/usr/lib/python2.7/dist-packages/SEEL/achan.py is in python-seelablet 0.1.9-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 | from __future__ import print_function
import numpy as np
TEN_BIT=10
TWELVE_BIT=12
gains=[1,2,4,5,8,10,16,32]
#-----------------------Classes for input sources----------------------
allAnalogChannels = ['CH1','CH2','CH3','MIC','CAP','SEN','AN8']
bipolars = ['CH1','CH2','CH3','MIC']
inputRanges={'CH1':[16.5,-16.5], #Specify inverted channels explicitly by reversing range!!!!!!!!!
'CH2':[16.5,-16.5],
'CH3':[-3.3,3.3], #external gain control analog input
'MIC':[-3.3,3.3], #connected to MIC amplifier
'CAP':[0,3.3],
'SEN':[0,3.3],
'AN8':[0,3.3]
}
picADCMultiplex={'CH1':3,'CH2':0,'CH3':1,'MIC':2,'AN4':4,'SEN':7,'CAP':5,'AN8':8,}
class analogInputSource:
gain_values=[1,2,4,5,8,10,16,32]
gainEnabled=False
gain=None
gainPGA=None
inverted=False
inversion=1.
calPoly10 = np.poly1d([0,3.3/1023,0.])
calPoly12 = np.poly1d([0,3.3/4095,0.])
calibrationReady=False
defaultOffsetCode=0
def __init__(self,name,**args):
self.name = name #The generic name of the input. like 'CH1', 'IN1' etc
self.CHOSA = picADCMultiplex[self.name]
self.adc_shifts=[]
self.polynomials={}
self.R=inputRanges[name]
if self.R[1]-self.R[0] < 0:
self.inverted=True
self.inversion=-1
self.scaling=1.
if name=='CH1':
self.gainEnabled=True
self.gainPGA = 1
self.gain=0 #This is not the gain factor. use self.gain_values[self.gain] to find that.
elif name=='CH2':
self.gainEnabled=True
self.gainPGA = 2
self.gain=0
else:
pass
self.gain=0
self.regenerateCalibration()
def setGain(self,g):
if not self.gainEnabled:
print ('Analog gain is not available on',self.name)
return False
self.gain=self.gain_values.index(g)
self.regenerateCalibration()
def inRange(self,val):
v = self.voltToCode12(val)
return (v>=0 and v<=4095)
def __conservativeInRange__(self,val):
v = self.voltToCode12(val)
return (v>=50 and v<=4000)
def loadCalibrationTable(self,table,slope, intercept):
self.adc_shifts = np.array(table)*slope - intercept
def loadPolynomials(self,polys):
for a in range(len(polys)):
epoly = [float(b) for b in polys[a]]
self.polynomials[a] = np.poly1d(epoly)
def regenerateCalibration(self):
B=self.R[1]
A=self.R[0]
intercept = self.R[0]
if self.gain!=None:
gain = self.gain_values[self.gain]
B = B/gain
A = A/gain
slope = B-A
intercept = A
if self.calibrationReady :
self.calPoly10 = self.__cal10__
self.calPoly12 = self.__cal12__
else:
self.calPoly10 = np.poly1d([0,slope/1023.,intercept])
self.calPoly12 = np.poly1d([0,slope/4095.,intercept])
self.voltToCode10 = np.poly1d([0,1023./slope,-1023*intercept/slope])
self.voltToCode12 = np.poly1d([0,4095./slope,-4095*intercept/slope])
def __cal12__(self,RAW):
avg_shifts=(self.adc_shifts[np.int16(np.floor(RAW))]+self.adc_shifts[np.int16(np.ceil(RAW))])/2.
RAW = RAW-4095*(avg_shifts)/3.3
return self.polynomials[self.gain](RAW)
def __cal10__(self,RAW):
RAW*=4095/1023.
avg_shifts=(self.adc_shifts[np.int16(np.floor(RAW))]+self.adc_shifts[np.int16(np.ceil(RAW))])/2.
RAW = RAW-4095*(avg_shifts)/3.3
return self.polynomials[self.gain](RAW)
'''
for a in ['CH1']:
x=analogInputSource(a)
print (x.name,x.calPoly10#,calfacs[x.name][0])
print ('CAL:',x.calPoly10(0),x.calPoly10(1023))
x.setOffset(1.65)
x.setGain(32)
print (x.name,x.calPoly10#,calfacs[x.name][0])
print ('CAL:',x.calPoly10(0),x.calPoly10(1023))
'''
#---------------------------------------------------------------------
class analogAcquisitionChannel:
'''
This class takes care of oscilloscope data fetched from the device.
Each instance may be linked to a particular input.
Since only up to two channels may be captured at a time with the vLabtool, only two instances will be required
Each instance will be linked to a particular inputSource instance by the capture routines.
When data is requested , it will return after applying calibration and gain details
stored in the selected inputSource
'''
def __init__(self,a):
self.name=''
self.gain=0
self.channel=a
self.channel_names=allAnalogChannels
#REFERENCE VOLTAGE = 3.3 V
self.calibration_ref196=1.#measured reference voltage/3.3
self.resolution=TEN_BIT
self.xaxis=np.zeros(10000)
self.yaxis=np.zeros(10000)
self.length=100
self.timebase = 1.
self.source = analogInputSource('CH1') #use CH1 for initialization. It will be overwritten by set_params
def fix_value(self,val):
#val[val>1020]=np.NaN
#val[val<2]=np.NaN
if self.resolution==TWELVE_BIT:return self.calibration_ref196*self.source.calPoly12(val)
else:return self.calibration_ref196*self.source.calPoly10(val)
def set_yval(self,pos,val):
self.yaxis[pos] = self.fix_value(val)
def set_xval(self,pos,val):
self.xaxis[pos] = val
def set_params(self,**keys):
self.gain = keys.get('gain',self.gain)
self.name = keys.get('channel',self.channel)
self.source = keys.get('source',self.source)
self.resolution = keys.get('resolution',self.resolution)
l = keys.get('length',self.length)
t = keys.get('timebase',self.timebase)
if t != self.timebase or l != self.length:
self.timebase = t
self.length = l
self.regenerate_xaxis()
def regenerate_xaxis(self):
for a in range(int(self.length)): self.xaxis[a] = self.timebase*a
def get_xaxis(self):
return self.xaxis[:self.length]
def get_yaxis(self):
return self.yaxis[:self.length]
|