)
self.master.bind('<q>', self._quit)
if self.pane:
self.top_pane.setnaturalsize()
def make_curveplotGUI(self,
parent,
no_of_plotframes=1,
placement='right',
):
"""
@param parent: parent (master) widget
@param no_of_plotframes: no of graph areas
@param placement: placement of the plot area ('right' or 'bottom')
Example on creating
three plot areas to the right in the window::
self.plot1, self.plot2, self.plot3 = \
self.someGUI.make_curveplotGUI(parent, 3, 'right')
self.plot1 etc. holds Pmw.Blt.Graph widgets.
Create a single plot area::
self.plot1 = self.someGUI.make_curveplotGUI(parent,
1, 'bottom')
"""
if placement == 'right':
if self.pane:
self.top_pane.add('plot', size=300)
parent = self.top_pane.pane('plot')
else:
parent = self.top_columns
self.plotframe = Tkinter.Frame(parent)
self.plotframe.pack(side='left', expand=1, fill='both')
# size of plot canvas:
width=400; total_height=500
elif placement == 'bottom':
self.plotframe = Tkinter.Frame(self.top)
self.plotframe.pack(side='bottom', expand=1, fill='both')
# size of plot canvas:
width=None; total_height=no_of_plotframes*200
height=int(total_height/float(no_of_plotframes))
self.g = []
for i in range(no_of_plotframes):
try:
self.g.append(Pmw.Blt.Graph(self.plotframe,
width=width,height=height))
except:
print "Python is not linked with Blt"; sys.exit(1)
# place the plot areas below each other:
self.g[i].pack(side='top',expand=1, fill='both')
# some dictionaries with self.g[i] as keys:
self.data = {} # holds (x,y) Blt vectors in a graph
self.identifier = {} # holds curve identifiers (numbers) for each graph
for graph in self.g:
self.identifier[graph] = 0
# when a new curve is drawn, the self.nsavecurves old ones
# are still present
self.nsavecurves = 2
self.curvecolors = ('red', 'blue', 'green', 'yellow', 'black')
if self.pane:
self.top_pane.setnaturalsize()
return self.g
def load_curveplot(self, filename, graph, curvename=''):
"""
Load data from a two-column file into x and y Blt vectors.
graph is a Pmw.Blt.Graph widget, normally returned from
make_curveplotGUI.
x, y = self.someGUI.load_curveplot('my.dat', self.plot2,
curvename='measured data')
One can convert x and y, which are plain Python lists, to
NumPy arrays for further processing if desired.
"""
if isinstance(graph, (list,tuple)):
if len(graph) != 1:
raise TypeError(
'graph argument is a list of length %d>1, should be scalar' %\
len(graph))
else:
graph = graph[0]
f = open(filename, 'r')
self.identifier[graph] += 1 # identifiers are integers
id = self.identifier[graph]
# current storage index in an array [0,..,self.nsavecurves+1]
counter = id % (self.nsavecurves+1)
# The Blt vectors cannot be local variables, because the plot
# disappears when the vectors go out of scope.
# Letting the user handle these objects results in more user
# code. On the other hand, we do not know how many vectors
# we need. Remedy: use a dict. with graph as key and
# one (x,y) pair of Blt vectors
if graph not in self.data:
self.data[graph] = {}
self.data[graph][counter] = {}
self.data[graph][counter]['x'] = Pmw.Blt.Vector()
self.data[graph][counter]['y'] = Pmw.Blt.Vector()
for line in f:
numbers = line.split()
self.data[graph][counter]['x'].append(float(numbers[0]))
self.data[graph][counter]['y'].append(float(numbers[1]))
f.close()
# remove an old curve (save the last self.nsavecurves curves):
id_old = id - self.nsavecurves - 1
if graph.element_exists(str(id_old)):
graph.element_delete(str(id_old)) # remove old curve
# dash the old remaining curves:
for i in range(max(id_old+1,1),id):
graph.element_configure(str(i), linewidth=1)
color = self.curvecolors[counter]
graph.line_create(str(id),
label='',
xdata=self.data[graph][counter]['x'],
ydata=self.data[graph][counter]['y'],
linewidth=2, dashes='', symbol='',
color=color)
# drop label, use title instead
graph.configure(title=curvename)
self.master.update()
return self.data[graph][counter]['x'],\
self.data[graph][counter]['y']
def update_curveplot(self, filename, graph):
"""Update Blt vectors with data from a two-column file."""
id = self.identifier[graph]
counter = id % (self.nsavecurves+1)
f = open(filename, 'r')
lines = f.readlines()
if len(lines) != len(self.data[graph][counter]['x']):
print "Blt vector has length=%d, but %s has %d lines" % \
(len(self.data[graph][counter]['x']),len(lines))
for i in range(len(self.data[graph][counter]['x'])):
self.data[graph][counter]['x'][i], \
self.data[graph][counter]['y'][i] = \
map(float, lines[i].split())
f.close()
def _quit(self, event=None):
self.master.destroy()
def _helpwindow(self):
"""
Launch a separate toplevel window with a scrolled text widget
containing self.description.
"""
# read file into a text widget in a _separate_ window:
self.filewindow = Tkinter.Toplevel(self.master) # new window
lines = self.description.split('\n')
nlines = min(len(lines),30)
width = min(max([len(i) for i in lines]), 70) # max line width
self.filetext = Pmw.ScrolledText(self.filewindow,
borderframe=5, # a bit space around the text
vscrollmode='dynamic', hscrollmode='dynamic',
labelpos='n', label_text="Description",
text_width=width, text_height=nlines,
text_wrap='none')
self.filetext.pack()
self.filetext.insert('end', self.description)
# add a quit button:
Tkinter.Button(self.filewindow, text="Quit",
command=self.filewindow.destroy).pack(pady=10)
class AutoSimVizCGI:
"""
Organize a set of form variables for input data.
"""
def __init__(self):
return
def make(self,
form,
parameters,
CGI_script,
imagefile=None,
):
"""
Create an HTML page consisting of an optional
image (specified by imagefile), a table of form variables
(specified by parameters (scitools.ParameterInterface.Parameters)),
and a "simulate and visualize" button.
The resulting visualization part must be created after
calling this function. Finally, the HTML page needs
a footer (see the footer function).
"""
self.p = parameters
self.p.endadd()
s = """
<html><body bgcolor="white">
"""
if imagefile is not None:
s += """<img src="%s" align="right"><p>""" % imagefile
s += """
<form action="%s" method="post">
<table>
""" % CGI_script
# should we have a help and/or dimension column?
help = 0; unit = 0
for p in self.p.parameters_sequence:
if p.unit is not None: unit = 1
if p.help is not None: help = 1
for p in self.p.parameters_sequence:
s += '<tr>\n<td>%s</td><td>%s</td>' % \
(p.name, p.make_form_entry())
if unit:
if p.unit is not None:
s += '<td>%s</td>' % p.unit
else:
s += '<td></td>' # empty
if help:
if p.help is not None:
s += '<td>(%s)</td>' % p.help
else:
s += '<td></td>' # empty
s += '\n</tr>\n'
s += """
</table><br>
<input type="submit" value="simulate and visualize" name="sim">
</form>
"""
# perform simulation and visualization as next step
#return s
print s
def footer(self):
"""Write out HTML footer instructions."""
s = """\n</body></html>\n"""
#return s
print s
def _test1_Parameters():
d = {'A': 1.0, 'w': 0.2, 'func': 'siny', 'y0': 0.0}
p = Parameters(interface='GUI', prm_dict=d)
p['w'] = 0.1
p.add('tstop', 2.0, widget_type='slider', values=(0,10))
p.add('plot', False)
d = p.get()
print d
print repr(p)
p['plot'] = True
for name in p:
print 'p[%s]=%s' % (name, p[name])
return p
def _test1_Parameters_wGUI():
parent = Tkinter.Tk()
Pmw.initialise(parent)
import scitools.misc
scitools.misc.fontscheme1(parent)
p = _test1_Parameters()
parametersGUI(p, parent, scrolled=False)
def get():
print p.get()
Tkinter.Button(parent, text='Dump', command=get).pack(pady=10)
Tkinter.Button(parent, text='Quit', command=parent.quit).pack(pady=10)
parent.mainloop()
if __name__ == '__main__':
cmd = sys.argv[1] + '(' + ' '.join(sys.argv[2:]) + ')'
print cmd
exec(cmd)
"""
Notebook for selecting functions.
"""
import types
from scitools.numpyutils import seq, wrap2callable, ndarray, pi
from scitools.StringFunction import StringFunction
class FuncSpec:
"""
Specification of a function.
Lists of such specifications can be fed to class FunctionSelector
to form a notebook where each page is designed according to the
contents of a FuncSpec object.
"""
def __init__(self,
representation,
name='',
parameters=None,
independent_variables=[],
formula=None,
image=None,
function_object=None,
vector = 0,
description=None,
xcoor=None,
scrolled_frame=False,
):
"""
Arguments:
@param representation: class Drawing, UserFunction, or
StringFormula
@param name: name of function
@param parameters: parameters in the function, either
dict or Parameters instance
@param independent_variables: list/tuple of strings with the
names of the indep. variables.
@param formula: textual doc of function formula
@param image: filename of GIF image (LaTeX)
@param function_object: callable object for evaluating the function
@param vector: 0: scalar function, >0: no of vector comp.
@param description: more verbose description than formula
@param xcoor: array of coordinates for drawing
@param scrolled_frame: scrollbars in the notebook page, False
or dict: {'width': 300, 'height':200}
Examples: see test_FunctionSelector in TkGUI.py.
"""
self.name = name
self.representation = representation
if not self.name:
raise ValueError('name keyword must be set when creating a '\
'FuncSpec object')
self.configure(
parameters=parameters,
independent_variables=independent_variables,
formula=formula,
image=image,
function_object=function_object,
vector=vector,
description=description,
xcoor=xcoor,
scrolled_frame=scrolled_frame)
def configure(self, **kwargs):
if 'parameters' in kwargs:
self.parameters = kwargs['parameters']
if self.parameters is not None:
if isinstance(self.parameters, dict):
self.parameters = \
Parameters(interface='GUI', prm_dict=self.parameters)
if not isinstance(self.parameters, Parameters):
raise TypeError(
'parameters must be a dictionary or Parameters object, '\
'not a %s' % type(self.parameters))
if 'independent_variables' in kwargs:
self.independent_variables = kwargs['independent_variables']
if 'formula' in kwargs:
self.formula = kwargs['formula']
if 'image' in kwargs:
self.image = kwargs['image']
if 'function_object' in kwargs:
self.function_object = kwargs['function_object']
if type(self.function_object) == types.ClassType:
raise TypeError(
'class type, not instance, provided as '\
'function_object for %s' % self.name)
if 'vector' in kwargs:
self.vector = kwargs['vector']
if 'description' in kwargs:
self.description = kwargs['description']
if 'xcoor' in kwargs:
self.xcoor = kwargs['xcoor']
if 'scrolled_frame' in kwargs:
self.scrolled_frame = kwargs['scrolled_frame']
self.ok() # check validity of arguments
def ok(self):
if not isinstance(self.independent_variables, (list, tuple)):
raise TypeError(
'independent_variables must be list or tuple, not %s' % \
type(self.independent_variables))
if self.formula is not None:
if not isinstance(self.formula, basestring):
raise TypeError(
'formula must be string, not %s' % type(self.formula))
if self.image is not None:
if not isinstance(self.image, basestring):
raise TypeError(
'image must be string (filename), not %s' % \
type(self.image))
if not os.path.isfile(self.image):
raise ValueError('file %s not found' % self.image)
if not isinstance(self.vector, int):
raise TypeError(
'vector must be int (0=scalar, >=1: no of vector comp.), '\
'not %s' % type(self.vector))
if self.description is not None:
if not isinstance(self.description, basestring):
raise TypeError(
'description must be string, not %s' % \
type(self.description))
if self.xcoor is not None:
if not isinstance(self.xcoor, ndarray):
raise TypeError(
'xcoor must be a NumPy array, not %s' % type(self.xcoor))
if self.scrolled_frame != False:
if not isinstance(self.scrolled_frame, dict):
raise TypeError('scrolled_frame must be True or dict, '\
'not %s' % type(self.scrolled_frame))
def get_independent_variables(self):
if not self.independent_variables:
raise ValueError('FuncSpec for "%s" has no list of independent '\
'variables' % self.name)
text = 'independent variable'
if len(self.independent_variables) > 1:
text += 's'
text += ': ' + ', '.join(self.independent_variables)
return text
def __repr__(self):
args = []
for key in self.__dict__:
if self.__dict__[key] is not None:
args.append('%s=%s' % (key,self.__dict__[key]))
return 'FuncSpec(' + ', '.join(args) + ')'
class StringFormula:
def __init__(self, parent, func_spec):
self.fspec = func_spec
self.master = parent
self.top = Tkinter.Frame(parent, borderwidth=2)
self.top.pack(side='top')
# note that StringFunction works for scalar and vector fields!
# just use [formula_x, formula_y]
self.formula = Tkinter.StringVar()
if self.fspec.formula is not None:
self.formula.set(self.fspec.formula)
self.widget = Pmw.EntryField(self.top,
labelpos='n',
label_text=self.fspec.get_independent_variables(),
entry_width=15,
entry_textvariable=self.formula)
self.widget.pack(pady=5)
if self.fspec.parameters:
parametersGUI(self.fspec.parameters, self.top,
scrolled=self.fspec.scrolled_frame)
def get(self):
"""Return function object."""
f = StringFunction(self.formula.get(),
independent_variables=self.fspec.independent_variables)
if self.fspec.parameters:
# turn parameters object into dictionary and send
# this as keyword arguments to StringFunction.set_parameters
f.set_parameters(**self.fspec.parameters.get())
return wrap2callable(f)
class UserFunction:
def __init__(self, parent, func_spec):
self.fspec = func_spec
self.master = parent
self.top = Tkinter.Frame(parent, borderwidth=2)
self.top.pack(side='top')
Tkinter.Label(self.top,
text=self.fspec.get_independent_variables()).pack()
if self.fspec.formula:
width = min(len(self.fspec.formula)+5, 30)
Tkinter.Label(self.top, text=self.fspec.formula,
width=width).pack()
else:
print 'Warning: UserFunction, name=%s, has no formula!' % \
self.fspec.name
Tkinter.Label(self.top, text='no function expression known').pack()
if self.fspec.parameters:
print self.fspec.parameters, type(self.fspec.parameters)
Tkinter.Label(self.top, text='parameters: ' +
', '.join(self.fspec.parameters.keys())).pack()
if self.fspec.image is not None:
self.image = Tkinter.PhotoImage(file=self.fspec.image)
Tkinter.Label(self.top, image=self.image).pack()
# widgets for setting parameters:
if self.fspec.parameters:
parametersGUI(self.fspec.parameters, self.top,
pack_side='top',scrolled=self.fspec.scrolled_frame)
def get(self):
"""Return function object."""
# extract parameter values from the GUI?
if self.fspec.parameters:
d = self.fspec.parameters.get() # dict of (name,value) pairs
for name in d:
try:
f = self.fspec.function_object
except:
raise AttributeError(
'FuncSpec "%s" used in UserFunction has '\
'no function_object set' % self.fspec.name)
if hasattr(f, name):
setattr(f, name, d[name])
else:
raise NameError('expected parameter name %s '\
'as attribute in function object '\
'\n(dir(function object)=%s)' % \
(name,dir(f)))
return wrap2callable(self.fspec.function_object)
class Drawing(UserFunction):
def __init__(self, parent, func_spec):
UserFunction.__init__(self, parent, func_spec)
if self.fspec.xcoor is None:
raise ValueError('want DrawFunction widget, but no xcoor info'\
' in the FuncSpec object')
self.drawing = DrawFunction(self.fspec.xcoor, self.top)
self.drawing.pack(padx=10, pady=10)
def get(self):
"""Return function object."""
x, y = self.drawing.get()
d = wrap2callable((x,y))
# The drawing function d may be combined with another
# expression, forming a new function object. This functionality
# is in a method 'embed' in self.func_spec.function_object.
try:
f = UserFunction.get(self)
f.attach_func(d)
d = f
except:
pass # no combination with other functions registered
return d
class FunctionChoices:
"""
Notebook for various representations of a function.
The representations appear as pages. Each page is
realized as a UserFunction, StringFormula, or Drawing
instance.
"""
def __init__(self, parent, func_spec_list):
self.master = parent
self.top = Tkinter.Frame(self.master, borderwidth=2)
self.top.pack(expand=True, fill='both')
self.nb = Pmw.NoteBook(self.top)
self.func_spec_list = func_spec_list # list of FuncSpec objects
# hold UserFunction, Drawing, or StringFormula objects,
# one for each page (key is page name):
self.page = {}
for f in self.func_spec_list:
# define a page:
new_page = self.nb.add(f.name, tab_text=f.name)
# group is a kind of frame widget with a solid border:
group = Pmw.Group(new_page, tag_text=f.name)
group.pack(fill='both', expand=1, padx=10, pady=10)
# build contents in current page:
self.page[f.name] = \
f.representation(group.interior(), f)
self.nb.pack(padx=5, pady=5, fill='both', expand=1)
self.nb.setnaturalsize()
def get(self):
"""
Return initialized function object corresponding to
the currently selected notebook page.
"""
# get user-chosen page name:
current = self.nb.getcurselection()
# get corresponding function object (self.page[current]
# is a UserFunction, Drawing, or StringFunction instance):
f = self.page[current].get()
#from scitools.misc import dump
#dump(f, hide_nonpublic=False)
return f, current
class FunctionSelector:
"""
Notebook with a collection of functions to be specified.
Each function is represented by a FunctionChoices page.
This page is again a notebook with pages corresponding to
different ways of specifying a function:
drawing, string formulas, ready-made formulas with
free parameters, hardcoded Python functions etc.
"""
def __init__(self, parent):
self.master = parent
self.top = Tkinter.Frame(self.master, borderwidth=2)
self.top.pack(expand=True, fill='both')
self.nb = Pmw.NoteBook(self.top)
self.page = {} # FunctionChoices widgets
def add(self, name, func_spec_list):
new_page = self.nb.add(name, tab_text=name)
group = Tkinter.Frame(new_page, borderwidth=2)
group.pack(expand=True, fill='both')
w = FunctionChoices(group, func_spec_list)
self.page[name] = w
def pack(self, **kwargs):
# pack notebook:
self.nb.pack(padx=5, pady=5, fill='both', expand=1, **kwargs)
self.nb.setnaturalsize()
def select(self, name, page):
"""Select page under the name tab."""
self.page[name].nb.selectpage(page)
def get(self, name):
"""
Return initialized function object corresponding to
the page with the given name.
"""
return self.page[name].get()
#from scitools.misc import dump
#dump(f, hide_nonpublic=False)
def test_FunctionChoices(root):
class MyFunc:
def __init__(self, a, b):
self.a = a; self.b = b
def __call__(self, q, t):
return self.a*q + self.b*t
F = FuncSpec
nb = [F(Drawing, name='k coeff', xcoor=seq(0,1,0.01)),
F(StringFormula, name='velocity',
parameters={'A': 1, 'B': 1, 'p': 1, 'q': 1},
formula='[-B*cos(q*y), A*sin(p*x)]', # vector field
independent_variables=('x', 'y'),
vector=2),
F(UserFunction, name='bc',
parameters=('a', 'b'),
formula='a*q + b*t',
independent_variables=('q', 't'),
function_object=MyFunc(0,0)),
]
print nb
gui = FunctionChoices(root, nb)
Tkinter.Button(root, text='get',
# note that gui is local so obj=gui is needed to
# remember the gui object...
command=gui.get).pack(pady=5)
root.mainloop()
def _test_FunctionSelector(root):
"""Two-level notebook. Top level: f, I, bc."""
s = FunctionSelector(root)
class MovingSource1:
"""Function object: A*exp(-(x - x0 - sin(w*t))**2)."""
def __init__(self, A, w, x0):
self.A = A; self.w = w; self.x0 = x0
def __call__(self, x, t):
return self.A*exp(-(x - self.x0 - sin(self.w*t))**2)
def __str__(self):
return 'A*exp(-(x - x0 - sin(w*t))**2)'
def parameters(self):
return {'A': self.A, 'w': self.w, 'x0': self.x0}
def growing_source(x, t):
A = 1; w = 0.1; x0 = 5
return A*(sin(w*t))**2*exp(-(x-x0)**2)
class MovingSource2:
"""
As MovingSource1, but let the user specify
(through a drawing, for instance) the spatial shape f:
f(x - x0 - sin(w*t)).
"""
def __init__(self, w, x0):
self.w = w; self.x0 = x0
self.spatial_shape = lambda x: exp(-x*x)
def attach_func(self, spatial_shape):
self.spatial_shape = spatial_shape
def __call__(self, x, t):
return self.spatial_shape(x - self.x0 - sin(self.w*t))
def __str__(self):
return 'f(x - x0 - sin(w*t))'
def parameters(self):
return {'w': self.w, 'x0': self.x0}
ms1 = MovingSource1(1, 1, 5)
ms2 = MovingSource2(1, 5)
F = FuncSpec # short form
f = [F(UserFunction, name='moving source 1',
independent_variables=('x', 't'),
formula=str(ms1),
function_object=ms1,
parameters=ms1.parameters()),
F(UserFunction, name='growing source 1',
independent_variables=('x', 't'),
formula='A*(sin(w*t))**2*exp(-(x-x0)**2); A=1, w=0.1',
function_object=growing_source),
F(Drawing, name='moving source 2',
independent_variables=('x', 't'),
description='spatial shape f(x) can be drawn',
function_object=ms2,
parameters=ms2.parameters(),
formula=str(ms2),
xcoor=seq(0,10,0.1),),
F(StringFormula, name='growing source 2',
parameters={'A': 1.0, 'w': 1.0, 'x0': 0},
formula='A*(sin(w*t))**2*exp(-(x-x0)**2)',
independent_variables=('x', 't')),
F(UserFunction, name='no source',
independent_variables=('x', 't'),
formula='f(x,t)=0',
function_object=lambda x,t: 0),
]
s.add('f', f)
class GaussianBell:
"""Gaussian Bell at x0 with st.dev. sigma."""
def __init__(self, x0, sigma):
self.x0 = x0; self.sigma = sigma
def __call__(self, x):
return exp(-0.5*((x-self.x0)/self.sigma)**2)
def __str__(self):
return 'exp(-0.5*((x-x0)/sigma)**2)'
def parameters(self):
return {'x0': self.x0, 'sigma': self.sigma}
gb = GaussianBell(5,1)
I = [F(UserFunction, name='localized disturbance',
function_object=gb,
independent_variables=['x'],
parameters=gb.parameters()),
F(Drawing, name='draw initial shape',
independent_variables=['x'],
xcoor=seq(0,10,0.1),)
]
s.add('initial condition', I)
class OscHalfPeriod:
"""Oscillate sin(w*t) half a period, then hold zero."""
def __init__(self, w):
self.w = w
def __call__(self, t):
T = pi/self.w
if t <= T:
return sin(self.w*t)
else:
return 0.0
def __str__(self):
return 'sin(w*t) for t<pi/w, otherwise 0'
def parameters(self):
return {'w': self.w}
half_period = OscHalfPeriod(pi/2)
bc = [F(UserFunction, name='1 period oscillation',
independent_variables=('t',),
function_object=half_period,
formula=str(half_period),
parameters=half_period.parameters()),
F(UserFunction, name='fixed ends',
independent_variables=('t',),
function_object=lambda x: 0,
formula='u=0 at the ends',),
]
s.add('boundary conditions', bc)
s.pack()
def get():
f_func, page = s.get('f')
I_func, page = s.get('initial condition')
bc_func, page = s.get('boundary conditions')
from scitools.misc import dump
print 'f_func:'
dump(f_func, hide_nonpublic=False)
print 'I_func:'
dump(I_func, hide_nonpublic=False)
print 'bc_func:'
dump(bc_func, hide_nonpublic=False)
Tkinter.Button(root, text='get',
command=get).pack(pady=5)
root.mainloop()
def _FunctionSelector_test():
root = Tkinter.Tk()
Pmw.initialise(root)
import scitools.misc
scitools.misc.fontscheme6(root)
root.title('FunctionSelector notebook demo')
_test_FunctionSelector(root)
class FuncDependenceViz:
"""
Visualization of the shape of a function depends
continuously on its parameters, and this class
makes a graphical illustration of this dependence.
"""
def __init__(self, master,
parameter_intervals={}, # interval for each prm
functions={}, # functions to be plotted
xmin=0.0, xmax=1.0, # x axis range
resolution=101, # no of x evaluations
width=500, height=400, # size of plot window
viztool = 'Pmw.Blt.Graph', # or 'gnuplot'
plot_update = 'after' # how slider movements
# update the plots
):
"""
Define a set of functions depending on a set of parameters.
This class creates a GUI where the parameters can be adjusted,
and the effect on the function graphs can be seen immediately.
"""
import scitools.modulecheck as sm
sm("TkGUI module:", 'Pmw', 'Tkinter', 'Gnuplot', 'numpy')
Gnuplot = import_module('Gnuplot')
self.Gnuplot = Gnuplot
self.master = master
self.top = Tkinter.Frame(master, borderwidth=2)
self.top.pack() # could leave this pack for a pack class function
self.p_intervals = parameter_intervals
self.funcs = functions # f_i(x; p_1,...p_n)
self.p = {} # values of the parameters
self.slider_var = {} # Tkinter vars for slide.p
for pname in self.p_intervals:
# set parameter value to midpoint in interval:
self.p[pname] = (self.p_intervals[pname][0] + \
self.p_intervals[pname][1])/2.0
self.slider_var[pname] = Tkinter.DoubleVar()
self.slider_var[pname].set(self.p[pname])
# define the sliders:
for pname in self.p_intervals:
pmin = self.p_intervals[pname][0]
pmax = self.p_intervals[pname][1]
slider = Tkinter.Scale(self.top,
orient='horizontal',
from_=pmin,
to=pmax,
tickinterval=(pmax-pmin)/10.0,
resolution=(pmax-pmin)/100.0,
label=pname,
font="helvetica 10 bold",
length=width-100,
variable=self.slider_var[pname])
slider.pack(side='top', pady=4)
# we can update the plot according to slider
# movements in two ways: during movement
# (command= option) or after movement (event binding)
if plot_update == 'after':
slider.bind('<ButtonRelease-1>', self.visualize)
else:
slider.configure(command=self.visualize)
# does not work: slider.bind('<B1-Motion>', self.visualize)
# define a widget row where xmin/xmax and n can be adjusted:
self.xmin = Tkinter.DoubleVar(); self.xmin.set(xmin)
self.xmax = Tkinter.DoubleVar(); self.xmax.set(xmax)
self.n = Tkinter.IntVar(); self.n.set(resolution)
row = Tkinter.Frame(self.top, borderwidth=2)
row.pack()
Tkinter.Label(row, text="x min:").pack(side='left')
Tkinter.Entry(row, textvariable=self.xmin, width=5,
justify='right').pack(side='left')
Tkinter.Label(row, text=" x max:").pack(side='left')
Tkinter.Entry(row, textvariable=self.xmax, width=5,
justify='right').pack(side='left')
Tkinter.Label(row, text=" no of points:").pack(side='left')
Tkinter.Entry(row, textvariable=self.n, width=3,
justify='right').pack(side='left')
# make graph widget or use a plotting program?
try:
# see if we can create a BLT graph successfully:
self.g = Pmw.Blt.Graph(self.top,
width=width, height=height)
have_blt = 1
except:
have_blt = 0
self.viztool = viztool # user-specified plotting tool
print have_blt, viztool
if have_blt and viztool == "Pmw.Blt.Graph":
self.g.pack(expand=1, fill='both')
else:
# we do not have BLT or the user has not requested BLT:
self.g = self.Gnuplot.Gnuplot(persist=1)
self.dx = 0 # new vectors must be made if the x incr. changes
self.make_vectors() # vectors for x and y values in plot
# PostScript plot:
Tkinter.Button(row, text="Postscript plot",
command=self.psdump).pack(side='left',padx=5)
# bind 'p' to dumping the plot in PostScript:
# (must bind to master, not self.top)
self.master.bind('<p>', self.psdump)
self.master.bind('<q>', self.quit) # convenient
def psdump(self, event=None):
import tkFileDialog
fname = tkFileDialog.SaveAs(
filetypes=[('psfiles','*.ps')],
initialfile="tmp.ps",
title="Save plot in PostScript format").show()
if fname:
if self.viztool == "gnuplot":
self.g.hardcopy(filename=fname, enhanced=1,
mode='eps', color=0,
fontname='Times-Roman', fontsize=28)
elif self.viztool == "Pmw.Blt.Graph":
self.g.postscript_output(fileName=fname,
decorations='no')
def quit(self, event=None):
"kill plot window"
self.master.destroy()
def make_vectors(self):
"make x vector and a dictionary of y vectors"
# self.x : vector of x coordinates
# self.y[funcname] : vector of function values
dx = (self.xmax.get() - self.xmin.get())/\
float(self.n.get() - 1)
if dx != self.dx:
self.dx = dx
# x increment has changed, make new vectors:
# add dx/2 to upper limit to ensure self.n entries:
x = arange(self.xmin.get(), self.xmax.get()+dx/2, dx, float)
if x.shape[0] != self.n.get():
raise IndexError("x has wrong length")
self.x = x
self.y = {}
for funcname in self.funcs:
self.y[funcname] = zeros(x.shape[0],float)
if self.viztool == "Pmw.Blt.Graph":
self.bind_vectors2BLTgraph()
# fill the vectors with appropriate data for testing:
self.fill_vectors()
def bind_vectors2BLTgraph(self):
"bind vectors to the curves in the BLT graph"
# each curve has its own color:
colors = ['red','blue','green','black','grey',
'black','yellow','orange']
if len(self.funcs) > len(colors):
print "Cannot handle more than %d functions"\
% len(self.funcs); sys.exit(1)
color_counter = 0
for curvename in self.funcs:
if self.g.element_exists(curvename):
self.g.element_delete(curvename)
self.g.line_create(
curvename, # used as identifier
xdata=tuple(self.x), # x coords
ydata=tuple(self.y[curvename]), # y coords
color=colors[color_counter],
linewidth=1,
dashes='', # number: dash, "": solid
label=curvename, # legend
symbol='', # no symbols at data points
)
color_counter += 1
def visualize(self, var):
for pname in self.p:
self.p[pname] = self.slider_var[pname].get()
self.make_vectors()
self.fill_vectors()
title = ""
for pname in self.p:
title += "%s=%g " % (pname,self.p[pname])
if self.viztool == "gnuplot":
self.g.clear()
self.g("set xrange [%g:%g]" % (self.xmin.get(),
self.xmax.get()))
self.g.title(title)
# we do not launch the plot here
plots = []; line_counter=1
for funcname in self.funcs:
plots.append(self.Gnuplot.Data(
self.x, self.y[funcname],
with_="line %d" % line_counter))
line_counter += 1
self.g.plot(*tuple(plots))
elif self.viztool == "Pmw.Blt.Graph":
# BLT graph commands:
self.g.xaxis_configure(min=self.xmin.get(),
max=self.xmax.get())
for curvename in self.funcs:
self.g.element_configure(
curvename, ydata=tuple(self.y[curvename]))
self.g.update()
self.g.configure(title=title)
def fill_vectors(self):
for funcname in self.funcs:
# slow loop over NumPy array...
for i in range(self.n.get()):
x = self.x[i]
self.y[funcname][i] = \
self.funcs[funcname](x, self.p)
def _test_FuncDependenceViz():
import math
p_intervals = {'mu': (0,8), 'sigma': (0,1), 'alpha': (0,1)}
# recall that lambda is a reserved keyword in Python,
# use lambda_ instead:
def lognormal(x, lambda_, zeta):
if x < 1.0E-9:
f = 0.0
else:
f = 1/(zeta*math.sqrt(2*math.pi)*x)*math.exp(
-0.5*((math.log(x)-lambda_)/zeta)**2)
return f
def U(x, p):
mu = p['mu']; sigma = p['sigma']
zeta = math.sqrt(math.log(1 + (sigma/mu)**2))
lambda_ = math.log(mu) - 0.5*0.5*zeta**2
return lognormal(x, lambda_, zeta)
def F(x, p):
mu = p['mu']; sigma = p['mu']; alpha = p['alpha']
zeta = math.sqrt(math.log(1 + (sigma/mu)**2))
lambda_ = math.log(mu) - 0.5*0.5*zeta**2
# response modification:
lambda_ = math.log(alpha) + 2*lambda_
zeta = 2*zeta
return lognormal(x, lambda_, zeta)
f = { 'U': U, 'F': F } # function names and objects
root = Tkinter.Tk()
Pmw.initialise(root)
try:
viztool = sys.argv[1]
except:
viztool = 'gnuplot' # alternative: Pmw.Blt.Graph
try:
update = sys.argv[2]
except:
update = 'after' # alternative: arbitrary (cont. update)
gui = FuncDependenceViz(root, p_intervals, f,
xmin=0, xmax=8,
resolution=40,
viztool=viztool,
plot_update=update)
root.mainloop()
def _test():
print 'Testing DrawFunction:'
_test_DrawFunction()
print 'Testing CanvasCoords:'
_CanvasCoords_test()
print 'Testing FunctionSelector:'
_FunctionSelector_test()
print 'Testing ParameterInterface:'
_test1_Parameters()
_test1_Parameters_wGUI()
print 'Testing FuncDependenceViz:'
_test_FuncDependenceViz()
if __name__ == '__main__':
_test()
|