This file is indexed.

/usr/lib/python2.7/dist-packages/sklearn/calibration.py is in python-sklearn 0.17.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
"""Calibration of predicted probabilities."""

# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#         Balazs Kegl <balazs.kegl@gmail.com>
#         Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
#         Mathieu Blondel <mathieu@mblondel.org>
#
# License: BSD 3 clause

from __future__ import division
import warnings

from math import log
import numpy as np

from scipy.optimize import fmin_bfgs

from .base import BaseEstimator, ClassifierMixin, RegressorMixin, clone
from .preprocessing import LabelBinarizer
from .utils import check_X_y, check_array, indexable, column_or_1d
from .utils.validation import check_is_fitted
from .utils.fixes import signature
from .isotonic import IsotonicRegression
from .svm import LinearSVC
from .cross_validation import check_cv
from .metrics.classification import _check_binary_probabilistic_predictions


class CalibratedClassifierCV(BaseEstimator, ClassifierMixin):
    """Probability calibration with isotonic regression or sigmoid.

    With this class, the base_estimator is fit on the train set of the
    cross-validation generator and the test set is used for calibration.
    The probabilities for each of the folds are then averaged
    for prediction. In case that cv="prefit" is passed to __init__,
    it is it is assumed that base_estimator has been
    fitted already and all data is used for calibration. Note that
    data for fitting the classifier and for calibrating it must be disjoint.

    Read more in the :ref:`User Guide <calibration>`.

    Parameters
    ----------
    base_estimator : instance BaseEstimator
        The classifier whose output decision function needs to be calibrated
        to offer more accurate predict_proba outputs. If cv=prefit, the
        classifier must have been fit already on data.

    method : 'sigmoid' or 'isotonic'
        The method to use for calibration. Can be 'sigmoid' which
        corresponds to Platt's method or 'isotonic' which is a
        non-parameteric approach. It is not advised to use isotonic calibration
        with too few calibration samples ``(<<1000)`` since it tends to overfit.
        Use sigmoids (Platt's calibration) in this case.

    cv : integer, cross-validation generator, iterable or "prefit", optional
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the default 3-fold cross-validation,
        - integer, to specify the number of folds.
        - An object to be used as a cross-validation generator.
        - An iterable yielding train/test splits.

        For integer/None inputs, if ``y`` is binary or multiclass,
        :class:`StratifiedKFold` used. If ``y`` is neither binary nor
        multiclass, :class:`KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

        If "prefit" is passed, it is assumed that base_estimator has been
        fitted already and all data is used for calibration.

    Attributes
    ----------
    classes_ : array, shape (n_classes)
        The class labels.

    calibrated_classifiers_: list (len() equal to cv or 1 if cv == "prefit")
        The list of calibrated classifiers, one for each crossvalidation fold,
        which has been fitted on all but the validation fold and calibrated
        on the validation fold.

    References
    ----------
    .. [1] Obtaining calibrated probability estimates from decision trees
           and naive Bayesian classifiers, B. Zadrozny & C. Elkan, ICML 2001

    .. [2] Transforming Classifier Scores into Accurate Multiclass
           Probability Estimates, B. Zadrozny & C. Elkan, (KDD 2002)

    .. [3] Probabilistic Outputs for Support Vector Machines and Comparisons to
           Regularized Likelihood Methods, J. Platt, (1999)

    .. [4] Predicting Good Probabilities with Supervised Learning,
           A. Niculescu-Mizil & R. Caruana, ICML 2005
    """
    def __init__(self, base_estimator=None, method='sigmoid', cv=3):
        self.base_estimator = base_estimator
        self.method = method
        self.cv = cv

    def fit(self, X, y, sample_weight=None):
        """Fit the calibrated model

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Training data.

        y : array-like, shape (n_samples,)
            Target values.

        sample_weight : array-like, shape = [n_samples] or None
            Sample weights. If None, then samples are equally weighted.

        Returns
        -------
        self : object
            Returns an instance of self.
        """
        X, y = check_X_y(X, y, accept_sparse=['csc', 'csr', 'coo'],
                         force_all_finite=False)
        X, y = indexable(X, y)
        lb = LabelBinarizer().fit(y)
        self.classes_ = lb.classes_

        # Check that we each cross-validation fold can have at least one
        # example per class
        n_folds = self.cv if isinstance(self.cv, int) \
            else self.cv.n_folds if hasattr(self.cv, "n_folds") else None
        if n_folds and \
           np.any([np.sum(y == class_) < n_folds for class_ in self.classes_]):
            raise ValueError("Requesting %d-fold cross-validation but provided"
                             " less than %d examples for at least one class."
                             % (n_folds, n_folds))

        self.calibrated_classifiers_ = []
        if self.base_estimator is None:
            # we want all classifiers that don't expose a random_state
            # to be deterministic (and we don't want to expose this one).
            base_estimator = LinearSVC(random_state=0)
        else:
            base_estimator = self.base_estimator

        if self.cv == "prefit":
            calibrated_classifier = _CalibratedClassifier(
                base_estimator, method=self.method)
            if sample_weight is not None:
                calibrated_classifier.fit(X, y, sample_weight)
            else:
                calibrated_classifier.fit(X, y)
            self.calibrated_classifiers_.append(calibrated_classifier)
        else:
            cv = check_cv(self.cv, X, y, classifier=True)
            fit_parameters = signature(base_estimator.fit).parameters
            estimator_name = type(base_estimator).__name__
            if (sample_weight is not None
                    and "sample_weight" not in fit_parameters):
                warnings.warn("%s does not support sample_weight. Samples"
                              " weights are only used for the calibration"
                              " itself." % estimator_name)
                base_estimator_sample_weight = None
            else:
                base_estimator_sample_weight = sample_weight
            for train, test in cv:
                this_estimator = clone(base_estimator)
                if base_estimator_sample_weight is not None:
                    this_estimator.fit(
                        X[train], y[train],
                        sample_weight=base_estimator_sample_weight[train])
                else:
                    this_estimator.fit(X[train], y[train])

                calibrated_classifier = _CalibratedClassifier(
                    this_estimator, method=self.method)
                if sample_weight is not None:
                    calibrated_classifier.fit(X[test], y[test],
                                              sample_weight[test])
                else:
                    calibrated_classifier.fit(X[test], y[test])
                self.calibrated_classifiers_.append(calibrated_classifier)

        return self

    def predict_proba(self, X):
        """Posterior probabilities of classification

        This function returns posterior probabilities of classification
        according to each class on an array of test vectors X.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            The samples.

        Returns
        -------
        C : array, shape (n_samples, n_classes)
            The predicted probas.
        """
        check_is_fitted(self, ["classes_", "calibrated_classifiers_"])
        X = check_array(X, accept_sparse=['csc', 'csr', 'coo'],
                        force_all_finite=False)
        # Compute the arithmetic mean of the predictions of the calibrated
        # classfiers
        mean_proba = np.zeros((X.shape[0], len(self.classes_)))
        for calibrated_classifier in self.calibrated_classifiers_:
            proba = calibrated_classifier.predict_proba(X)
            mean_proba += proba

        mean_proba /= len(self.calibrated_classifiers_)

        return mean_proba

    def predict(self, X):
        """Predict the target of new samples. Can be different from the
        prediction of the uncalibrated classifier.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            The samples.

        Returns
        -------
        C : array, shape (n_samples,)
            The predicted class.
        """
        check_is_fitted(self, ["classes_", "calibrated_classifiers_"])
        return self.classes_[np.argmax(self.predict_proba(X), axis=1)]


class _CalibratedClassifier(object):
    """Probability calibration with isotonic regression or sigmoid.

    It assumes that base_estimator has already been fit, and trains the
    calibration on the input set of the fit function. Note that this class
    should not be used as an estimator directly. Use CalibratedClassifierCV
    with cv="prefit" instead.

    Parameters
    ----------
    base_estimator : instance BaseEstimator
        The classifier whose output decision function needs to be calibrated
        to offer more accurate predict_proba outputs. No default value since
        it has to be an already fitted estimator.

    method : 'sigmoid' | 'isotonic'
        The method to use for calibration. Can be 'sigmoid' which
        corresponds to Platt's method or 'isotonic' which is a
        non-parameteric approach based on isotonic regression.

    References
    ----------
    .. [1] Obtaining calibrated probability estimates from decision trees
           and naive Bayesian classifiers, B. Zadrozny & C. Elkan, ICML 2001

    .. [2] Transforming Classifier Scores into Accurate Multiclass
           Probability Estimates, B. Zadrozny & C. Elkan, (KDD 2002)

    .. [3] Probabilistic Outputs for Support Vector Machines and Comparisons to
           Regularized Likelihood Methods, J. Platt, (1999)

    .. [4] Predicting Good Probabilities with Supervised Learning,
           A. Niculescu-Mizil & R. Caruana, ICML 2005
    """
    def __init__(self, base_estimator, method='sigmoid'):
        self.base_estimator = base_estimator
        self.method = method

    def _preproc(self, X):
        n_classes = len(self.classes_)
        if hasattr(self.base_estimator, "decision_function"):
            df = self.base_estimator.decision_function(X)
            if df.ndim == 1:
                df = df[:, np.newaxis]
        elif hasattr(self.base_estimator, "predict_proba"):
            df = self.base_estimator.predict_proba(X)
            if n_classes == 2:
                df = df[:, 1:]
        else:
            raise RuntimeError('classifier has no decision_function or '
                               'predict_proba method.')

        idx_pos_class = np.arange(df.shape[1])

        return df, idx_pos_class

    def fit(self, X, y, sample_weight=None):
        """Calibrate the fitted model

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Training data.

        y : array-like, shape (n_samples,)
            Target values.

        sample_weight : array-like, shape = [n_samples] or None
            Sample weights. If None, then samples are equally weighted.

        Returns
        -------
        self : object
            Returns an instance of self.
        """
        lb = LabelBinarizer()
        Y = lb.fit_transform(y)
        self.classes_ = lb.classes_

        df, idx_pos_class = self._preproc(X)
        self.calibrators_ = []

        for k, this_df in zip(idx_pos_class, df.T):
            if self.method == 'isotonic':
                calibrator = IsotonicRegression(out_of_bounds='clip')
            elif self.method == 'sigmoid':
                calibrator = _SigmoidCalibration()
            else:
                raise ValueError('method should be "sigmoid" or '
                                 '"isotonic". Got %s.' % self.method)
            calibrator.fit(this_df, Y[:, k], sample_weight)
            self.calibrators_.append(calibrator)

        return self

    def predict_proba(self, X):
        """Posterior probabilities of classification

        This function returns posterior probabilities of classification
        according to each class on an array of test vectors X.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            The samples.

        Returns
        -------
        C : array, shape (n_samples, n_classes)
            The predicted probas. Can be exact zeros.
        """
        n_classes = len(self.classes_)
        proba = np.zeros((X.shape[0], n_classes))

        df, idx_pos_class = self._preproc(X)

        for k, this_df, calibrator in \
                zip(idx_pos_class, df.T, self.calibrators_):
            if n_classes == 2:
                k += 1
            proba[:, k] = calibrator.predict(this_df)

        # Normalize the probabilities
        if n_classes == 2:
            proba[:, 0] = 1. - proba[:, 1]
        else:
            proba /= np.sum(proba, axis=1)[:, np.newaxis]

        # XXX : for some reason all probas can be 0
        proba[np.isnan(proba)] = 1. / n_classes

        # Deal with cases where the predicted probability minimally exceeds 1.0
        proba[(1.0 < proba) & (proba <= 1.0 + 1e-5)] = 1.0

        return proba


def _sigmoid_calibration(df, y, sample_weight=None):
    """Probability Calibration with sigmoid method (Platt 2000)

    Parameters
    ----------
    df : ndarray, shape (n_samples,)
        The decision function or predict proba for the samples.

    y : ndarray, shape (n_samples,)
        The targets.

    sample_weight : array-like, shape = [n_samples] or None
        Sample weights. If None, then samples are equally weighted.

    Returns
    -------
    a : float
        The slope.

    b : float
        The intercept.

    References
    ----------
    Platt, "Probabilistic Outputs for Support Vector Machines"
    """
    df = column_or_1d(df)
    y = column_or_1d(y)

    F = df  # F follows Platt's notations
    tiny = np.finfo(np.float).tiny  # to avoid division by 0 warning

    # Bayesian priors (see Platt end of section 2.2)
    prior0 = float(np.sum(y <= 0))
    prior1 = y.shape[0] - prior0
    T = np.zeros(y.shape)
    T[y > 0] = (prior1 + 1.) / (prior1 + 2.)
    T[y <= 0] = 1. / (prior0 + 2.)
    T1 = 1. - T

    def objective(AB):
        # From Platt (beginning of Section 2.2)
        E = np.exp(AB[0] * F + AB[1])
        P = 1. / (1. + E)
        l = -(T * np.log(P + tiny) + T1 * np.log(1. - P + tiny))
        if sample_weight is not None:
            return (sample_weight * l).sum()
        else:
            return l.sum()

    def grad(AB):
        # gradient of the objective function
        E = np.exp(AB[0] * F + AB[1])
        P = 1. / (1. + E)
        TEP_minus_T1P = P * (T * E - T1)
        if sample_weight is not None:
            TEP_minus_T1P *= sample_weight
        dA = np.dot(TEP_minus_T1P, F)
        dB = np.sum(TEP_minus_T1P)
        return np.array([dA, dB])

    AB0 = np.array([0., log((prior0 + 1.) / (prior1 + 1.))])
    AB_ = fmin_bfgs(objective, AB0, fprime=grad, disp=False)
    return AB_[0], AB_[1]


class _SigmoidCalibration(BaseEstimator, RegressorMixin):
    """Sigmoid regression model.

    Attributes
    ----------
    a_ : float
        The slope.

    b_ : float
        The intercept.
    """
    def fit(self, X, y, sample_weight=None):
        """Fit the model using X, y as training data.

        Parameters
        ----------
        X : array-like, shape (n_samples,)
            Training data.

        y : array-like, shape (n_samples,)
            Training target.

        sample_weight : array-like, shape = [n_samples] or None
            Sample weights. If None, then samples are equally weighted.

        Returns
        -------
        self : object
            Returns an instance of self.
        """
        X = column_or_1d(X)
        y = column_or_1d(y)
        X, y = indexable(X, y)

        self.a_, self.b_ = _sigmoid_calibration(X, y, sample_weight)
        return self

    def predict(self, T):
        """Predict new data by linear interpolation.

        Parameters
        ----------
        T : array-like, shape (n_samples,)
            Data to predict from.

        Returns
        -------
        T_ : array, shape (n_samples,)
            The predicted data.
        """
        T = column_or_1d(T)
        return 1. / (1. + np.exp(self.a_ * T + self.b_))


def calibration_curve(y_true, y_prob, normalize=False, n_bins=5):
    """Compute true and predicted probabilities for a calibration curve.

    Read more in the :ref:`User Guide <calibration>`.

    Parameters
    ----------
    y_true : array, shape (n_samples,)
        True targets.

    y_prob : array, shape (n_samples,)
        Probabilities of the positive class.

    normalize : bool, optional, default=False
        Whether y_prob needs to be normalized into the bin [0, 1], i.e. is not
        a proper probability. If True, the smallest value in y_prob is mapped
        onto 0 and the largest one onto 1.

    n_bins : int
        Number of bins. A bigger number requires more data.

    Returns
    -------
    prob_true : array, shape (n_bins,)
        The true probability in each bin (fraction of positives).

    prob_pred : array, shape (n_bins,)
        The mean predicted probability in each bin.

    References
    ----------
    Alexandru Niculescu-Mizil and Rich Caruana (2005) Predicting Good
    Probabilities With Supervised Learning, in Proceedings of the 22nd
    International Conference on Machine Learning (ICML).
    See section 4 (Qualitative Analysis of Predictions).
    """
    y_true = column_or_1d(y_true)
    y_prob = column_or_1d(y_prob)

    if normalize:  # Normalize predicted values into interval [0, 1]
        y_prob = (y_prob - y_prob.min()) / (y_prob.max() - y_prob.min())
    elif y_prob.min() < 0 or y_prob.max() > 1:
        raise ValueError("y_prob has values outside [0, 1] and normalize is "
                         "set to False.")

    y_true = _check_binary_probabilistic_predictions(y_true, y_prob)

    bins = np.linspace(0., 1. + 1e-8, n_bins + 1)
    binids = np.digitize(y_prob, bins) - 1

    bin_sums = np.bincount(binids, weights=y_prob, minlength=len(bins))
    bin_true = np.bincount(binids, weights=y_true, minlength=len(bins))
    bin_total = np.bincount(binids, minlength=len(bins))

    nonzero = bin_total != 0
    prob_true = (bin_true[nonzero] / bin_total[nonzero])
    prob_pred = (bin_sums[nonzero] / bin_total[nonzero])

    return prob_true, prob_pred