/usr/lib/python2.7/dist-packages/scitools/numpyutils.py is in python-scitools 0.9.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 | """
Functionality of this module that extends Numerical Python
==========================================================
- solve_tridiag_linear_system:
returns the solution of a tridiagonal linear system
- wrap2callable:
tool for turning constants, discrete data, string
formulas, function objects, or plain functions
into an object that behaves as a function
- NumPy_array_iterator:
allows iterating over all array elements using
a single, standard for loop (for value, index in iterator),
has some additional features compared with numpy.ndenumerate
- asarray_cpwarn:
as ``numpy.asarray(a)``, but a warning or exception is issued if
the array a is copied
- meshgrid:
extended version of ``numpy.meshgrid`` to 1D, 2D and 3D grids,
with sparse or dense coordinate arrays and matrix or grid
indexing
- ndgrid:
same as calling ``meshgrid`` with indexing='ij' (matrix indexing)
- float_eq:
``operator ==`` for float operands with tolerance,
``float_eq(a,b,tol)`` means ``abs(a-b) < tol``
works for both scalar and array arguments
(similar functions for other operations exists:
``float_le``, ``float_lt``, ``float_ge``, ``float_gt``,
``float_ne``)
- cut_noise:
set all small (noise) elements of an array to zero
- matrix_rank:
compute the rank of a matrix
- orth:
compute an orthonormal basis from a matrix (taken from
``scipy.linalg`` to avoid ``scipy`` dependence)
- null:
compute the null space of a matrix
- norm_L2, norm_l2, norm_L1, norm_l1, norm_inf:
discrete and continuous norms for multi-dimensional arrays
viewed as vectors
- compute_historgram:
return x and y arrays of a histogram, given a vector of samples
- seq:
``seq(a,b,s, [type])`` computes numbers from ``a`` up to and
including ``b`` in steps of s and (default) type ``float_``;
- iseq:
as ``seq``, but integer counters are computed
(``iseq`` is an alternative to range where the
upper limit is included in the sequence - this can
be important for direct mapping of indices between
mathematics and Python code);
"""
if __name__.find('numpyutils') != -1:
from numpy import *
#else if name is some other module name:
# this file is included in numpytools.py (through a preprocessing step)
# and the code below then relies on previously imported Numerical Python
# modules (Numeric, numpy, numarray)
import operator
from FloatComparison import float_eq, float_ne, float_lt, float_le, \
float_gt, float_ge
def meshgrid(x=None, y=None, z=None, sparse=False, indexing='xy',
memoryorder=None):
"""
Extension of ``numpy.meshgrid`` to 1D, 2D and 3D problems, and also
support of both "matrix" and "grid" numbering.
This extended version makes 1D/2D/3D coordinate arrays for
vectorized evaluations of 1D/2D/3D scalar/vector fields over
1D/2D/3D grids, given one-dimensional coordinate arrays x, y,
and/or, z.
>>> x=linspace(0,1,3) # coordinates along x axis
>>> y=linspace(0,1,2) # coordinates along y axis
>>> xv, yv = meshgrid(x,y) # extend x and y for a 2D xy grid
>>> xv
array([[ 0. , 0.5, 1. ],
[ 0. , 0.5, 1. ]])
>>> yv
array([[ 0., 0., 0.],
[ 1., 1., 1.]])
>>> xv, yv = meshgrid(x,y, sparse=True) # make sparse output arrays
>>> xv
array([[ 0. , 0.5, 1. ]])
>>> yv
array([[ 0.],
[ 1.]])
>>> # 2D slice of a 3D grid, with z=const:
>>> z=5
>>> xv, yv, zc = meshgrid(x,y,z)
>>> xv
array([[ 0. , 0.5, 1. ],
[ 0. , 0.5, 1. ]])
>>> yv
array([[ 0., 0., 0.],
[ 1., 1., 1.]])
>>> zc
5
>>> # 2D slice of a 3D grid, with x=const:
>>> meshgrid(2,y,x)
(2, array([[ 0., 1.],
[ 0., 1.],
[ 0., 1.]]), array([[ 0. , 0. ],
[ 0.5, 0.5],
[ 1. , 1. ]]))
>>> meshgrid(0,1,5, sparse=True) # just a 3D point
(0, 1, 5)
>>> meshgrid(y) # 1D grid; y is just returned
array([ 0., 1.])
>>> meshgrid(x,y, indexing='ij') # change to matrix indexing
(array([[ 0. , 0. ],
[ 0.5, 0.5],
[ 1. , 1. ]]), array([[ 0., 1.],
[ 0., 1.],
[ 0., 1.]]))
Why does SciTools has its own meshgrid function when numpy has
three similar functions, ``mgrid``, ``ogrid``, and ``meshgrid``?
The ``meshgrid`` function in numpy is limited to two dimensions
only, while the SciTools version can also work with 3D and 1D
grids. In addition, the numpy version of ``meshgrid`` has no
option for generating sparse grids to conserve memory, like we
have in SciTools by specifying the ``sparse`` argument.
Moreover, the numpy functions ``mgrid`` and ``ogrid`` does provide
support for, respectively, full and sparse n-dimensional
meshgrids, however, these functions uses slices to generate the
meshgrids rather than one-dimensional coordinate arrays such as in
Matlab. With slices, the user does not have the option to generate
meshgrid with, e.g., irregular spacings, like::
>>> x = array([-1,-0.5,1,4,5], float)
>>> y = array([0,-2,-5], float)
>>> xv, yv = meshgrid(x, y, sparse=False)
>>> xv
array([[-1. , -0.5, 1. , 4. , 5. ],
[-1. , -0.5, 1. , 4. , 5. ],
[-1. , -0.5, 1. , 4. , 5. ]])
>>> yv
array([[ 0., 0., 0., 0., 0.],
[-2., -2., -2., -2., -2.],
[-5., -5., -5., -5., -5.]])
In addition to the reasons mentioned above, the ``meshgrid``
function in numpy supports only Cartesian indexing, i.e., x and y,
not matrix indexing, i.e., rows and columns (on the other hand,
``mgrid`` and ``ogrid`` supports only matrix indexing). The
``meshgrid`` function in SciTools supports both indexing
conventions through the ``indexing`` keyword argument. Giving the
string ``'ij'`` returns a meshgrid with matrix indexing, while
``'xy'`` returns a meshgrid with Cartesian indexing. The
difference is illustrated by the following code snippet::
nx = 10
ny = 15
x = linspace(-2,2,nx)
y = linspace(-2,2,ny)
xv, yv = meshgrid(x, y, sparse=False, indexing='ij')
for i in range(nx):
for j in range(ny):
# treat xv[i,j], yv[i,j]
xv, yv = meshgrid(x, y, sparse=False, indexing='xy')
for i in range(nx):
for j in range(ny):
# treat xv[j,i], yv[j,i]
It is not entirely true that matrix indexing is not supported by the
``meshgrid`` function in numpy because we can just switch the order of
the first two input and output arguments::
>>> yv, xv = numpy.meshgrid(y, x)
>>> # same as:
>>> xv, yv = meshgrid(x, y, indexing='ij')
However, we think it is clearer to have the logical "x, y"
sequence on the left-hand side and instead adjust a keyword argument.
"""
import types
def fixed(coor):
return isinstance(coor, (float, complex, int, types.NoneType))
if not fixed(x):
x = asarray(x)
if not fixed(y):
y = asarray(y)
if not fixed(z):
z = asarray(z)
def arr1D(coor):
try:
if len(coor.shape) == 1:
return True
else:
return False
except AttributeError:
return False
# if two of the arguments are fixed, we have a 1D grid, and
# the third argument can be reused as is:
if arr1D(x) and fixed(y) and fixed(z):
return x
if fixed(x) and arr1D(y) and fixed(z):
return y
if fixed(x) and fixed(y) and arr1D(z):
return z
# if x,y,z are identical, make copies:
try:
if y is x: y = x.copy()
if z is x: z = x.copy()
if z is y: z = y.copy()
except AttributeError: # x, y, or z not numpy array
pass
if memoryorder is not None:
import warnings
msg = "Keyword argument 'memoryorder' is deprecated and will be " \
"removed in the future. Please use the 'indexing' keyword " \
"argument instead."
warnings.warn(msg, DeprecationWarning)
if memoryorder == 'xyz':
indexing = 'ij'
else:
indexing = 'xy'
# If the keyword argument sparse is set to False, the full N-D matrix
# (not only the 1-D vector) should be returned. The mult_fact variable
# should then be updated as necessary.
mult_fact = 1
# if only one argument is fixed, we have a 2D grid:
if arr1D(x) and arr1D(y) and fixed(z):
if indexing == 'ij':
if not sparse:
mult_fact = ones((len(x),len(y)))
if z is None:
return x[:,newaxis]*mult_fact, y[newaxis,:]*mult_fact
else:
return x[:,newaxis]*mult_fact, y[newaxis,:]*mult_fact, z
else:
if not sparse:
mult_fact = ones((len(y),len(x)))
if z is None:
return x[newaxis,:]*mult_fact, y[:,newaxis]*mult_fact
else:
return x[newaxis,:]*mult_fact, y[:,newaxis]*mult_fact, z
if arr1D(x) and fixed(y) and arr1D(z):
if indexing == 'ij':
if not sparse:
mult_fact = ones((len(x),len(z)))
if y is None:
return x[:,newaxis]*mult_fact, z[newaxis,:]*mult_fact
else:
return x[:,newaxis]*mult_fact, y, z[newaxis,:]*mult_fact
else:
if not sparse:
mult_fact = ones((len(z),len(x)))
if y is None:
return x[newaxis,:]*mult_fact, z[:,newaxis]*mult_fact
else:
return x[newaxis,:]*mult_fact, y, z[:,newaxis]*mult_fact
if fixed(x) and arr1D(y) and arr1D(z):
if indexing == 'ij':
if not sparse:
mult_fact = ones((len(y),len(z)))
if x is None:
return y[:,newaxis]*mult_fact, z[newaxis,:]*mult_fact
else:
return x, y[:,newaxis]*mult_fact, z[newaxis,:]*mult_fact
else:
if not sparse:
mult_fact = ones((len(z),len(y)))
if x is None:
return y[newaxis,:]*mult_fact, z[:,newaxis]*mult_fact
else:
return x, y[newaxis,:]*mult_fact, z[:,newaxis]*mult_fact
# or maybe we have a full 3D grid:
if arr1D(x) and arr1D(y) and arr1D(z):
if indexing == 'ij':
if not sparse:
mult_fact = ones((len(x),len(y),len(z)))
return x[:,newaxis,newaxis]*mult_fact, \
y[newaxis,:,newaxis]*mult_fact, \
z[newaxis,newaxis,:]*mult_fact
else:
if not sparse:
mult_fact = ones((len(y),len(x),len(z)))
return x[newaxis,:,newaxis]*mult_fact, \
y[:,newaxis,newaxis]*mult_fact, \
z[newaxis,newaxis,:]*mult_fact
# at this stage we assume that we just have scalars:
l = []
if x is not None:
l.append(x)
if y is not None:
l.append(y)
if z is not None:
l.append(z)
if len(l) == 1:
return l[0]
else:
return tuple(l)
def ndgrid(*args,**kwargs):
"""
Same as calling ``meshgrid`` with *indexing* = ``'ij'`` (see
``meshgrid`` for documentation).
"""
kwargs['indexing'] = 'ij'
return meshgrid(*args,**kwargs)
def length(a):
"""Return the length of the largest dimension of array a."""
return max(a.shape)
def cut_noise(a, tol=1E-10):
"""
Set elements in array a to zero if the absolute value is
less than tol.
"""
a[abs(a) < tol] = 0
return a
def Gram_Schmidt1(vecs, row_wise_storage=True):
"""
Apply the Gram-Schmidt orthogonalization algorithm to a set
of vectors. vecs is a two-dimensional array where the vectors
are stored row-wise, or vecs may be a list of vectors, where
each vector can be a list or a one-dimensional array.
An array basis is returned, where basis[i,:] (row_wise_storage
is True) or basis[:,i] (row_wise_storage is False) is the i-th
orthonormal vector in the basis.
This function does not handle null vectors, see Gram_Schmidt
for a (slower) function that does.
"""
from numpy.linalg import inv
from math import sqrt
vecs = asarray(vecs) # transform to array if list of vectors
m, n = vecs.shape
basis = array(transpose(vecs))
eye = identity(n).astype(float)
basis[:,0] /= sqrt(dot(basis[:,0], basis[:,0]))
for i in range(1, m):
v = basis[:,i]/sqrt(dot(basis[:,i], basis[:,i]))
U = basis[:,:i]
P = eye - dot(U, dot(inv(dot(transpose(U), U)), transpose(U)))
basis[:, i] = dot(P, v)
basis[:, i] /= sqrt(dot(basis[:, i], basis[:, i]))
return transpose(basis) if row_wise_storage else basis
def Gram_Schmidt(vecs, row_wise_storage=True, tol=1E-10,
normalize=False, remove_null_vectors=False,
remove_noise=False):
"""
Apply the Gram-Schmidt orthogonalization algorithm to a set
of vectors. vecs is a two-dimensional array where the vectors
are stored row-wise, or vecs may be a list of vectors, where
each vector can be a list or a one-dimensional array.
The argument tol is a tolerance for null vectors (the absolute
value of all elements must be less than tol to have a null
vector).
If normalize is True, the orthogonal vectors are normalized to form
an orthonormal basis.
If remove_null_vectors is True, all null vectors are removed from
the resulting basis.
If remove_noise is True, all elements whose absolute values are
less than tol are set to zero.
An array basis is returned, where basis[i,:] (row_wise_storage
is True) or basis[:,i] (row_wise_storage is False) is the i-th
orthogonal vector in the basis.
This function handles null vectors, see Gram_Schmidt1
for a (faster) function that does not.
"""
# The algorithm below views vecs as a matrix A with the vectors
# stored as columns:
vecs = asarray(vecs) # transform to array if list of vectors
if row_wise_storage:
A = transpose(vecs).copy()
else:
A = vecs.copy()
m, n = A.shape
V = zeros((m,n))
for j in xrange(n):
v0 = A[:,j]
v = v0.copy()
for i in xrange(j):
vi = V[:,i]
if (abs(vi) > tol).any():
v -= (vdot(v0,vi)/vdot(vi,vi))*vi
V[:,j] = v
if remove_null_vectors:
indices = [i for i in xrange(n) if (abs(V[:,i]) < tol).all()]
V = V[ix_(range(m), indices)]
if normalize:
for j in xrange(V.shape[1]):
V[:,j] /= linalg.norm(V[:,j])
if remove_noise:
V = cut_noise(V, tol)
return transpose(V) if row_wise_storage else V
def matrix_rank(A):
"""
Returns the rank of a matrix A (rank means an estimate of
the number of linearly independent rows or columns).
"""
A = asarray(A)
u, s, v = svd(A)
maxabs = norm(x)
maxdim = max(A.shape)
tol = maxabs*maxdim*1E-13
r = s > tol
return sum(r)
def orth(A):
"""
(Plain copy from scipy.linalg.orth - this one here applies numpy.svd
and avoids the need for having scipy installed.)
Construct an orthonormal basis for the range of A using SVD.
@param A: array, shape (M, N)
@return:
Q : array, shape (M, K)
Orthonormal basis for the range of A.
K = effective rank of A, as determined by automatic cutoff
see also svd (singular value decomposition of a matrix in scipy.linalg)
"""
u,s,vh = svd(A)
M,N = A.shape
tol = max(M,N)*numpy.amax(s)*eps
num = numpy.sum(s > tol,dtype=int)
Q = u[:,:num]
return Q
def null(A, tol=1e-10, row_wise_storage=True):
"""
Return the null space of a matrix A.
If row_wise_storage is True, a two-dimensional array where the
vectors that span the null space are stored as rows, otherwise
they are stored as columns.
Code by Bastian Weber based on code by Robert Kern and Ryan Krauss.
"""
n, m = A.shape
if n > m :
return transpose(null(transpose(A), tol))
u, s, vh = linalg.svd(A)
s = append(s, zeros(m))[0:m]
null_mask = (s <= tol)
null_space = compress(null_mask, vh, axis=0)
null_space = conjugate(null_space) # in case of complex values
if row_wise_storage:
return null_space
else:
return transpose(null_space)
class Heaviside:
"""Standard and smoothed Heaviside function."""
def __init__(self, eps=0):
self.eps = eps # smoothing parameter
def __call__(self, x):
if self.eps == 0:
r = x >= 0
if isinstance(x, (int,float)):
return int(r)
elif isinstance(x, ndarray):
return asarray(r, dtype=int)
else:
if isinstance(x, (int,float)):
return self._smooth_scalar(x)
elif isinstance(x, ndarray):
return self._smooth_vec(x)
def _exact_scalar(self, x):
return 1 if x >= 0 else 0
def _exact_bool(self, x):
return x >= 0 # works for scalars and arrays, but returns bool
def _exact_vec1(self, x):
return where(x >= 0, 1, 0)
def _exact_vec2(self, x):
r = zeros_like(x)
r[x >= 0] = 1
return r
def _smooth_scalar(self, x):
eps = self.eps
if x < -eps:
return 0
elif x > eps:
return 1
else:
return 0.5 + x/(2*eps) + 1./(2*pi)*sin(pi*x/eps)
def _smooth_vec(self, x):
eps = self.eps
r = zeros_like(x)
condition1 = operator.and_(x >= -eps, x <= eps)
xc = x[condition1]
r[condition1] = 0.5 + xc/(2*eps) + 1./(2*pi)*sin(pi*xc/eps)
r[x > eps] = 1
return r
def plot(self, center=0, xmin=-1, xmax=1):
"""
Return arrays x, y for plotting the Heaviside function
H(x-`center`) on [`xmin`, `xmax`]. For the exact
Heaviside function,
``x = [xmin, center, center, xmax]; y = [0, 0, 1, 1]``,
while for the smoothed version, the ``x`` array
is computed on basis of the `eps` parameter.
"""
if self.eps == 0:
return [xmin, center, center, xmax], [0, 0, 1, 1]
else:
n = 200./self.eps
x = concatenate(
linspace(xmin, center-self.eps, 21),
linspace(center-self.eps, center+self.eps, n+1),
linspace(center+self.eps, xmax, 21))
y = self(x)
return x, y
class DiracDelta:
"""
Smoothed Dirac delta function:
$\frac{1}{2\epsilon}(1 + \cos(\pi x/\epsilon)$ when
$x\in [-\epsilon, \epsilon]$ and 0 elsewhere.
"""
def __init__(self, eps, vectorized=False):
self.eps = eps
if self.eps == 0:
raise ValueError('eps=0 is not allowed in class DiracDelta.')
def __call__(self, x):
if isinstance(x, (float, int)):
return _smooth(x)
elif isinstance(x, ndarray):
return _smooth_vec(x)
else:
raise TypeError('%s x is wrong' % type(x))
def _smooth(self, x):
eps = self.eps
if x < -eps or x > eps:
return 0
else:
return 1./(2*eps)*(1 + cos(pi*x/eps))
def _smooth_vec(self, x):
eps = self.eps
r = zeros_like(x)
condition1 - operator.and_(x >= -eps, x <= eps)
xc = x[condition1]
r[condition1] = 1./(2*eps)*(1 + cos(pi*xc/eps))
return r
def plot(self, center=0, xmin=-1, xmax=1):
"""
Return arrays x, y for plotting the DiracDelta function
centered in `center` on the interval [`xmin`, `xmax`].
"""
n = 200./self.eps
x = concatenate(
linspace(xmin, center-self.eps, 21),
linspace(center-self.eps, center+self.eps, n+1),
linspace(center+self.eps, xmax, 21))
y = self(x)
return x, y
class IndicatorFunction:
"""
Indicator function $I(x; L, R)$, which is 1 in $[L, R]$, and 0
outside. Two parameters ``eps_L`` and ``eps_R`` can be set
to provide smoothing of the left and/or right discontinuity
in the indicator function. The indicator function is
defined in terms of the Heaviside function (using class
:class:`Heaviside`): $I(x; R, L) = H(x-L)H(R-x)$.
"""
def __init__(self, interval, eps_L=0, eps_R=0):
"""
`interval` is a 2-tuple/list defining the interval [L, R] where
the indicator function is 1.
`eps` is a smoothing parameter: ``eps=0`` gives the standard
discontinuous indicator function, while a value different
from 0 gives rapid change from 0 to 1 over an interval of
length 2*`eps`.
"""
self.L, self.R = interval
self.eps_L, self.eps_R = eps_L, eps_R
self.Heaviside_L = Heaviside(eps_L)
self.Heaviside_R = Heaviside(eps_R)
def __call__(self, x):
if self.eps_L == 0 and self.eps_R == 0:
# Avoid using Heaviside functions since we want 1
# as value for x in [L,R) (important when indicator
# functions are added)
tol = 1E-10
if isinstance(x, (float, int)):
#return 0 if x < self.L or x >= self.R else 1
return 0 if x < self.L or x > self.R else 1
elif isinstance(x, ndarray):
r = ones_like(x)
r[x < self.L] = 0
#r[x >= self.R] = 0
r[x > self.R] = 0
return r
else:
return self.Heaviside_L(x - self.L)*self.Heaviside_R(self.R - x)
def plot(self, xmin=-1, xmax=1):
"""
Return arrays x, y for plotting IndicatorFunction
on [`xmin`, `xmax`]. For the exact discontinuous
indicator function, we typically have
``x = [xmin, L, L, R, R, xmax]; y = [0, 0, 1, 1, 0, 0]``,
while for the smoothed version, the densities of
coordinates in the ``x`` array is computed on basis of the
`eps` parameter.
"""
if xmin > self.L or xmax < self.R:
raise ValueError('xmin=%g > L=%g or xmax=%g < R=%g is meaningless for plot' % (xmin, self.L, xmax, self.R))
if self.eps == 0:
return [xmin, L, L, R, R, xmax], [0, 0, 1, 1, 0, 0]
else:
n = 200./self.eps
x = concatenate(
linspace(xmin, self.L-self.eps, 21),
linspace(self.L-self.eps, self.R+self.eps, n+1),
linspace(self.R+self.eps, xmax, 21))
y = self(x)
return x, y
def __str__(self):
e = 'eps=%g' % self.eps if self.eps else ''
return 'I(x)=1 on [%g, %g] %s' % (self.L, self.R, e)
def __repr__(self):
return 'IndicatorFunction([%g, %g], eps=%g)' % \
(self.L, self.R, self.eps)
class PiecewiseConstant:
"""
Representation of a piecewise constant function.
The discontinuities can be smoothed out.
In this latter case the piecewise constant function is represented
as a sum of indicator functions (:class:`IndicatorFunction`)
times corresponding values.
"""
def __init__(self, domain, data, eps=0):
self.L, self.R = domain
self.data = data
self.eps = eps
if self.L != self.data[0][0]:
raise ValueError('domain starts at %g, while data[0][0]=%g' % \
(self.L, self.data[0][0]))
self._boundaries = [x for x, value in data]
self._boundaries.append(self.R)
self._values = [value for x, value in data]
self._boundaries = array(self._boundaries, float)
self._values = array(self._values, float)
self._indicator_functions = []
# Ensure eps_L=0 at the left and eps_R=0 at the right,
# while both are eps at internal boundaries,
# i.e., the function is always discontinuous at the start and end
for i in range(len(self.data)):
if i == 0:
eps_L = 0; eps_R = eps # left boundary
elif i == len(self.data)-1:
eps_R = 0; eps_L = eps # right boundary
else:
eps_L = eps_R = eps # internal boundary
self._indicator_functions.append(IndicatorFunction(
[self._boundaries[i], self._boundaries[i+1]],
eps_L=eps_L, eps_R=eps_R))
def __call__(self, x):
if self.eps == 0:
return self.value(x)
else:
return sum(value*I(x) \
for I, value in \
zip(self._indicator_functions, self._values))
def value(self, x):
"""Alternative implementation to __call__."""
if isinstance(x, (float,int)):
return self._values[x >= self._boundaries[:-1]][-1]
else:
a = array([self._values[xi >= self._boundaries[:-1]][-1]
for xi in x])
return a
def plot(self):
if self.eps == 0:
x = []; y = []
for I, value in zip(self._indicator_functions, self._values):
x.append(I.L)
y.append(value)
x.append(I.R)
y.append(value)
return x, y
else:
n = 200/self.eps
if len(self.data) == 1:
return [self.L, self.R], [self._values[0], self._values[0]]
else:
x = [linspace(self.data[0][0], self.data[1][0]-self.eps, 21)]
# Iterate over all internal discontinuities
for I in self._indicator_functions[1:]:
x.append(linspace(I.L-self.eps, I.L+self.eps, n+1))
x.append(linspace(I.L+self.eps, I.R-self.eps, 21))
# Last part
x.append(linspace(I.R-self.eps, I.R, 3))
x = concatenate(x)
y = self(x)
return x, y
# the norm_* functions also work for arrays with dimensions larger than 2,
# in contrast to (most of) the numpy.linalg.norm functions
def norm_l2(u):
"""
Standard l2 norm of a multi-dimensional array u viewed as a vector.
"""
return linalg.norm(u.ravel())
def norm_L2(u):
"""
L2 norm of a multi-dimensional array u viewed as a vector
(norm is norm_l2/n, where n is length of u (no of elements)).
If u holds function values and the norm of u is supposed to
approximate an integral (L2 norm) of the function, this (and
not norm_l2) is the right norm function to use.
"""
return norm_l2(u)/sqrt(float(u.size))
def norm_l1(u):
"""
l1 norm of a multi-dimensional array u viewed as a vector:
``linalg.norm(u.ravel(),1)``.
"""
#return sum(abs(u.ravel()))
return linalg.norm(u.ravel(),1)
def norm_L1(u):
"""
L1 norm of a multi-dimensional array u viewed as a vector:
``norm_l1(u)/float(u.size)``.
If *u* holds function values and the norm of u is supposed to
approximate an integral (L1 norm) of the function, this (and
not norm_l1) is the right norm function to use.
"""
return norm_l1(u)/float(u.size)
def norm_inf(u):
"""Infinity/max norm of a multi-dimensional array u viewed as a vector."""
#return abs(u.ravel()).max()
return linalg.norm(u.ravel(), inf)
def solve_tridiag_linear_system(A, b):
"""
Solve an n times n tridiagonal linear system of the form::
A[0,1]*x[0] + A[0,2]*x[1] = 0
A[1,0]*x[0] + A[1,1]*x[1] + A[1,2]*x[2] = 0
...
...
A[k,0]*x[k-1] + A[k,1]*x[k] + A[k,2]*x[k+1] = 0
...
A[n-2,0]*x[n-3] + A[n-2,1]*x[n-2] + A[n-2,2]*x[n-1] = 0
...
A[n-1,0]*x[n-2] + A[n-1,1]*x[n-1] = 0
The diagonal of the coefficent matrix is stored in A[:,1],
the subdiagonal is stored in A[1:,0], and the superdiagonal
is stored in A[:-1,2].
"""
#The storage is not memory friendly in Python/C (diagonals stored
#columnwise in A), but if A is sent to F77 for high-performance
#computing, a copy is taken and the F77 routine works with the
#same algorithm and hence optimal (columnwise traversal)
#Fortran storage.
c, d = factorize_tridiag_matrix(A)
return solve_tridiag_factored_system(b, A, c, d)
def factorize_tridiag_matrix(A):
"""
Perform the factorization step only in solving a tridiagonal
linear system. See the function solve_tridiag_linear_system
for how the matrix *A* is stored.
Two arrays, *c* and *d*, are returned, and these represent,
together with superdiagonal *A[:-1,2]*, the factorized form of
*A*. To solve a system with ``solve_tridiag_factored_system``,
*A*, *c*, and *d* must be passed as arguments.
"""
n = len(b)
# scratch arrays:
d = zeros(n, 'd'); c = zeros(n, 'd'); m = zeros(n, 'd')
d[0] = A[0,1]
c[0] = b[0]
for k in iseq(start=1, stop=n-1, inc=1):
m[k] = A[k,0]/d[k-1]
d[k] = A[k,1] - m[k]*A[k-1,2]
c[k] = b[k] - m[k]*c[k-1]
return c, d
def solve_tridiag_factored_system(b, A, c, d):
"""
The backsubsitution part of solving a tridiagonal linear system.
The right-hand side is b, while *A*, *c*, and *d* represent the
factored matrix (see the factorize_tridiag_matrix function).
The solution x to A*x=b is returned.
"""
n = len(b)
x = zeros(n, 'd') # solution
# back substitution:
x[n-1] = c[n-1]/d[n-1]
for k in iseq(start=n-2, stop=0, inc=-1):
x[k] = (c[k] - A[k,2]*x[k+1])/d[k]
return x
try:
import Pmw
class NumPy2BltVector(Pmw.Blt.Vector):
"""
Copy a numpy array to a BLT vector:
# a: some numpy array
b = NumPy2BltVector(a) # b is BLT vector
g = Pmw.Blt.Graph(someframe)
# send b to g for plotting
"""
def __init__(self, array):
Pmw.Blt.Vector.__init__(self, len(array))
self.set(tuple(array)) # copy elements
except:
class NumPy2BltVector:
def __init__(self, array):
raise ImportError("Python is not working properly with BLT")
try:
from scitools.StringFunction import StringFunction
except:
pass # wrap2callable may not work
class WrapNo2Callable:
"""Turn a number (constant) into a callable function."""
def __init__(self, constant):
self.constant = constant
self._array_shape = None
def __call__(self, *args):
"""
>>> w = WrapNo2Callable(4.4)
>>> w(99)
4.4000000000000004
>>> # try vectorized computations:
>>> x = linspace(1, 4, 4)
>>> y = linspace(1, 2, 2)
>>> xv = x[:,NewAxis]; yv = y[NewAxis,:]
>>> xv + yv
array([[ 2., 3.],
[ 3., 4.],
[ 4., 5.],
[ 5., 6.]])
>>> w(xv, yv)
array([[ 4.4, 4.4],
[ 4.4, 4.4],
[ 4.4, 4.4],
[ 4.4, 4.4]])
If you want to call such a function object with space-time
arguments and vectorized expressions, make sure the time
argument is not the first argument. That is,
w(xv, yv, t) is fine, but w(t, xv, yv) will return 4.4,
not the desired array!
"""
if isinstance(args[0], (float, int, complex)):
# scalar version:
# (operator.isNumberType(args[0]) cannot be used as it is
# true also for numpy arrays
return self.constant
else: # assume numpy array
if self._array_shape is None:
self._set_array_shape()
else:
r = self.constant*ones(self._array_shape, 'd')
# could store r (allocated once) and just return reference
return r
def _set_array_shape(self, arg):
# vectorized version:
r = arg.copy()
# to get right dimension of the return array,
# compute with args in a simple formula (sum of args)
for a in args[1:]:
r = r + a # in-place r+= won't work
# (handles x,y,t - the last t just adds a constant)
# an argument sequence t, x, y will fail (1st arg
# is not a numpy array)
self._array_shape = r.shape
# The problem with this class is that, in the vectorized version,
# the array shape is determined in the first call, i.e., later
# calls may return an array with the wrong shape if the shape of
# the input arguments change! Sometimes, when called along boundaries
# of grids, the shape may change so the next implementation is
# slower and safer.
class WrapNo2Callable:
"""Turn a number (constant) into a callable function."""
def __init__(self, constant):
self.constant = constant
def __call__(self, *args):
"""
>>> w = WrapNo2Callable(4.4)
>>> w(99)
4.4000000000000004
>>> # try vectorized computations:
>>> x = linspace(1, 4, 4)
>>> y = linspace(1, 2, 2)
>>> xv = x[:,NewAxis]; yv = y[NewAxis,:]
>>> xv + yv
array([[ 2., 3.],
[ 3., 4.],
[ 4., 5.],
[ 5., 6.]])
>>> w(xv, yv)
array([[ 4.4, 4.4],
[ 4.4, 4.4],
[ 4.4, 4.4],
[ 4.4, 4.4]])
If you want to call such a function object with space-time
arguments and vectorized expressions, make sure the time
argument is not the first argument. That is,
w(xv, yv, t) is fine, but w(t, xv, yv) will return 4.4,
not the desired array!
"""
if isinstance(args[0], (float, int, complex)):
# scalar version:
return self.constant
else:
# vectorized version:
r = args[0].copy()
# to get right dimension of the return array,
# compute with args in a simple formula (sum of args)
for a in args[1:]:
r = r + a # in-place r+= won't work
# (handles x,y,t - the last t just adds a constant)
r[:] = self.constant
return r
class WrapDiscreteData2Callable:
"""
Turn discrete data on a uniform grid into a callable function,
i.e., equip the data with an interpolation function.
>>> x = linspace(0, 1, 11)
>>> y = 1+2*x
>>> f = WrapDiscreteData2Callable((x,y))
>>> # or just use the wrap2callable generic function:
>>> f = wrap2callable((x,y))
>>> f(0.5) # evaluate f(x) by interpolation
1.5
>>> f(0.5, 0.1) # discrete data with extra time prm: f(x,t)
1.5
"""
def __init__(self, data):
self.data = data # (x,y,f) data for an f(x,y) function
from scitools.misc import import_module
InterpolatingFunction = import_module(
'Scientific.Functions.Interpolation', 'InterpolatingFunction')
import Scientific
v = Scientific.__version__
target = '2.9.1'
if v < target:
raise ImportError(
'ScientificPython is in (old) version %s, need %s' \
% (v, target))
self.interpolating_function = \
InterpolatingFunction(self.data[:-1], self.data[-1])
self.ndims = len(self.data[:-1]) # no of spatial dim.
def __call__(self, *args):
# allow more arguments (typically time) after spatial pos.:
args = args[:self.ndims]
# args can be tuple of scalars (point) or tuple of vectors
if isinstance(args[0], (float, int, complex)):
return self.interpolating_function(*args)
else:
# args is tuple of vectors; Interpolation must work
# with one point at a time:
r = [self.interpolating_function(*a) for a in zip(*args)]
return array(r) # wrap in numpy array
def wrap2callable(f, **kwargs):
"""
Allow constants, string formulas, discrete data points,
user-defined functions and (callable) classes to be wrapped
in a new callable function. That is, all the mentioned data
structures can be used as a function, usually of space and/or
time.
(kwargs is used for string formulas)
>>> f1 = wrap2callable(2.0)
>>> f1(0.5)
2.0
>>> f2 = wrap2callable('1+2*x')
>>> f2(0.5)
2.0
>>> f3 = wrap2callable('1+2*t', independent_variable='t')
>>> f3(0.5)
2.0
>>> f4 = wrap2callable('a+b*t')
>>> f4(0.5)
Traceback (most recent call last):
...
NameError: name 'a' is not defined
>>> f4 = wrap2callable('a+b*t', independent_variable='t', a=1, b=2)
>>> f4(0.5)
2.0
>>> x = linspace(0, 1, 3); y=1+2*x
>>> f5 = wrap2callable((x,y))
>>> f5(0.5)
2.0
>>> def myfunc(x): return 1+2*x
>>> f6 = wrap2callable(myfunc)
>>> f6(0.5)
2.0
>>> f7 = wrap2callable(lambda x: 1+2*x)
>>> f7(0.5)
2.0
>>> class MyClass:
'Representation of a function f(x; a, b) =a + b*x'
def __init__(self, a=1, b=1):
self.a = a; self.b = b
def __call__(self, x):
return self.a + self.b*x
>>> myclass = MyClass(a=1, b=2)
>>> f8 = wrap2callable(myclass)
>>> f8(0.5)
2.0
>>> # 3D functions:
>>> f9 = wrap2callable('1+2*x+3*y+4*z', independent_variables=('x','y','z'))
>>> f9(0.5,1/3.,0.25)
4.0
>>> # discrete 3D data:
>>> y = linspace(0, 1, 3); z = linspace(-1, 0.5, 16)
>>> xv = reshape(x, (len(x),1,1))
>>> yv = reshape(y, (1,len(y),1))
>>> zv = reshape(z, (1,1,len(z)))
>>> def myfunc3(x,y,z): return 1+2*x+3*y+4*z
>>> values = myfunc3(xv, yv, zv)
>>> f10 = wrap2callable((x, y, z, values))
>>> f10(0.5, 1/3., 0.25)
4.0
One can also check what the object is wrapped as and do more
specific operations, e.g.,
>>> f9.__class__.__name__
'StringFunction'
>>> str(f9) # look at function formula
'1+2*x+3*y+4*z'
>>> f8.__class__.__name__
'MyClass'
>>> f8.a, f8.b # access MyClass-specific data
(1, 2)
Troubleshooting regarding string functions:
If you use a string formula with a numpy array, you typically get
error messages like::
TypeError: only rank-0 arrays can be converted to Python scalars.
You must then make the right import (numpy is recommended)::
from Numeric/numarray/numpy/scitools.numpytools import *
in the calling code and supply the keyword argument::
globals=globals()
to wrap2callable. See also the documentation of class StringFunction
for more information.
"""
if isinstance(f, str):
return StringFunction(f, **kwargs)
# this is a considerable optimization (up to a factor of 3),
# but then the additional info in the StringFunction instance
# is lost in the calling code:
# return StringFunction(f, **kwargs).__call__
elif isinstance(f, (float, int, complex)):
return WrapNo2Callable(f)
elif isinstance(f, (list,tuple)):
return WrapDiscreteData2Callable(f)
elif callable(f):
return f
else:
raise TypeError('f of type %s is not callable' % type(f))
# problem: setitem in ArrayGen does not support multiple indices
# relying on inherited __setitem__ works fine
def NumPy_array_iterator(a, **kwargs):
"""
Iterate over all elements in a numpy array a.
Two return values: a generator function and the code of this function.
The ``numpy.ndenumerate`` iterator performs the same iteration over
an array, but ``NumPy_array_iterator`` has some additional features
(especially handy for coding finite difference stencils, see next
paragraph).
The keyword arguments specify offsets in the start and stop value
of the index in each dimension. Legal argument names are
``offset0_start``, ``offset0_stop``, ``offset1_start``,
``offset1_stop``, etc. Also ``offset_start`` and ``offset_stop``
are legal keyword arguments, these imply the same offset value for
all dimensions.
Another keyword argument is ``no_value``, which can be True or False.
If the value is True, the iterator returns the indices as a tuple,
otherwise (default) the iterator returns a two-tuple consisting of
the value of the array and the corresponding indices (as a tuple).
Examples::
>>> q = linspace(1, 2*3*4, 2*3*4); q.shape = (2,3,4)
>>> it, code = NumPy_array_iterator(q)
>>> print code # generator function with 3 nested loops:
def nested_loops(a):
for i0 in xrange(0, a.shape[0]-0):
for i1 in xrange(0, a.shape[1]-0):
for i2 in xrange(0, a.shape[2]-0):
yield a[i0, i1, i2], (i0, i1, i2)
>>> type(it)
<type 'function'>
>>> for value, index in it(q):
... print 'a%s = %g' % (index, value)
...
a(0, 0, 0) = 1
a(0, 0, 1) = 2
a(0, 0, 2) = 3
a(0, 0, 3) = 4
a(0, 1, 0) = 5
a(0, 1, 1) = 6
a(0, 1, 2) = 7
a(0, 1, 3) = 8
a(0, 2, 0) = 9
a(0, 2, 1) = 10
a(0, 2, 2) = 11
a(0, 2, 3) = 12
a(1, 0, 0) = 13
a(1, 0, 1) = 14
a(1, 0, 2) = 15
a(1, 0, 3) = 16
a(1, 1, 0) = 17
a(1, 1, 1) = 18
a(1, 1, 2) = 19
a(1, 1, 3) = 20
a(1, 2, 0) = 21
a(1, 2, 1) = 22
a(1, 2, 2) = 23
a(1, 2, 3) = 24
Here is the version where only the indices and no the values
are returned by the iterator::
>>> q = linspace(1, 1*3, 3); q.shape = (1,3)
>>> it, code = NumPy_array_iterator(q, no_value=True)
>>> print code
def nested_loops(a):
for i0 in xrange(0, a.shape[0]-0):
for i1 in xrange(0, a.shape[1]-0):
yield i0, i1
>>> for i,j in it(q):
... print i,j
0 0
0 1
0 2
Now let us try some offsets::
>>> it, code = NumPy_array_iterator(q, offset1_stop=1, offset_start=1)
>>> print code
def nested_loops(a):
for i0 in xrange(1, a.shape[0]-0):
for i1 in xrange(1, a.shape[1]-1):
for i2 in xrange(1, a.shape[2]-0):
yield a[i0, i1, i2], (i0, i1, i2)
>>> # note: the offsets appear in the xrange arguments
>>> for value, index in it(q):
... print 'a%s = %g' % (index, value)
...
a(1, 1, 1) = 18
a(1, 1, 2) = 19
a(1, 1, 3) = 20
"""
# build the code of the generator function in a text string
# (since the number of nested loops needed to iterate over all
# elements are parameterized through len(a.shape))
dims = range(len(a.shape))
offset_code1 = ['offset%d_start=0' % d for d in dims]
offset_code2 = ['offset%d_stop=0' % d for d in dims]
for d in range(len(a.shape)):
key1 = 'offset%d_start' % d
key2 = 'offset%d_stop' % d
if key1 in kwargs:
offset_code1.append(key1 + '=' + str(kwargs[key1]))
if key2 in kwargs:
offset_code2.append(key2 + '=' + str(kwargs[key2]))
for key in kwargs:
if key == 'offset_start':
offset_code1.extend(['offset%d_start=%d' % (d, kwargs[key]) \
for d in range(len(a.shape))])
if key == 'offset_stop':
offset_code2.extend(['offset%d_stop=%d' % (d, kwargs[key]) \
for d in range(len(a.shape))])
no_value = kwargs.get('no_value', False)
for line in offset_code1:
exec line
for line in offset_code2:
exec line
code = 'def nested_loops(a):\n'
indentation = ' '*4
indent = '' + indentation
for dim in range(len(a.shape)):
code += indent + \
'for i%d in xrange(%d, a.shape[%d]-%d):\n' \
% (dim, eval('offset%d_start' % dim),
dim, eval('offset%d_stop' % dim))
indent += indentation
index = ', '.join(['i%d' % d for d in range(len(a.shape))])
if no_value:
code += indent + 'yield ' + index
else:
code += indent + 'yield ' + 'a[%s]' % index + ', (' + index + ')'
exec code
return nested_loops, code
def compute_histogram(samples, nbins=50, piecewise_constant=True):
"""
Given a numpy array samples with random samples, this function
returns the (x,y) arrays in a plot-ready version of the histogram.
If piecewise_constant is True, the (x,y) arrays gives a piecewise
constant curve when plotted, otherwise the (x,y) arrays gives a
piecewise linear curve where the x coordinates coincide with the
center points in each bin. The function makes use of
numpy.lib.function_base.histogram with some additional code
(for a piecewise curve or displaced x values to the centes of
the bins).
"""
import sys
if 'numpy' in sys.modules:
y0, bin_edges = histogram(samples, bins=nbins, normed=True)
h = bin_edges[1] - bin_edges[0] # bin width
if piecewise_constant:
x = zeros(2*len(bin_edges), type(bin_edges[0]))
y = x.copy()
x[0] = bin_edges[0]
y[0] = 0
for i in range(len(bin_edges)-1):
x[2*i+1] = bin_edges[i]
x[2*i+2] = bin_edges[i+1]
y[2*i+1] = y0[i]
y[2*i+2] = y0[i]
x[-1] = bin_edges[-1]
y[-1] = 0
else:
x = zeros(len(bin_edges)-1, type(bin_edges[0]))
y = y0.copy()
for i in range(len(x)):
x[i] = (bin_edges[i] + bin_edges[i+1])/2.0
return x, y
def factorial(n, method='reduce'):
"""
Compute the factorial n! using long integers (and pure Python code).
Different implementations are available (see source code for
implementation details).
Note: The math module in Python 2.6 features a factorial
function, making the present function redundant (except that
the various pure Python implementations can be of interest
for comparison).
Here is an efficiency comparison of the methods (computing 80!):
========================== =====================
Method Normalized CPU time
========================== =====================
reduce 1.00
lambda list comprehension 1.70
lambda functional 3.08
plain recursive 5.83
lambda recursive 21.73
scipy 131.18
========================== =====================
"""
if not isinstance(n, (int, long, float)):
raise TypeError('factorial(n): n must be integer not %s' % type(n))
n = long(n)
if n == 0 or n == 1:
return 1
if method == 'plain iterative':
f = 1
for i in range(1, n+1):
f *= i
return f
elif method == 'plain recursive':
if n == 1:
return 1
else:
return n*factorial(n-1, method)
elif method == 'lambda recursive':
fc = lambda n: n and fc(n-1)*long(n) or 1
return fc(n)
elif method == 'lambda functional':
fc = lambda n: n<=0 or \
reduce(lambda a,b: long(a)*long(b), xrange(1,n+1))
return fc(n)
elif method == 'lambda list comprehension':
fc = lambda n: [j for j in [1] for i in range(2,n+1) \
for j in [j*i]] [-1]
return fc(n)
elif method == 'reduce':
return reduce(operator.mul, xrange(2, n+1))
elif method == 'scipy':
try:
import scipy.misc.common as sc
return sc.factorial(n)
except ImportError:
print 'numpyutils.factorial: scipy is not available'
print 'default method="reduce" is used instead'
return reduce(operator.mul, xrange(2, n+1))
# or return factorial(n)
else:
raise ValueError('factorial: method="%s" is not supported' % method)
def asarray_cpwarn(a, dtype=None, message='warning', comment=''):
"""
As asarray, but a warning or exception is issued if the
a array is copied.
"""
a_new = asarray(a, dtype)
# must drop numpy's order argument since it conflicts
# with Numeric's savespace
# did we copy?
if a_new is not a:
# we do not return the identical array, i.e., copy has taken place
msg = '%s copy of array %s, from %s to %s' % \
(comment, a.shape, type(a), type(a_new))
if message == 'warning':
print 'Warning: %s' % msg
elif message == 'exception':
raise TypeError(msg)
return a_new
def seq(min=0.0, max=None, inc=1.0, type=float,
return_type='NumPyArray'):
"""
Generate numbers from min to (and including!) max,
with increment of inc. Safe alternative to arange.
The return_type string governs the type of the returned
sequence of numbers ('NumPyArray', 'list', or 'tuple').
"""
if max is None: # allow sequence(3) to be 0., 1., 2., 3.
# take 1st arg as max, min as 0, and inc=1
max = min; min = 0.0; inc = 1.0
r = arange(min, max + inc/2.0, inc, type)
if return_type == 'NumPyArray' or return_type == ndarray:
return r
elif return_type == 'list':
return r.tolist()
elif return_type == 'tuple':
return tuple(r.tolist())
def iseq(start=0, stop=None, inc=1):
"""
Generate integers from start to (and including) stop,
with increment of inc. Alternative to range/xrange.
"""
if stop is None: # allow isequence(3) to be 0, 1, 2, 3
# take 1st arg as stop, start as 0, and inc=1
stop = start; start = 0; inc = 1
return xrange(start, stop+inc, inc)
sequence = seq # backward compatibility
isequence = iseq # backward compatibility
def arr(shape=None, element_type=float,
interval=None,
data=None, copy=True,
file_=None,
order='C'):
"""
Compact and flexible interface for creating numpy arrays,
including several consistency and error checks.
- *shape*: length of each dimension, tuple or int
- *data*: list, tuple, or numpy array with data elements
- *copy*: copy data if true, share data if false, boolean
- *element_type*: float, int, int16, float64, bool, etc.
- *interval*: make elements from a to b (shape gives no of elms), tuple or list
- *file_*: filename or file object containing array data, string
- *order*: 'Fortran' or 'C' storage, string
- return value: created Numerical Python array
The array can be created in four ways:
1. as zeros (just shape specified),
2. as uniformly spaced coordinates in an interval [a,b]
3. as a copy of or reference to (depending on copy=True,False resp.)
a list, tuple, or numpy array (provided as the data argument),
4. from data in a file (for one- or two-dimensional real-valued arrays).
The function calls the underlying numpy functions zeros, array and
linspace (see the numpy manual for the functionality of these
functions). In case of data in a file, the first line determines
the number of columns in the array. The file format is just rows
and columns with numbers, no decorations (square brackets, commas,
etc.) are allowed.
>>> arr((3,4))
array([[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]])
>>> arr(4, element_type=int) + 4 # integer array
array([4, 4, 4, 4])
>>> arr(3, interval=[0,2])
array([ 0., 1., 2.])
>>> somelist=[[0,1],[5,5]]
>>> a = arr(data=somelist)
>>> a # a has always float elements by default
array([[ 0., 1.],
[ 5., 5.]])
>>> a = arr(data=somelist, element_type=int)
>>> a
array([[0, 1],
[5, 5]])
>>> b = a + 1
>>> c = arr(data=b, copy=False) # let c share data with b
>>> b is c
True
>>> id(b) == id(c)
True
>>> # make a file with array data:
>>> f = open('tmp.dat', 'w')
>>> f.write('''\
... 1 3
... 2 6
... 3 12
... 3.5 20
... ''')
>>> f.close()
>>> # read array data from file:
>>> a = arr(file_='tmp.dat')
>>> a
array([[ 1. , 3. ],
[ 2. , 6. ],
[ 3. , 12. ],
[ 3.5, 20. ]])
"""
if data is None and file_ is None and shape is None:
return None
if data is not None:
if not operator.isSequenceType(data):
raise TypeError('arr: data argument is not a sequence type')
if isinstance(shape, (list,tuple)):
# check that shape and data are compatible:
if reduce(operator.mul, shape) != size(data):
raise ValueError(
'arr: shape=%s is not compatible with %d '\
'elements in the provided data' % (shape, size(data)))
elif isinstance(shape, int):
if shape != size(data):
raise ValueError(
'arr: shape=%d is not compatible with %d '\
'elements in the provided data' % (shape, size(data)))
elif shape is None:
if isinstance(data, (list,tuple)) and copy == False:
# cannot share data (data is list/tuple)
copy = True
return array(data, dtype=element_type, copy=copy, order=order)
else:
raise TypeError(
'shape is %s, must be list/tuple or int' % type(shape))
elif file_ is not None:
if not isinstance(file_, (basestring, file, StringIO)):
raise TypeError(
'file_ argument must be a string (filename) or '\
'open file object, not %s' % type(file_))
if isinstance(file_, basestring):
file_ = open(file_, 'r')
# skip blank lines:
while True:
line1 = file_.readline().strip()
if line1 != '':
break
ncolumns = len(line1.split())
file_.seek(0)
# we assume that array data in file has element_type=float:
if not (element_type == float or element_type == 'd'):
raise ValueError('element_type must be float_/"%s", not "%s"' % \
('d', element_type))
d = array([float(word) for word in file_.read().split()])
if isinstance(file_, basestring):
f.close()
# shape array d:
if ncolumns > 1:
suggested_shape = (int(len(d)/ncolumns), ncolumns)
total_size = suggested_shape[0]*suggested_shape[1]
if total_size != len(d):
raise ValueError(
'found %d array entries in file "%s", but first line\n'\
'contains %d elements - no shape is compatible with\n'\
'these values' % (len(d), file, ncolumns))
d.shape = suggested_shape
if shape is not None:
if shape != d.shape:
raise ValueError(
'shape=%s is not compatible with shape %s found in "%s"' % \
(shape, d.shape, file))
return d
elif interval is not None and shape is not None:
if not isinstance(shape, int):
raise TypeError('For array values in an interval, '\
'shape must be an integer')
if not isinstance(interval, (list,tuple)):
raise TypeError('interval must be list or tuple, not %s' % \
type(interval))
if len(interval) != 2:
raise ValueError('interval must be a 2-tuple (or list)')
try:
return linspace(interval[0], interval[1], shape)
except MemoryError, e:
# print more information (size of data):
print e, 'of size %s' % shape
else:
# no data, no file, just make zeros
if not isinstance(shape, (tuple, int, list)):
raise TypeError('arr: shape (1st arg) must be tuple or int')
if shape is None:
raise ValueError(
'arr: either shape, data, or from_function must be specified')
try:
return zeros(shape, dtype=element_type, order=order)
except MemoryError, e:
# print more information (size of data):
print e, 'of size %s' % shape
def _test():
_test_FloatComparison()
# test norm functions for multi-dimensional arrays:
a = array(range(27))
a.shape = (3,3,3)
functions = [norm_l2, norm_L2, norm_l1, norm_L1, norm_inf]
results = [78.7464284904401239, 15.1547572288924073, 351, 13, 26]
for f, r in zip(functions, results):
if not float_eq(f(a), r):
print '%s failed: result=%g, not %g' % (f.__name__, f(a), r)
# Gram-Schmidt:
A = array([[1,2,3], [3,4,5], [6,4,1]], float)
V1 = Gram_Schmidt(A, normalize=True)
V2 = Gram_Schmidt1(A)
if not float_eq(V1, V2):
print 'The two Gram_Schmidt versions did not give equal results'
print 'Gram_Schmidt:\n', V1
print 'Gram_Schmidt1:\n', V2
# Null space:
K = array([[1,2,3], [1,2,3], [0,0,0], [-1, -2, -3]], float)
#K = random.random(3*7).reshape(7,3) # does not work...
print 'K=\n', K
print 'null(K)=\n', null(K)
r = K*null(K)
print 'K*null(K):', r
if __name__ == '__main__':
from numpy import *
_test()
|