/usr/lib/python2.7/dist-packages/sklearn/pipeline.py is in python-sklearn 0.17.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 | """
The :mod:`sklearn.pipeline` module implements utilities to build a composite
estimator, as a chain of transforms and estimators.
"""
# Author: Edouard Duchesnay
# Gael Varoquaux
# Virgile Fritsch
# Alexandre Gramfort
# Lars Buitinck
# Licence: BSD
from collections import defaultdict
from warnings import warn
import numpy as np
from scipy import sparse
from .base import BaseEstimator, TransformerMixin
from .externals.joblib import Parallel, delayed
from .externals import six
from .utils import tosequence
from .utils.metaestimators import if_delegate_has_method
from .externals.six import iteritems
__all__ = ['Pipeline', 'FeatureUnion']
class Pipeline(BaseEstimator):
"""Pipeline of transforms with a final estimator.
Sequentially apply a list of transforms and a final estimator.
Intermediate steps of the pipeline must be 'transforms', that is, they
must implement fit and transform methods.
The final estimator only needs to implement fit.
The purpose of the pipeline is to assemble several steps that can be
cross-validated together while setting different parameters.
For this, it enables setting parameters of the various steps using their
names and the parameter name separated by a '__', as in the example below.
Read more in the :ref:`User Guide <pipeline>`.
Parameters
----------
steps : list
List of (name, transform) tuples (implementing fit/transform) that are
chained, in the order in which they are chained, with the last object
an estimator.
Attributes
----------
named_steps : dict
Read-only attribute to access any step parameter by user given name.
Keys are step names and values are steps parameters.
Examples
--------
>>> from sklearn import svm
>>> from sklearn.datasets import samples_generator
>>> from sklearn.feature_selection import SelectKBest
>>> from sklearn.feature_selection import f_regression
>>> from sklearn.pipeline import Pipeline
>>> # generate some data to play with
>>> X, y = samples_generator.make_classification(
... n_informative=5, n_redundant=0, random_state=42)
>>> # ANOVA SVM-C
>>> anova_filter = SelectKBest(f_regression, k=5)
>>> clf = svm.SVC(kernel='linear')
>>> anova_svm = Pipeline([('anova', anova_filter), ('svc', clf)])
>>> # You can set the parameters using the names issued
>>> # For instance, fit using a k of 10 in the SelectKBest
>>> # and a parameter 'C' of the svm
>>> anova_svm.set_params(anova__k=10, svc__C=.1).fit(X, y)
... # doctest: +ELLIPSIS
Pipeline(steps=[...])
>>> prediction = anova_svm.predict(X)
>>> anova_svm.score(X, y) # doctest: +ELLIPSIS
0.77...
>>> # getting the selected features chosen by anova_filter
>>> anova_svm.named_steps['anova'].get_support()
... # doctest: +NORMALIZE_WHITESPACE
array([ True, True, True, False, False, True, False, True, True, True,
False, False, True, False, True, False, False, False, False,
True], dtype=bool)
"""
# BaseEstimator interface
def __init__(self, steps):
names, estimators = zip(*steps)
if len(dict(steps)) != len(steps):
raise ValueError("Provided step names are not unique: %s" % (names,))
# shallow copy of steps
self.steps = tosequence(steps)
transforms = estimators[:-1]
estimator = estimators[-1]
for t in transforms:
if (not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not
hasattr(t, "transform")):
raise TypeError("All intermediate steps of the chain should "
"be transforms and implement fit and transform"
" '%s' (type %s) doesn't)" % (t, type(t)))
if not hasattr(estimator, "fit"):
raise TypeError("Last step of chain should implement fit "
"'%s' (type %s) doesn't)"
% (estimator, type(estimator)))
@property
def _estimator_type(self):
return self.steps[-1][1]._estimator_type
def get_params(self, deep=True):
if not deep:
return super(Pipeline, self).get_params(deep=False)
else:
out = self.named_steps
for name, step in six.iteritems(self.named_steps):
for key, value in six.iteritems(step.get_params(deep=True)):
out['%s__%s' % (name, key)] = value
out.update(super(Pipeline, self).get_params(deep=False))
return out
@property
def named_steps(self):
return dict(self.steps)
@property
def _final_estimator(self):
return self.steps[-1][1]
# Estimator interface
def _pre_transform(self, X, y=None, **fit_params):
fit_params_steps = dict((step, {}) for step, _ in self.steps)
for pname, pval in six.iteritems(fit_params):
step, param = pname.split('__', 1)
fit_params_steps[step][param] = pval
Xt = X
for name, transform in self.steps[:-1]:
if hasattr(transform, "fit_transform"):
Xt = transform.fit_transform(Xt, y, **fit_params_steps[name])
else:
Xt = transform.fit(Xt, y, **fit_params_steps[name]) \
.transform(Xt)
return Xt, fit_params_steps[self.steps[-1][0]]
def fit(self, X, y=None, **fit_params):
"""Fit all the transforms one after the other and transform the
data, then fit the transformed data using the final estimator.
Parameters
----------
X : iterable
Training data. Must fulfill input requirements of first step of the
pipeline.
y : iterable, default=None
Training targets. Must fulfill label requirements for all steps of
the pipeline.
"""
Xt, fit_params = self._pre_transform(X, y, **fit_params)
self.steps[-1][-1].fit(Xt, y, **fit_params)
return self
def fit_transform(self, X, y=None, **fit_params):
"""Fit all the transforms one after the other and transform the
data, then use fit_transform on transformed data using the final
estimator.
Parameters
----------
X : iterable
Training data. Must fulfill input requirements of first step of the
pipeline.
y : iterable, default=None
Training targets. Must fulfill label requirements for all steps of
the pipeline.
"""
Xt, fit_params = self._pre_transform(X, y, **fit_params)
if hasattr(self.steps[-1][-1], 'fit_transform'):
return self.steps[-1][-1].fit_transform(Xt, y, **fit_params)
else:
return self.steps[-1][-1].fit(Xt, y, **fit_params).transform(Xt)
@if_delegate_has_method(delegate='_final_estimator')
def predict(self, X):
"""Applies transforms to the data, and the predict method of the
final estimator. Valid only if the final estimator implements
predict.
Parameters
----------
X : iterable
Data to predict on. Must fulfill input requirements of first step of
the pipeline.
"""
Xt = X
for name, transform in self.steps[:-1]:
Xt = transform.transform(Xt)
return self.steps[-1][-1].predict(Xt)
@if_delegate_has_method(delegate='_final_estimator')
def fit_predict(self, X, y=None, **fit_params):
"""Applies fit_predict of last step in pipeline after transforms.
Applies fit_transforms of a pipeline to the data, followed by the
fit_predict method of the final estimator in the pipeline. Valid
only if the final estimator implements fit_predict.
Parameters
----------
X : iterable
Training data. Must fulfill input requirements of first step of
the pipeline.
y : iterable, default=None
Training targets. Must fulfill label requirements for all steps
of the pipeline.
"""
Xt, fit_params = self._pre_transform(X, y, **fit_params)
return self.steps[-1][-1].fit_predict(Xt, y, **fit_params)
@if_delegate_has_method(delegate='_final_estimator')
def predict_proba(self, X):
"""Applies transforms to the data, and the predict_proba method of the
final estimator. Valid only if the final estimator implements
predict_proba.
Parameters
----------
X : iterable
Data to predict on. Must fulfill input requirements of first step of
the pipeline.
"""
Xt = X
for name, transform in self.steps[:-1]:
Xt = transform.transform(Xt)
return self.steps[-1][-1].predict_proba(Xt)
@if_delegate_has_method(delegate='_final_estimator')
def decision_function(self, X):
"""Applies transforms to the data, and the decision_function method of
the final estimator. Valid only if the final estimator implements
decision_function.
Parameters
----------
X : iterable
Data to predict on. Must fulfill input requirements of first step of
the pipeline.
"""
Xt = X
for name, transform in self.steps[:-1]:
Xt = transform.transform(Xt)
return self.steps[-1][-1].decision_function(Xt)
@if_delegate_has_method(delegate='_final_estimator')
def predict_log_proba(self, X):
"""Applies transforms to the data, and the predict_log_proba method of
the final estimator. Valid only if the final estimator implements
predict_log_proba.
Parameters
----------
X : iterable
Data to predict on. Must fulfill input requirements of first step of
the pipeline.
"""
Xt = X
for name, transform in self.steps[:-1]:
Xt = transform.transform(Xt)
return self.steps[-1][-1].predict_log_proba(Xt)
@if_delegate_has_method(delegate='_final_estimator')
def transform(self, X):
"""Applies transforms to the data, and the transform method of the
final estimator. Valid only if the final estimator implements
transform.
Parameters
----------
X : iterable
Data to predict on. Must fulfill input requirements of first step of
the pipeline.
"""
Xt = X
for name, transform in self.steps:
Xt = transform.transform(Xt)
return Xt
@if_delegate_has_method(delegate='_final_estimator')
def inverse_transform(self, X):
"""Applies inverse transform to the data.
Starts with the last step of the pipeline and applies ``inverse_transform`` in
inverse order of the pipeline steps.
Valid only if all steps of the pipeline implement inverse_transform.
Parameters
----------
X : iterable
Data to inverse transform. Must fulfill output requirements of the
last step of the pipeline.
"""
if X.ndim == 1:
warn("From version 0.19, a 1d X will not be reshaped in"
" pipeline.inverse_transform any more.", FutureWarning)
X = X[None, :]
Xt = X
for name, step in self.steps[::-1]:
Xt = step.inverse_transform(Xt)
return Xt
@if_delegate_has_method(delegate='_final_estimator')
def score(self, X, y=None):
"""Applies transforms to the data, and the score method of the
final estimator. Valid only if the final estimator implements
score.
Parameters
----------
X : iterable
Data to score. Must fulfill input requirements of first step of the
pipeline.
y : iterable, default=None
Targets used for scoring. Must fulfill label requirements for all steps of
the pipeline.
"""
Xt = X
for name, transform in self.steps[:-1]:
Xt = transform.transform(Xt)
return self.steps[-1][-1].score(Xt, y)
@property
def classes_(self):
return self.steps[-1][-1].classes_
@property
def _pairwise(self):
# check if first estimator expects pairwise input
return getattr(self.steps[0][1], '_pairwise', False)
def _name_estimators(estimators):
"""Generate names for estimators."""
names = [type(estimator).__name__.lower() for estimator in estimators]
namecount = defaultdict(int)
for est, name in zip(estimators, names):
namecount[name] += 1
for k, v in list(six.iteritems(namecount)):
if v == 1:
del namecount[k]
for i in reversed(range(len(estimators))):
name = names[i]
if name in namecount:
names[i] += "-%d" % namecount[name]
namecount[name] -= 1
return list(zip(names, estimators))
def make_pipeline(*steps):
"""Construct a Pipeline from the given estimators.
This is a shorthand for the Pipeline constructor; it does not require, and
does not permit, naming the estimators. Instead, they will be given names
automatically based on their types.
Examples
--------
>>> from sklearn.naive_bayes import GaussianNB
>>> from sklearn.preprocessing import StandardScaler
>>> make_pipeline(StandardScaler(), GaussianNB()) # doctest: +NORMALIZE_WHITESPACE
Pipeline(steps=[('standardscaler',
StandardScaler(copy=True, with_mean=True, with_std=True)),
('gaussiannb', GaussianNB())])
Returns
-------
p : Pipeline
"""
return Pipeline(_name_estimators(steps))
def _fit_one_transformer(transformer, X, y):
return transformer.fit(X, y)
def _transform_one(transformer, name, X, transformer_weights):
if transformer_weights is not None and name in transformer_weights:
# if we have a weight for this transformer, muliply output
return transformer.transform(X) * transformer_weights[name]
return transformer.transform(X)
def _fit_transform_one(transformer, name, X, y, transformer_weights,
**fit_params):
if transformer_weights is not None and name in transformer_weights:
# if we have a weight for this transformer, muliply output
if hasattr(transformer, 'fit_transform'):
X_transformed = transformer.fit_transform(X, y, **fit_params)
return X_transformed * transformer_weights[name], transformer
else:
X_transformed = transformer.fit(X, y, **fit_params).transform(X)
return X_transformed * transformer_weights[name], transformer
if hasattr(transformer, 'fit_transform'):
X_transformed = transformer.fit_transform(X, y, **fit_params)
return X_transformed, transformer
else:
X_transformed = transformer.fit(X, y, **fit_params).transform(X)
return X_transformed, transformer
class FeatureUnion(BaseEstimator, TransformerMixin):
"""Concatenates results of multiple transformer objects.
This estimator applies a list of transformer objects in parallel to the
input data, then concatenates the results. This is useful to combine
several feature extraction mechanisms into a single transformer.
Read more in the :ref:`User Guide <feature_union>`.
Parameters
----------
transformer_list: list of (string, transformer) tuples
List of transformer objects to be applied to the data. The first
half of each tuple is the name of the transformer.
n_jobs: int, optional
Number of jobs to run in parallel (default 1).
transformer_weights: dict, optional
Multiplicative weights for features per transformer.
Keys are transformer names, values the weights.
"""
def __init__(self, transformer_list, n_jobs=1, transformer_weights=None):
self.transformer_list = transformer_list
self.n_jobs = n_jobs
self.transformer_weights = transformer_weights
def get_feature_names(self):
"""Get feature names from all transformers.
Returns
-------
feature_names : list of strings
Names of the features produced by transform.
"""
feature_names = []
for name, trans in self.transformer_list:
if not hasattr(trans, 'get_feature_names'):
raise AttributeError("Transformer %s does not provide"
" get_feature_names." % str(name))
feature_names.extend([name + "__" + f for f in
trans.get_feature_names()])
return feature_names
def fit(self, X, y=None):
"""Fit all transformers using X.
Parameters
----------
X : array-like or sparse matrix, shape (n_samples, n_features)
Input data, used to fit transformers.
"""
transformers = Parallel(n_jobs=self.n_jobs)(
delayed(_fit_one_transformer)(trans, X, y)
for name, trans in self.transformer_list)
self._update_transformer_list(transformers)
return self
def fit_transform(self, X, y=None, **fit_params):
"""Fit all transformers using X, transform the data and concatenate
results.
Parameters
----------
X : array-like or sparse matrix, shape (n_samples, n_features)
Input data to be transformed.
Returns
-------
X_t : array-like or sparse matrix, shape (n_samples, sum_n_components)
hstack of results of transformers. sum_n_components is the
sum of n_components (output dimension) over transformers.
"""
result = Parallel(n_jobs=self.n_jobs)(
delayed(_fit_transform_one)(trans, name, X, y,
self.transformer_weights, **fit_params)
for name, trans in self.transformer_list)
Xs, transformers = zip(*result)
self._update_transformer_list(transformers)
if any(sparse.issparse(f) for f in Xs):
Xs = sparse.hstack(Xs).tocsr()
else:
Xs = np.hstack(Xs)
return Xs
def transform(self, X):
"""Transform X separately by each transformer, concatenate results.
Parameters
----------
X : array-like or sparse matrix, shape (n_samples, n_features)
Input data to be transformed.
Returns
-------
X_t : array-like or sparse matrix, shape (n_samples, sum_n_components)
hstack of results of transformers. sum_n_components is the
sum of n_components (output dimension) over transformers.
"""
Xs = Parallel(n_jobs=self.n_jobs)(
delayed(_transform_one)(trans, name, X, self.transformer_weights)
for name, trans in self.transformer_list)
if any(sparse.issparse(f) for f in Xs):
Xs = sparse.hstack(Xs).tocsr()
else:
Xs = np.hstack(Xs)
return Xs
def get_params(self, deep=True):
if not deep:
return super(FeatureUnion, self).get_params(deep=False)
else:
out = dict(self.transformer_list)
for name, trans in self.transformer_list:
for key, value in iteritems(trans.get_params(deep=True)):
out['%s__%s' % (name, key)] = value
out.update(super(FeatureUnion, self).get_params(deep=False))
return out
def _update_transformer_list(self, transformers):
self.transformer_list[:] = [
(name, new)
for ((name, old), new) in zip(self.transformer_list, transformers)
]
# XXX it would be nice to have a keyword-only n_jobs argument to this function,
# but that's not allowed in Python 2.x.
def make_union(*transformers):
"""Construct a FeatureUnion from the given transformers.
This is a shorthand for the FeatureUnion constructor; it does not require,
and does not permit, naming the transformers. Instead, they will be given
names automatically based on their types. It also does not allow weighting.
Examples
--------
>>> from sklearn.decomposition import PCA, TruncatedSVD
>>> make_union(PCA(), TruncatedSVD()) # doctest: +NORMALIZE_WHITESPACE
FeatureUnion(n_jobs=1,
transformer_list=[('pca', PCA(copy=True, n_components=None,
whiten=False)),
('truncatedsvd',
TruncatedSVD(algorithm='randomized',
n_components=2, n_iter=5,
random_state=None, tol=0.0))],
transformer_weights=None)
Returns
-------
f : FeatureUnion
"""
return FeatureUnion(_name_estimators(transformers))
|