/usr/lib/python2.7/dist-packages/surfer/viz.py is in python-surfer 0.6-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 | from math import floor
import os
from os.path import join as pjoin
from tempfile import mkdtemp
from warnings import warn
import numpy as np
from scipy import stats, ndimage, misc
from scipy.interpolate import interp1d
from matplotlib.colors import colorConverter
import nibabel as nib
from mayavi import mlab
from mayavi.tools.mlab_scene_model import MlabSceneModel
from mayavi.core import lut_manager
from mayavi.core.ui.api import SceneEditor
from mayavi.core.ui.mayavi_scene import MayaviScene
from traits.api import (HasTraits, Range, Int, Float,
Bool, Enum, on_trait_change, Instance)
from . import utils, io
from .utils import (Surface, verbose, create_color_lut, _get_subjects_dir,
string_types, assert_ffmpeg_is_available, ffmpeg)
import logging
logger = logging.getLogger('surfer')
lh_viewdict = {'lateral': {'v': (180., 90.), 'r': 90.},
'medial': {'v': (0., 90.), 'r': -90.},
'rostral': {'v': (90., 90.), 'r': -180.},
'caudal': {'v': (270., 90.), 'r': 0.},
'dorsal': {'v': (180., 0.), 'r': 90.},
'ventral': {'v': (180., 180.), 'r': 90.},
'frontal': {'v': (120., 80.), 'r': 106.739},
'parietal': {'v': (-120., 60.), 'r': 49.106}}
rh_viewdict = {'lateral': {'v': (180., -90.), 'r': -90.},
'medial': {'v': (0., -90.), 'r': 90.},
'rostral': {'v': (-90., -90.), 'r': 180.},
'caudal': {'v': (90., -90.), 'r': 0.},
'dorsal': {'v': (180., 0.), 'r': 90.},
'ventral': {'v': (180., 180.), 'r': 90.},
'frontal': {'v': (60., 80.), 'r': -106.739},
'parietal': {'v': (-60., 60.), 'r': -49.106}}
viewdicts = dict(lh=lh_viewdict, rh=rh_viewdict)
def make_montage(filename, fnames, orientation='h', colorbar=None,
border_size=15):
"""Save montage of current figure
Parameters
----------
filename : str
The name of the file, e.g, 'montage.png'. If None, the image
will not be saved.
fnames : list of str | list of array
The images to make the montage of. Can be a list of filenames
or a list of image data arrays.
orientation : 'h' | 'v' | list
The orientation of the montage: horizontal, vertical, or a nested
list of int (indexes into fnames).
colorbar : None | list of int
If None remove colorbars, else keep the ones whose index
is present.
border_size : int
The size of the border to keep.
Returns
-------
out : array
The montage image data array.
"""
import Image
# This line is only necessary to overcome a PIL bug, see:
# http://stackoverflow.com/questions/10854903/what-is-causing-
# dimension-dependent-attributeerror-in-pil-fromarray-function
fnames = [f if isinstance(f, string_types) else f.copy() for f in fnames]
if isinstance(fnames[0], string_types):
images = map(Image.open, fnames)
else:
images = map(Image.fromarray, fnames)
# get bounding box for cropping
boxes = []
for ix, im in enumerate(images):
# sum the RGB dimension so we do not miss G or B-only pieces
gray = np.sum(np.array(im), axis=-1)
gray[gray == gray[0, 0]] = 0 # hack for find_objects that wants 0
if np.all(gray == 0):
raise ValueError("Empty image (all pixels have the same color).")
labels, n_labels = ndimage.label(gray.astype(np.float))
slices = ndimage.find_objects(labels, n_labels) # slice roi
if colorbar is not None and ix in colorbar:
# we need all pieces so let's compose them into single min/max
slices_a = np.array([[[xy.start, xy.stop] for xy in s]
for s in slices])
# TODO: ideally gaps could be deduced and cut out with
# consideration of border_size
# so we need mins on 0th and maxs on 1th of 1-nd dimension
mins = np.min(slices_a[:, :, 0], axis=0)
maxs = np.max(slices_a[:, :, 1], axis=0)
s = (slice(mins[0], maxs[0]), slice(mins[1], maxs[1]))
else:
# we need just the first piece
s = slices[0]
# box = (left, top, width, height)
boxes.append([s[1].start - border_size, s[0].start - border_size,
s[1].stop + border_size, s[0].stop + border_size])
# convert orientation to nested list of int
if orientation == 'h':
orientation = [range(len(images))]
elif orientation == 'v':
orientation = [[i] for i in range(len(images))]
# find bounding box
n_rows = len(orientation)
n_cols = max(len(row) for row in orientation)
if n_rows > 1:
min_left = min(box[0] for box in boxes)
max_width = max(box[2] for box in boxes)
for box in boxes:
box[0] = min_left
box[2] = max_width
if n_cols > 1:
min_top = min(box[1] for box in boxes)
max_height = max(box[3] for box in boxes)
for box in boxes:
box[1] = min_top
box[3] = max_height
# crop images
cropped_images = []
for im, box in zip(images, boxes):
cropped_images.append(im.crop(box))
images = cropped_images
# Get full image size
row_w = [sum(images[i].size[0] for i in row) for row in orientation]
row_h = [max(images[i].size[1] for i in row) for row in orientation]
out_w = max(row_w)
out_h = sum(row_h)
# compose image
new = Image.new("RGBA", (out_w, out_h))
y = 0
for row, h in zip(orientation, row_h):
x = 0
for i in row:
im = images[i]
pos = (x, y)
new.paste(im, pos)
x += im.size[0]
y += h
if filename is not None:
try:
new.save(filename)
except Exception:
print("Error saving %s" % filename)
return np.array(new)
def _prepare_data(data):
"""Ensure data is float64 and has proper endianness.
Note: this is largely aimed at working around a Mayavi bug.
"""
data = data.copy()
data = data.astype(np.float64)
if data.dtype.byteorder == '>':
data.byteswap(True)
return data
def _force_render(figures, backend):
"""Ensure plots are updated before properties are used"""
if not isinstance(figures, list):
figures = [[figures]]
for ff in figures:
for f in ff:
f.render()
mlab.draw(figure=f)
if backend == 'TraitsUI':
from pyface.api import GUI
_gui = GUI()
orig_val = _gui.busy
_gui.set_busy(busy=True)
_gui.process_events()
_gui.set_busy(busy=orig_val)
_gui.process_events()
def _make_viewer(figure, n_row, n_col, title, scene_size, offscreen):
"""Triage viewer creation
If n_row == n_col == 1, then we can use a Mayavi figure, which
generally guarantees that things will be drawn before control
is returned to the command line. With the multi-view, TraitsUI
unfortunately has no such support, so we only use it if needed.
"""
if figure is None:
# spawn scenes
h, w = scene_size
if offscreen is True:
orig_val = mlab.options.offscreen
mlab.options.offscreen = True
figures = [[mlab.figure(size=(h / n_row, w / n_col))
for _ in range(n_col)] for __ in range(n_row)]
mlab.options.offscreen = orig_val
_v = None
else:
# Triage: don't make TraitsUI if we don't have to
if n_row == 1 and n_col == 1:
figure = mlab.figure(title, size=(w, h))
mlab.clf(figure)
figures = [[figure]]
_v = None
else:
window = _MlabGenerator(n_row, n_col, w, h, title)
figures, _v = window._get_figs_view()
else:
if not isinstance(figure, (list, tuple)):
figure = [figure]
if not len(figure) == n_row * n_col:
raise ValueError('For the requested view, figure must be a '
'list or tuple with exactly %i elements, '
'not %i' % (n_row * n_col, len(figure)))
_v = None
figures = [figure[slice(ri * n_col, (ri + 1) * n_col)]
for ri in range(n_row)]
return figures, _v
class _MlabGenerator(HasTraits):
"""TraitsUI mlab figure generator"""
from traitsui.api import View
view = Instance(View)
def __init__(self, n_row, n_col, width, height, title, **traits):
HasTraits.__init__(self, **traits)
self.mlab_names = []
self.n_row = n_row
self.n_col = n_col
self.width = width
self.height = height
for fi in range(n_row * n_col):
name = 'mlab_view%03g' % fi
self.mlab_names.append(name)
self.add_trait(name, Instance(MlabSceneModel, ()))
self.view = self._get_gen_view()
self._v = self.edit_traits(view=self.view)
self._v.title = title
def _get_figs_view(self):
figures = []
ind = 0
for ri in range(self.n_row):
rfigs = []
for ci in range(self.n_col):
x = getattr(self, self.mlab_names[ind])
rfigs.append(x.mayavi_scene)
ind += 1
figures.append(rfigs)
return figures, self._v
def _get_gen_view(self):
from traitsui.api import (View, Item, VGroup, HGroup)
ind = 0
va = []
for ri in range(self.n_row):
ha = []
for ci in range(self.n_col):
ha += [Item(name=self.mlab_names[ind], style='custom',
resizable=True, show_label=False,
editor=SceneEditor(scene_class=MayaviScene))]
ind += 1
va += [HGroup(*ha)]
view = View(VGroup(*va), resizable=True,
height=self.height, width=self.width)
return view
class Brain(object):
"""Class for visualizing a brain using multiple views in mlab
Parameters
----------
subject_id : str
subject name in Freesurfer subjects dir
hemi : str
hemisphere id (ie 'lh', 'rh', 'both', or 'split'). In the case
of 'both', both hemispheres are shown in the same window.
In the case of 'split' hemispheres are displayed side-by-side
in different viewing panes.
surf : geometry name
freesurfer surface mesh name (ie 'white', 'inflated', etc.)
curv : boolean
if true, loads curv file and displays binary curvature
(default: True)
title : str
title for the window
cortex : str or tuple
specifies how binarized curvature values are rendered.
either the name of a preset PySurfer cortex colorscheme (one of
'classic', 'bone', 'low_contrast', or 'high_contrast'), or the
name of mayavi colormap, or a tuple with values (colormap, min,
max, reverse) to fully specify the curvature colors.
size : float or pair of floats
the size of the window, in pixels. can be one number to specify
a square window, or the (width, height) of a rectangular window.
background, foreground : matplotlib colors
color of the background and foreground of the display window
figure : list of instances of mayavi.core.scene.Scene | None
If None, a new window will be created with the appropriate
views.
subjects_dir : str | None
If not None, this directory will be used as the subjects directory
instead of the value set using the SUBJECTS_DIR environment
variable.
views : list | str
views to use
show_toolbar : bool
If True, toolbars will be shown for each view.
offscreen : bool
If True, rendering will be done offscreen (not shown). Useful
mostly for generating images or screenshots, but can be buggy.
Use at your own risk.
Attributes
----------
brains : list
List of the underlying brain instances.
"""
def __init__(self, subject_id, hemi, surf, curv=True, title=None,
cortex="classic", size=800, background="black",
foreground="white", figure=None, subjects_dir=None,
views=['lat'], show_toolbar=False, offscreen=False,
config_opts=None):
# Keep backwards compatability
if config_opts is not None:
msg = ("The `config_opts` dict has been deprecated and will "
"be removed in future versions. You should update your "
"code and pass these options directly to the `Brain` "
"constructor.")
warn(msg)
cortex = config_opts.get("cortex", cortex)
background = config_opts.get("background", background)
foreground = config_opts.get("foreground", foreground)
size = config_opts.get("size", size)
width = config_opts.get("width", size)
height = config_opts.get("height", size)
size = (width, height)
col_dict = dict(lh=1, rh=1, both=1, split=2)
n_col = col_dict[hemi]
if hemi not in col_dict.keys():
raise ValueError('hemi must be one of [%s], not %s'
% (', '.join(col_dict.keys()), hemi))
# Get the subjects directory from parameter or env. var
subjects_dir = _get_subjects_dir(subjects_dir=subjects_dir)
self._hemi = hemi
if title is None:
title = subject_id
self.subject_id = subject_id
if not isinstance(views, list):
views = [views]
n_row = len(views)
# load geometry for one or both hemispheres as necessary
offset = None if hemi != 'both' else 0.0
self.geo = dict()
if hemi in ['split', 'both']:
geo_hemis = ['lh', 'rh']
elif hemi == 'lh':
geo_hemis = ['lh']
elif hemi == 'rh':
geo_hemis = ['rh']
else:
raise ValueError('bad hemi value')
for h in geo_hemis:
# Initialize a Surface object as the geometry
geo = Surface(subject_id, h, surf, subjects_dir, offset)
# Load in the geometry and (maybe) curvature
geo.load_geometry()
if curv:
geo.load_curvature()
self.geo[h] = geo
# deal with making figures
self._set_window_properties(size, background, foreground)
figures, _v = _make_viewer(figure, n_row, n_col, title,
self._scene_size, offscreen)
self._figures = figures
self._v = _v
self._window_backend = 'Mayavi' if self._v is None else 'TraitsUI'
for ff in self._figures:
for f in ff:
if f.scene is not None:
f.scene.background = self._bg_color
f.scene.foreground = self._fg_color
# force rendering so scene.lights exists
_force_render(self._figures, self._window_backend)
self.toggle_toolbars(show_toolbar)
_force_render(self._figures, self._window_backend)
self._toggle_render(False)
# fill figures with brains
kwargs = dict(surf=surf, curv=curv, title=None,
cortex=cortex, subjects_dir=subjects_dir,
bg_color=self._bg_color, offset=offset)
brains = []
brain_matrix = []
for ri, view in enumerate(views):
brain_row = []
for hi, h in enumerate(['lh', 'rh']):
if not (hemi in ['lh', 'rh'] and h != hemi):
ci = hi if hemi == 'split' else 0
kwargs['hemi'] = h
kwargs['geo'] = self.geo[h]
kwargs['figure'] = figures[ri][ci]
kwargs['backend'] = self._window_backend
brain = _Hemisphere(subject_id, **kwargs)
brain.show_view(view)
brains += [dict(row=ri, col=ci, brain=brain, hemi=h)]
brain_row += [brain]
brain_matrix += [brain_row]
self._toggle_render(True)
self._original_views = views
self._brain_list = brains
for brain in self._brain_list:
brain['brain']._orient_lights()
self.brains = [b['brain'] for b in brains]
self.brain_matrix = np.array(brain_matrix)
self.subjects_dir = subjects_dir
# Initialize the overlay and label dictionaries
self.foci_dict = dict()
self.labels_dict = dict()
self.overlays_dict = dict()
self.contour_list = []
self.morphometry_list = []
self.annot_list = []
self.data_dict = dict(lh=None, rh=None)
# note that texts gets treated differently
self.texts_dict = dict()
self.n_times = None
###########################################################################
# HELPERS
def _toggle_render(self, state, views=None):
"""Turn rendering on (True) or off (False)"""
figs = []
[figs.extend(f) for f in self._figures]
if views is None:
views = [None] * len(figs)
for vi, (_f, view) in enumerate(zip(figs, views)):
if state is False and view is None:
views[vi] = mlab.view(figure=_f)
# Testing backend doesn't have this option
if mlab.options.backend != 'test':
_f.scene.disable_render = not state
if state is True and view is not None:
mlab.draw(figure=_f)
mlab.view(*view, figure=_f)
# let's do the ugly force draw
if state is True:
_force_render(self._figures, self._window_backend)
return views
def _set_window_properties(self, size, background, foreground):
"""Set window properties that are used elsewhere."""
# old option "size" sets both width and height
try:
width, height = size
except (TypeError, ValueError):
width, height = size, size
self._scene_size = height, width
bg_color_rgb = colorConverter.to_rgb(background)
self._bg_color = bg_color_rgb
fg_color_rgb = colorConverter.to_rgb(foreground)
self._fg_color = fg_color_rgb
def get_data_properties(self):
""" Get properties of the data shown
Returns
-------
props : dict
Dictionary with data properties
props["fmin"] : minimum colormap
props["fmid"] : midpoint colormap
props["fmax"] : maximum colormap
props["transparent"] : lower part of colormap transparent?
props["time"] : time points
props["time_idx"] : current time index
props["smoothing_steps"] : number of smoothing steps
"""
props = dict()
keys = ['fmin', 'fmid', 'fmax', 'transparent', 'time', 'time_idx',
'smoothing_steps']
try:
if self.data_dict['lh'] is not None:
hemi = 'lh'
else:
hemi = 'rh'
for key in keys:
props[key] = self.data_dict[hemi][key]
except KeyError:
# The user has not added any data
for key in keys:
props[key] = 0
return props
def toggle_toolbars(self, show=None):
"""Toggle toolbar display
Parameters
----------
show : bool | None
If None, the state is toggled. If True, the toolbar will
be shown, if False, hidden.
"""
# don't do anything if testing is on
if self._figures[0][0].scene is not None:
# this may not work if QT is not the backend (?), or in testing
if hasattr(self._figures[0][0].scene, 'scene_editor'):
# Within TraitsUI
bars = [f.scene.scene_editor._tool_bar
for ff in self._figures for f in ff]
else:
# Mayavi figure
bars = [f.scene._tool_bar for ff in self._figures for f in ff]
if show is None:
if hasattr(bars[0], 'isVisible'):
# QT4
show = not bars[0].isVisible()
elif hasattr(bars[0], 'Shown'):
# WX
show = not bars[0].Shown()
for bar in bars:
if hasattr(bar, 'setVisible'):
bar.setVisible(show)
elif hasattr(bar, 'Show'):
bar.Show(show)
def _get_one_brain(self, d, name):
"""Helper for various properties"""
if len(self.brains) > 1:
raise ValueError('Cannot access brain.%s when more than '
'one view is plotted. Use brain.brain_matrix '
'or brain.brains.' % name)
if isinstance(d, dict):
out = dict()
for key, value in d.iteritems():
out[key] = value[0]
else:
out = d[0]
return out
@property
def overlays(self):
"""Wrap to overlays"""
return self._get_one_brain(self.overlays_dict, 'overlays')
@property
def foci(self):
"""Wrap to foci"""
return self._get_one_brain(self.foci_dict, 'foci')
@property
def labels(self):
"""Wrap to labels"""
return self._get_one_brain(self.labels_dict, 'labels')
@property
def contour(self):
"""Wrap to contour"""
return self._get_one_brain(self.contour_list, 'contour')
@property
def annot(self):
"""Wrap to annot"""
return self._get_one_brain(self.annot_list, 'contour')
@property
def texts(self):
"""Wrap to texts"""
self._get_one_brain([[]], 'texts')
out = dict()
for key, val in self.texts_dict.iteritems():
out[key] = val['text']
return out
@property
def _geo(self):
"""Wrap to _geo"""
self._get_one_brain([[]], '_geo')
if ('lh' in self.geo) and ['lh'] is not None:
return self.geo['lh']
else:
return self.geo['rh']
@property
def data(self):
"""Wrap to data"""
self._get_one_brain([[]], 'data')
if self.data_dict['lh'] is not None:
data = self.data_dict['lh'].copy()
else:
data = self.data_dict['rh'].copy()
if 'colorbars' in data:
data['colorbar'] = data['colorbars'][0]
return data
def _check_hemi(self, hemi):
"""Check for safe single-hemi input, returns str"""
if hemi is None:
if self._hemi not in ['lh', 'rh']:
raise ValueError('hemi must not be None when both '
'hemispheres are displayed')
else:
hemi = self._hemi
elif hemi not in ['lh', 'rh']:
extra = ' or None' if self._hemi in ['lh', 'rh'] else ''
raise ValueError('hemi must be either "lh" or "rh"' + extra)
return hemi
def _check_hemis(self, hemi):
"""Check for safe dual or single-hemi input, returns list"""
if hemi is None:
if self._hemi not in ['lh', 'rh']:
hemi = ['lh', 'rh']
else:
hemi = [self._hemi]
elif hemi not in ['lh', 'rh']:
extra = ' or None' if self._hemi in ['lh', 'rh'] else ''
raise ValueError('hemi must be either "lh" or "rh"' + extra)
else:
hemi = [hemi]
return hemi
def _read_scalar_data(self, source, hemi, name=None, cast=True):
"""Load in scalar data from an image stored in a file or an array
Parameters
----------
source : str or numpy array
path to scalar data file or a numpy array
name : str or None, optional
name for the overlay in the internal dictionary
cast : bool, optional
either to cast float data into 64bit datatype as a
workaround. cast=True can fix a rendering problem with
certain versions of Mayavi
Returns
-------
scalar_data : numpy array
flat numpy array of scalar data
name : str
if no name was provided, deduces the name if filename was given
as a source
"""
# If source is a string, try to load a file
if isinstance(source, string_types):
if name is None:
basename = os.path.basename(source)
if basename.endswith(".gz"):
basename = basename[:-3]
if basename.startswith("%s." % hemi):
basename = basename[3:]
name = os.path.splitext(basename)[0]
scalar_data = io.read_scalar_data(source)
else:
# Can't think of a good way to check that this will work nicely
scalar_data = source
if cast:
if (scalar_data.dtype.char == 'f' and
scalar_data.dtype.itemsize < 8):
scalar_data = scalar_data.astype(np.float)
return scalar_data, name
def _get_display_range(self, scalar_data, min, max, sign):
if scalar_data.min() >= 0:
sign = "pos"
elif scalar_data.max() <= 0:
sign = "neg"
# Get data with a range that will make sense for automatic thresholding
if sign == "neg":
range_data = np.abs(scalar_data[np.where(scalar_data < 0)])
elif sign == "pos":
range_data = scalar_data[np.where(scalar_data > 0)]
else:
range_data = np.abs(scalar_data)
# Get a numeric value for the scalar minimum
if min is None:
min = "robust_min"
if min == "robust_min":
min = stats.scoreatpercentile(range_data, 2)
elif min == "actual_min":
min = range_data.min()
# Get a numeric value for the scalar maximum
if max is None:
max = "robust_max"
if max == "robust_max":
max = stats.scoreatpercentile(scalar_data, 98)
elif max == "actual_max":
max = range_data.max()
return min, max
###########################################################################
# ADDING DATA PLOTS
def add_overlay(self, source, min=2, max="robust_max", sign="abs",
name=None, hemi=None):
"""Add an overlay to the overlay dict from a file or array.
Parameters
----------
source : str or numpy array
path to the overlay file or numpy array with data
min : float
threshold for overlay display
max : float
saturation point for overlay display
sign : {'abs' | 'pos' | 'neg'}
whether positive, negative, or both values should be displayed
name : str
name for the overlay in the internal dictionary
hemi : str | None
If None, it is assumed to belong to the hemipshere being
shown. If two hemispheres are being shown, an error will
be thrown.
"""
hemi = self._check_hemi(hemi)
# load data here
scalar_data, name = self._read_scalar_data(source, hemi, name=name)
min, max = self._get_display_range(scalar_data, min, max, sign)
if sign not in ["abs", "pos", "neg"]:
raise ValueError("Overlay sign must be 'abs', 'pos', or 'neg'")
old = OverlayData(scalar_data, self.geo[hemi], min, max, sign)
ol = []
views = self._toggle_render(False)
for brain in self._brain_list:
if brain['hemi'] == hemi:
ol.append(brain['brain'].add_overlay(old))
if name in self.overlays_dict:
name = "%s%d" % (name, len(self.overlays_dict) + 1)
self.overlays_dict[name] = ol
self._toggle_render(True, views)
def add_data(self, array, min=None, max=None, thresh=None,
colormap="RdBu_r", alpha=1,
vertices=None, smoothing_steps=20, time=None,
time_label="time index=%d", colorbar=True,
hemi=None, remove_existing=False, time_label_size=14):
"""Display data from a numpy array on the surface.
This provides a similar interface to add_overlay, but it displays
it with a single colormap. It offers more flexibility over the
colormap, and provides a way to display four dimensional data
(i.e. a timecourse).
Note that min sets the low end of the colormap, and is separate
from thresh (this is a different convention from add_overlay)
Note: If the data is defined for a subset of vertices (specified
by the "vertices" parameter), a smoothing method is used to interpolate
the data onto the high resolution surface. If the data is defined for
subsampled version of the surface, smoothing_steps can be set to None,
in which case only as many smoothing steps are applied until the whole
surface is filled with non-zeros.
Parameters
----------
array : numpy array
data array (nvtx vector)
min : float
min value in colormap (uses real min if None)
max : float
max value in colormap (uses real max if None)
thresh : None or float
if not None, values below thresh will not be visible
colormap : string, list of colors, or array
name of matplotlib colormap to use, a list of matplotlib colors,
or a custom look up table (an n x 4 array coded with RBGA values
between 0 and 255).
alpha : float in [0, 1]
alpha level to control opacity
vertices : numpy array
vertices for which the data is defined (needed if len(data) < nvtx)
smoothing_steps : int or None
number of smoothing steps (smooting is used if len(data) < nvtx)
Default : 20
time : numpy array
time points in the data array (if data is 2D)
time_label : str | callable | None
format of the time label (a format string, a function that maps
floating point time values to strings, or None for no label)
colorbar : bool
whether to add a colorbar to the figure
hemi : str | None
If None, it is assumed to belong to the hemipshere being
shown. If two hemispheres are being shown, an error will
be thrown.
remove_existing : bool
Remove surface added by previous "add_data" call. Useful for
conserving memory when displaying different data in a loop.
time_label_size : int
Font size of the time label (default 14)
"""
hemi = self._check_hemi(hemi)
if min is None:
min = array.min()
if max is None:
max = array.max()
# Create smoothing matrix if necessary
if len(array) < self.geo[hemi].x.shape[0]:
if vertices is None:
raise ValueError("len(data) < nvtx: need vertices")
adj_mat = utils.mesh_edges(self.geo[hemi].faces)
smooth_mat = utils.smoothing_matrix(vertices, adj_mat,
smoothing_steps)
else:
smooth_mat = None
# Calculate initial data to plot
if array.ndim == 1:
array_plot = array
elif array.ndim == 2:
array_plot = array[:, 0]
else:
raise ValueError("data has to be 1D or 2D")
if smooth_mat is not None:
array_plot = smooth_mat * array_plot
# Copy and byteswap to deal with Mayavi bug
mlab_plot = _prepare_data(array_plot)
# Process colormap argument into a lut
lut = create_color_lut(colormap)
colormap = "Greys"
data = dict(array=array, smoothing_steps=smoothing_steps,
fmin=min, fmid=(min + max) / 2, fmax=max,
transparent=False, time=0, time_idx=0,
vertices=vertices, smooth_mat=smooth_mat)
# Create time array and add label if 2D
if array.ndim == 2:
if time is None:
time = np.arange(array.shape[1])
self._times = time
self.n_times = array.shape[1]
if not self.n_times == len(time):
raise ValueError('time is not the same length as '
'array.shape[1]')
if isinstance(time_label, basestring):
time_label_fmt = time_label
time_label = lambda x: time_label_fmt % x
data["time_label"] = time_label
data["time"] = time
data["time_idx"] = 0
y_txt = 0.05 + 0.05 * bool(colorbar)
else:
self._times = None
self.n_times = None
surfs = []
bars = []
views = self._toggle_render(False)
for bi, brain in enumerate(self._brain_list):
if brain['hemi'] == hemi:
out = brain['brain'].add_data(array, mlab_plot, vertices,
smooth_mat, min, max, thresh,
lut, colormap, alpha, time,
time_label, colorbar)
s, ct, bar = out
surfs.append(s)
bars.append(bar)
row, col = np.unravel_index(bi, self.brain_matrix.shape)
if array.ndim == 2 and time_label is not None:
self.add_text(0.95, y_txt, time_label(time[0]),
name="time_label", row=row, col=col,
font_size=time_label_size,
justification='right')
self._toggle_render(True, views)
data['surfaces'] = surfs
data['colorbars'] = bars
data['orig_ctable'] = ct
if remove_existing and self.data_dict[hemi] is not None:
for surf in self.data_dict[hemi]['surfaces']:
surf.parent.parent.remove()
self.data_dict[hemi] = data
def add_annotation(self, annot, borders=True, alpha=1, hemi=None,
remove_existing=True):
"""Add an annotation file.
Parameters
----------
annot : str
Either path to annotation file or annotation name
borders : bool | int
Show only label borders. If int, specify the number of steps
(away from the true border) along the cortical mesh to include
as part of the border definition.
alpha : float in [0, 1]
Alpha level to control opacity
hemi : str | None
If None, it is assumed to belong to the hemipshere being
shown. If two hemispheres are being shown, data must exist
for both hemispheres.
remove_existing : bool
If True (default), remove old annotations.
"""
hemis = self._check_hemis(hemi)
# Figure out where the data is coming from
if os.path.isfile(annot):
filepath = annot
path = os.path.split(filepath)[0]
file_hemi, annot = os.path.basename(filepath).split('.')[:2]
if len(hemis) > 1:
if annot[:2] == 'lh.':
filepaths = [filepath, pjoin(path, 'rh' + annot[2:])]
elif annot[:2] == 'rh.':
filepaths = [pjoin(path, 'lh' + annot[2:], filepath)]
else:
raise RuntimeError('To add both hemispheres '
'simultaneously, filename must '
'begin with "lh." or "rh."')
else:
filepaths = [filepath]
else:
filepaths = []
for hemi in hemis:
filepath = pjoin(self.subjects_dir,
self.subject_id,
'label',
".".join([hemi, annot, 'annot']))
if not os.path.exists(filepath):
raise ValueError('Annotation file %s does not exist'
% filepath)
filepaths += [filepath]
views = self._toggle_render(False)
if remove_existing is True:
# Get rid of any old annots
for a in self.annot_list:
a['surface'].remove()
self.annot_list = []
al = self.annot_list
for hemi, filepath in zip(hemis, filepaths):
# Read in the data
labels, cmap, _ = nib.freesurfer.read_annot(filepath,
orig_ids=True)
# Maybe zero-out the non-border vertices
self._to_borders(labels, hemi, borders)
# Handle null labels properly
# (tksurfer doesn't use the alpha channel, so sometimes this
# is set weirdly. For our purposes, it should always be 0.
# Unless this sometimes causes problems?
cmap[np.where(cmap[:, 4] == 0), 3] = 0
if np.any(labels == 0) and not np.any(cmap[:, -1] == 0):
cmap = np.vstack((cmap, np.zeros(5, int)))
# Set label ids sensibly
ord = np.argsort(cmap[:, -1])
ids = ord[np.searchsorted(cmap[ord, -1], labels)]
cmap = cmap[:, :4]
# Set the alpha level
alpha_vec = cmap[:, 3]
alpha_vec[alpha_vec > 0] = alpha * 255
for brain in self._brain_list:
if brain['hemi'] == hemi:
al.append(brain['brain'].add_annotation(annot, ids, cmap))
self.annot_list = al
self._toggle_render(True, views)
def add_label(self, label, color=None, alpha=1, scalar_thresh=None,
borders=False, hemi=None, subdir=None):
"""Add an ROI label to the image.
Parameters
----------
label : str | instance of Label
label filepath or name. Can also be an instance of
an object with attributes "hemi", "vertices", "name", and
optionally "color" and "values" (if scalar_thresh is not None).
color : matplotlib-style color | None
anything matplotlib accepts: string, RGB, hex, etc. (default
"crimson")
alpha : float in [0, 1]
alpha level to control opacity
scalar_thresh : None or number
threshold the label ids using this value in the label
file's scalar field (i.e. label only vertices with
scalar >= thresh)
borders : bool | int
Show only label borders. If int, specify the number of steps
(away from the true border) along the cortical mesh to include
as part of the border definition.
hemi : str | None
If None, it is assumed to belong to the hemipshere being
shown. If two hemispheres are being shown, an error will
be thrown.
subdir : None | str
If a label is specified as name, subdir can be used to indicate
that the label file is in a sub-directory of the subject's
label directory rather than in the label directory itself (e.g.
for ``$SUBJECTS_DIR/$SUBJECT/label/aparc/lh.cuneus.label``
``brain.add_label('cuneus', subdir='aparc')``).
Notes
-----
To remove previously added labels, run Brain.remove_labels().
"""
if isinstance(label, string_types):
hemi = self._check_hemi(hemi)
if color is None:
color = "crimson"
if os.path.isfile(label):
filepath = label
label_name = os.path.basename(filepath).split('.')[1]
else:
label_name = label
label_fname = ".".join([hemi, label_name, 'label'])
if subdir is None:
filepath = pjoin(self.subjects_dir, self.subject_id,
'label', label_fname)
else:
filepath = pjoin(self.subjects_dir, self.subject_id,
'label', subdir, label_fname)
if not os.path.exists(filepath):
raise ValueError('Label file %s does not exist'
% filepath)
# Load the label data and create binary overlay
if scalar_thresh is None:
ids = nib.freesurfer.read_label(filepath)
else:
ids, scalars = nib.freesurfer.read_label(filepath,
read_scalars=True)
ids = ids[scalars >= scalar_thresh]
else:
# try to extract parameters from label instance
try:
hemi = label.hemi
ids = label.vertices
if label.name is None:
label_name = 'unnamed'
else:
label_name = str(label.name)
if color is None:
if hasattr(label, 'color') and label.color is not None:
color = label.color
else:
color = "crimson"
if scalar_thresh is not None:
scalars = label.values
except Exception:
raise ValueError('Label was not a filename (str), and could '
'not be understood as a class. The class '
'must have attributes "hemi", "vertices", '
'"name", and (if scalar_thresh is not None)'
'"values"')
hemi = self._check_hemi(hemi)
if scalar_thresh is not None:
ids = ids[scalars >= scalar_thresh]
label = np.zeros(self.geo[hemi].coords.shape[0])
label[ids] = 1
# make sure we have a unique name
if label_name in self.labels_dict:
i = 2
name = label_name + '_%i'
while name % i in self.labels_dict:
i += 1
label_name = name % i
self._to_borders(label, hemi, borders, restrict_idx=ids)
# make a list of all the plotted labels
ll = []
views = self._toggle_render(False)
for brain in self._brain_list:
if brain['hemi'] == hemi:
ll.append(brain['brain'].add_label(label, label_name,
color, alpha))
self.labels_dict[label_name] = ll
self._toggle_render(True, views)
def _to_borders(self, label, hemi, borders, restrict_idx=None):
"""Helper to potentially convert a label/parc to borders"""
if not isinstance(borders, (bool, int)) or borders < 0:
raise ValueError('borders must be a bool or positive integer')
if borders:
n_vertices = label.size
edges = utils.mesh_edges(self.geo[hemi].faces)
border_edges = label[edges.row] != label[edges.col]
show = np.zeros(n_vertices, dtype=np.int)
keep_idx = np.unique(edges.row[border_edges])
if isinstance(borders, int):
for _ in range(borders):
keep_idx = np.in1d(self.geo[hemi].faces.ravel(), keep_idx)
keep_idx.shape = self.geo[hemi].faces.shape
keep_idx = self.geo[hemi].faces[np.any(keep_idx, axis=1)]
keep_idx = np.unique(keep_idx)
if restrict_idx is not None:
keep_idx = keep_idx[np.in1d(keep_idx, restrict_idx)]
show[keep_idx] = 1
label *= show
def remove_labels(self, labels=None, hemi=None):
"""Remove one or more previously added labels from the image.
Parameters
----------
labels : None | str | list of str
Labels to remove. Can be a string naming a single label, or None to
remove all labels. Possible names can be found in the Brain.labels
attribute.
hemi : str | None
If None, it is assumed to belong to the hemipshere being
shown. If two hemispheres are being shown, an error will
be thrown.
"""
hemi = self._check_hemi(hemi)
if labels is None:
labels = self.labels_dict.keys()
elif isinstance(labels, str):
labels = [labels]
for key in labels:
label = self.labels_dict.pop(key)
for ll in label:
ll.remove()
def add_morphometry(self, measure, grayscale=False, hemi=None,
remove_existing=True, colormap=None,
min=None, max=None, colorbar=True):
"""Add a morphometry overlay to the image.
Parameters
----------
measure : {'area' | 'curv' | 'jacobian_white' | 'sulc' | 'thickness'}
which measure to load
grayscale : bool
whether to load the overlay with a grayscale colormap
hemi : str | None
If None, it is assumed to belong to the hemipshere being
shown. If two hemispheres are being shown, data must exist
for both hemispheres.
remove_existing : bool
If True (default), remove old annotations.
colormap : str
Mayavi colormap name, or None to use a sensible default.
min, max : floats
Endpoints for the colormap; if not provided the robust range
of the data is used.
colorbar : bool
If True, show a colorbar corresponding to the overlay data.
"""
hemis = self._check_hemis(hemi)
morph_files = []
for hemi in hemis:
# Find the source data
surf_dir = pjoin(self.subjects_dir, self.subject_id, 'surf')
morph_file = pjoin(surf_dir, '.'.join([hemi, measure]))
if not os.path.exists(morph_file):
raise ValueError(
'Could not find %s in subject directory' % morph_file)
morph_files += [morph_file]
views = self._toggle_render(False)
if remove_existing is True:
# Get rid of any old overlays
for m in self.morphometry_list:
m['surface'].remove()
if m["colorbar"] is not None:
m['colorbar'].visible = False
self.morphometry_list = []
ml = self.morphometry_list
for hemi, morph_file in zip(hemis, morph_files):
if colormap is None:
# Preset colormaps
if grayscale:
colormap = "gray"
else:
colormap = dict(area="pink",
curv="RdBu",
jacobian_white="pink",
sulc="RdBu",
thickness="pink")[measure]
# Read in the morphometric data
morph_data = nib.freesurfer.read_morph_data(morph_file)
# Get a cortex mask for robust range
self.geo[hemi].load_label("cortex")
ctx_idx = self.geo[hemi].labels["cortex"]
# Get the display range
min_default, max_default = np.percentile(morph_data[ctx_idx],
[2, 98])
if min is None:
min = min_default
if max is None:
max = max_default
# Use appropriate values for bivariate measures
if measure in ["curv", "sulc"]:
lim = np.max([abs(min), abs(max)])
min, max = -lim, lim
# Set up the Mayavi pipeline
morph_data = _prepare_data(morph_data)
for brain in self._brain_list:
if brain['hemi'] == hemi:
ml.append(brain['brain'].add_morphometry(morph_data,
colormap, measure,
min, max,
colorbar))
self.morphometry_list = ml
self._toggle_render(True, views)
def add_foci(self, coords, coords_as_verts=False, map_surface=None,
scale_factor=1, color="white", alpha=1, name=None,
hemi=None):
"""Add spherical foci, possibly mapping to displayed surf.
The foci spheres can be displayed at the coordinates given, or
mapped through a surface geometry. In other words, coordinates
from a volume-based analysis in MNI space can be displayed on an
inflated average surface by finding the closest vertex on the
white surface and mapping to that vertex on the inflated mesh.
Parameters
----------
coords : numpy array
x, y, z coordinates in stereotaxic space or array of vertex ids
coords_as_verts : bool
whether the coords parameter should be interpreted as vertex ids
map_surface : Freesurfer surf or None
surface to map coordinates through, or None to use raw coords
scale_factor : int
controls the size of the foci spheres
color : matplotlib color code
HTML name, RBG tuple, or hex code
alpha : float in [0, 1]
opacity of focus gylphs
name : str
internal name to use
hemi : str | None
If None, it is assumed to belong to the hemipshere being
shown. If two hemispheres are being shown, an error will
be thrown.
"""
hemi = self._check_hemi(hemi)
# Figure out how to interpret the first parameter
if coords_as_verts:
coords = self.geo[hemi].coords[coords]
map_surface = None
# Possibly map the foci coords through a surface
if map_surface is None:
foci_coords = np.atleast_2d(coords)
else:
foci_surf = Surface(self.subject_id, hemi, map_surface,
subjects_dir=self.subjects_dir)
foci_surf.load_geometry()
foci_vtxs = utils.find_closest_vertices(foci_surf.coords, coords)
foci_coords = self.geo[hemi].coords[foci_vtxs]
# Get a unique name (maybe should take this approach elsewhere)
if name is None:
name = "foci_%d" % (len(self.foci_dict) + 1)
# Convert the color code
if not isinstance(color, tuple):
color = colorConverter.to_rgb(color)
views = self._toggle_render(False)
fl = []
for brain in self._brain_list:
if brain['hemi'] == hemi:
fl.append(brain['brain'].add_foci(foci_coords, scale_factor,
color, alpha, name))
self.foci_dict[name] = fl
self._toggle_render(True, views)
def add_contour_overlay(self, source, min=None, max=None,
n_contours=7, line_width=1.5, colormap="YlOrRd_r",
hemi=None, remove_existing=True, colorbar=True):
"""Add a topographic contour overlay of the positive data.
Note: This visualization will look best when using the "low_contrast"
cortical curvature colorscheme.
Parameters
----------
source : str or array
path to the overlay file or numpy array
min : float
threshold for overlay display
max : float
saturation point for overlay display
n_contours : int
number of contours to use in the display
line_width : float
width of contour lines
colormap : string, list of colors, or array
name of matplotlib colormap to use, a list of matplotlib colors,
or a custom look up table (an n x 4 array coded with RBGA values
between 0 and 255).
hemi : str | None
If None, it is assumed to belong to the hemipshere being
shown. If two hemispheres are being shown, an error will
be thrown.
remove_existing : bool
If there is an existing contour overlay, remove it before plotting.
colorbar : bool
If True, show the colorbar for the scalar value.
"""
hemi = self._check_hemi(hemi)
# Read the scalar data
scalar_data, _ = self._read_scalar_data(source, hemi)
min, max = self._get_display_range(scalar_data, min, max, "pos")
# Deal with Mayavi bug
scalar_data = _prepare_data(scalar_data)
# Maybe get rid of an old overlay
if hasattr(self, "contour") and remove_existing:
for c in self.contour_list:
c['surface'].remove()
if c['colorbar'] is not None:
c['colorbar'].visible = False
# Process colormap argument into a lut
lut = create_color_lut(colormap)
views = self._toggle_render(False)
cl = []
for brain in self._brain_list:
if brain['hemi'] == hemi:
cl.append(brain['brain'].add_contour_overlay(scalar_data,
min, max,
n_contours,
line_width, lut,
colorbar))
self.contour_list = cl
self._toggle_render(True, views)
def add_text(self, x, y, text, name, color=None, opacity=1.0,
row=-1, col=-1, font_size=None, justification=None):
""" Add a text to the visualization
Parameters
----------
x : Float
x coordinate
y : Float
y coordinate
text : str
Text to add
name : str
Name of the text (text label can be updated using update_text())
color : Tuple
Color of the text. Default: (1, 1, 1)
opacity : Float
Opacity of the text. Default: 1.0
row : int
Row index of which brain to use
col : int
Column index of which brain to use
"""
if name in self.texts_dict:
self.texts_dict[name]['text'].remove()
text = self.brain_matrix[row, col].add_text(x, y, text,
name, color, opacity)
self.texts_dict[name] = dict(row=row, col=col, text=text)
if font_size is not None:
text.property.font_size = font_size
text.actor.text_scale_mode = 'viewport'
if justification is not None:
text.property.justification = justification
def update_text(self, text, name, row=-1, col=-1):
"""Update text label
Parameters
----------
text : str
New text for label
name : str
Name of text label
"""
if name not in self.texts_dict:
raise KeyError('text name "%s" unknown' % name)
self.texts_dict[name]['text'].text = text
###########################################################################
# DATA SCALING / DISPLAY
def reset_view(self):
"""Orient camera to display original view
"""
for view, brain in zip(self._original_views, self._brain_list):
brain['brain'].show_view(view)
def show_view(self, view=None, roll=None, distance=None, row=-1, col=-1):
"""Orient camera to display view
Parameters
----------
view : {'lateral' | 'medial' | 'rostral' | 'caudal' |
'dorsal' | 'ventral' | 'frontal' | 'parietal' |
dict}
brain surface to view or kwargs to pass to mlab.view()
Returns
-------
view : tuple
tuple returned from mlab.view
roll : float
camera roll
distance : float | 'auto' | None
distance from the origin
row : int
Row index of which brain to use
col : int
Column index of which brain to use
"""
return self.brain_matrix[row][col].show_view(view, roll, distance)
def set_distance(self, distance=None):
"""Set view distances for all brain plots to the same value
Parameters
----------
distance : float | None
Distance to use. If None, brains are set to the farthest
"best fit" distance across all current views; note that
the underlying "best fit" function can be buggy.
Returns
-------
distance : float
The distance used.
"""
if distance is None:
distance = []
for ff in self._figures:
for f in ff:
mlab.view(figure=f, distance='auto')
v = mlab.view(figure=f)
# This should only happen for the test backend
if v is None:
v = [0, 0, 100]
distance += [v[2]]
distance = max(distance)
for ff in self._figures:
for f in ff:
mlab.view(distance=distance, figure=f)
return distance
@verbose
def scale_data_colormap(self, fmin, fmid, fmax, transparent, verbose=None):
"""Scale the data colormap.
Parameters
----------
fmin : float
minimum value of colormap
fmid : float
value corresponding to color midpoint
fmax : float
maximum value for colormap
transparent : boolean
if True: use a linear transparency between fmin and fmid
verbose : bool, str, int, or None
If not None, override default verbose level (see surfer.verbose).
"""
if not (fmin < fmid) and (fmid < fmax):
raise ValueError("Invalid colormap, we need fmin<fmid<fmax")
# Cast inputs to float to prevent integer division
fmin = float(fmin)
fmid = float(fmid)
fmax = float(fmax)
logger.info("colormap: fmin=%0.2e fmid=%0.2e fmax=%0.2e "
"transparent=%d" % (fmin, fmid, fmax, transparent))
# Get the original colormap
for h in ['lh', 'rh']:
data = self.data_dict[h]
if data is not None:
table = data["orig_ctable"].copy()
# Add transparency if needed
if transparent:
n_colors = table.shape[0]
n_colors2 = int(n_colors / 2)
table[:n_colors2, -1] = np.linspace(0, 255, n_colors2)
table[n_colors2:, -1] = 255 * np.ones(n_colors - n_colors2)
# Scale the colormap
table_new = table.copy()
n_colors = table.shape[0]
n_colors2 = int(n_colors / 2)
# Index of fmid in new colorbar
fmid_idx = int(np.round(n_colors * ((fmid - fmin) /
(fmax - fmin))) - 1)
# Go through channels
for i in range(4):
part1 = np.interp(np.linspace(0, n_colors2 - 1, fmid_idx + 1),
np.arange(n_colors),
table[:, i])
table_new[:fmid_idx + 1, i] = part1
part2 = np.interp(np.linspace(n_colors2, n_colors - 1,
n_colors - fmid_idx - 1),
np.arange(n_colors),
table[:, i])
table_new[fmid_idx + 1:, i] = part2
views = self._toggle_render(False)
# Use the new colormap
for hemi in ['lh', 'rh']:
data = self.data_dict[hemi]
if data is not None:
for surf in data['surfaces']:
cmap = surf.module_manager.scalar_lut_manager
cmap.lut.table = table_new
cmap.data_range = np.array([fmin, fmax])
# Update the data properties
data["fmin"], data['fmid'], data['fmax'] = fmin, fmid, fmax
data["transparent"] = transparent
self._toggle_render(True, views)
def set_data_time_index(self, time_idx, interpolation='quadratic'):
"""Set the data time index to show
Parameters
----------
time_idx : int | float
Time index. Non-integer values will be displayed using
interpolation between samples.
interpolation : str
Interpolation method (``scipy.interpolate.interp1d`` parameter,
one of 'linear' | 'nearest' | 'zero' | 'slinear' | 'quadratic' |
'cubic', default 'quadratic'). Interpolation is only used for
non-integer indexes.
"""
if self.n_times is None:
raise RuntimeError('cannot set time index with no time data')
if time_idx < 0 or time_idx >= self.n_times:
raise ValueError("time index out of range")
views = self._toggle_render(False)
for hemi in ['lh', 'rh']:
data = self.data_dict[hemi]
if data is not None:
# interpolation
if isinstance(time_idx, float):
times = np.arange(self.n_times)
ifunc = interp1d(times, data['array'], interpolation, 1)
plot_data = ifunc(time_idx)
else:
plot_data = data["array"][:, time_idx]
if data["smooth_mat"] is not None:
plot_data = data["smooth_mat"] * plot_data
for surf in data["surfaces"]:
surf.mlab_source.scalars = plot_data
data["time_idx"] = time_idx
# Update time label
if data["time_label"]:
if isinstance(time_idx, float):
ifunc = interp1d(times, data['time'])
time = ifunc(time_idx)
else:
time = data["time"][time_idx]
self.update_text(data["time_label"](time), "time_label")
self._toggle_render(True, views)
@property
def data_time_index(self):
"""Retrieve the currently displayed data time index
Returns
-------
time_idx : int
Current time index.
Notes
-----
Raises a RuntimeError if the Brain instance has not data overlay.
"""
time_idx = None
for hemi in ['lh', 'rh']:
data = self.data_dict[hemi]
if data is not None:
time_idx = data["time_idx"]
return time_idx
raise RuntimeError("Brain instance has no data overlay")
@verbose
def set_data_smoothing_steps(self, smoothing_steps, verbose=None):
"""Set the number of smoothing steps
Parameters
----------
smoothing_steps : int
Number of smoothing steps
verbose : bool, str, int, or None
If not None, override default verbose level (see surfer.verbose).
"""
views = self._toggle_render(False)
for hemi in ['lh', 'rh']:
data = self.data_dict[hemi]
if data is not None:
adj_mat = utils.mesh_edges(self.geo[hemi].faces)
smooth_mat = utils.smoothing_matrix(data["vertices"],
adj_mat, smoothing_steps)
data["smooth_mat"] = smooth_mat
# Redraw
if data["array"].ndim == 1:
plot_data = data["array"]
else:
plot_data = data["array"][:, data["time_idx"]]
plot_data = data["smooth_mat"] * plot_data
for surf in data["surfaces"]:
surf.mlab_source.scalars = plot_data
# Update data properties
data["smoothing_steps"] = smoothing_steps
self._toggle_render(True, views)
def index_for_time(self, time, rounding='closest'):
"""Find the data time index closest to a specific time point
Parameters
----------
time : scalar
Time.
rounding : 'closest' | 'up' | 'down
How to round if the exact time point is not an index.
Returns
-------
index : int
Data time index closest to time.
"""
if self.n_times is None:
raise RuntimeError("Brain has no time axis")
times = self._times
# Check that time is in range
tmin = np.min(times)
tmax = np.max(times)
max_diff = (tmax - tmin) / (len(times) - 1) / 2
if time < tmin - max_diff or time > tmax + max_diff:
err = ("time = %s lies outside of the time axis "
"[%s, %s]" % (time, tmin, tmax))
raise ValueError(err)
if rounding == 'closest':
idx = np.argmin(np.abs(times - time))
elif rounding == 'up':
idx = np.nonzero(times >= time)[0][0]
elif rounding == 'down':
idx = np.nonzero(times <= time)[0][-1]
else:
err = "Invalid rounding parameter: %s" % repr(rounding)
raise ValueError(err)
return idx
def set_time(self, time):
"""Set the data time index to the time point closest to time
Parameters
----------
time : scalar
Time.
"""
idx = self.index_for_time(time)
self.set_data_time_index(idx)
def _get_colorbars(self, row, col):
shape = self.brain_matrix.shape
row = row % shape[0]
col = col % shape[1]
ind = np.ravel_multi_index((row, col), self.brain_matrix.shape)
colorbars = []
h = self._brain_list[ind]['hemi']
if self.data_dict[h] is not None and 'colorbars' in self.data_dict[h]:
colorbars.append(self.data_dict[h]['colorbars'][row])
if len(self.morphometry_list) > 0:
colorbars.append(self.morphometry_list[ind]['colorbar'])
if len(self.contour_list) > 0:
colorbars.append(self.contour_list[ind]['colorbar'])
if len(self.overlays_dict) > 0:
for name, obj in self.overlays_dict.items():
for bar in ["pos_bar", "neg_bar"]:
try: # deal with positive overlays
this_ind = min(len(obj) - 1, ind)
colorbars.append(getattr(obj[this_ind], bar))
except AttributeError:
pass
return colorbars
def _colorbar_visibility(self, visible, row, col):
for cb in self._get_colorbars(row, col):
if cb is not None:
cb.visible = visible
def show_colorbar(self, row=-1, col=-1):
"""Show colorbar(s) for given plot
Parameters
----------
row : int
Row index of which brain to use
col : int
Column index of which brain to use
"""
self._colorbar_visibility(True, row, col)
def hide_colorbar(self, row=-1, col=-1):
"""Hide colorbar(s) for given plot
Parameters
----------
row : int
Row index of which brain to use
col : int
Column index of which brain to use
"""
self._colorbar_visibility(False, row, col)
def close(self):
"""Close all figures and cleanup data structure."""
for ri, ff in enumerate(self._figures):
for ci, f in enumerate(ff):
if f is not None:
mlab.close(f)
self._figures[ri][ci] = None
# should we tear down other variables?
if self._v is not None:
self._v.dispose()
self._v = None
def __del__(self):
if hasattr(self, '_v') and self._v is not None:
self._v.dispose()
self._v = None
###########################################################################
# SAVING OUTPUT
def save_single_image(self, filename, row=-1, col=-1):
"""Save view from one panel to disk
Only mayavi image types are supported:
(png jpg bmp tiff ps eps pdf rib oogl iv vrml obj
Parameters
----------
filename: string
path to new image file
row : int
row index of the brain to use
col : int
column index of the brain to use
Due to limitations in TraitsUI, if multiple views or hemi='split'
is used, there is no guarantee painting of the windows will
complete before control is returned to the command line. Thus
we strongly recommend using only one figure window (which uses
a Mayavi figure to plot instead of TraitsUI) if you intend to
script plotting commands.
"""
brain = self.brain_matrix[row, col]
ftype = filename[filename.rfind('.') + 1:]
good_ftypes = ['png', 'jpg', 'bmp', 'tiff', 'ps',
'eps', 'pdf', 'rib', 'oogl', 'iv', 'vrml', 'obj']
if ftype not in good_ftypes:
raise ValueError("Supported image types are %s"
% " ".join(good_ftypes))
mlab.draw(brain._f)
mlab.savefig(filename, figure=brain._f)
def save_image(self, filename):
"""Save view from all panels to disk
Only mayavi image types are supported:
(png jpg bmp tiff ps eps pdf rib oogl iv vrml obj
Parameters
----------
filename: string
path to new image file
Due to limitations in TraitsUI, if multiple views or hemi='split'
is used, there is no guarantee painting of the windows will
complete before control is returned to the command line. Thus
we strongly recommend using only one figure window (which uses
a Mayavi figure to plot instead of TraitsUI) if you intend to
script plotting commands.
"""
misc.imsave(filename, self.screenshot())
def screenshot(self, mode='rgb', antialiased=False):
"""Generate a screenshot of current view
Wraps to mlab.screenshot for ease of use.
Parameters
----------
mode: string
Either 'rgb' or 'rgba' for values to return
antialiased: bool
Antialias the image (see mlab.screenshot() for details)
row : int
row index of the brain to use
col : int
column index of the brain to use
Returns
-------
screenshot: array
Image pixel values
Notes
-----
Due to limitations in TraitsUI, if multiple views or hemi='split'
is used, there is no guarantee painting of the windows will
complete before control is returned to the command line. Thus
we strongly recommend using only one figure window (which uses
a Mayavi figure to plot instead of TraitsUI) if you intend to
script plotting commands.
"""
row = []
for ri in range(self.brain_matrix.shape[0]):
col = []
n_col = 2 if self._hemi == 'split' else 1
for ci in range(n_col):
col += [self.screenshot_single(mode, antialiased,
ri, ci)]
row += [np.concatenate(col, axis=1)]
data = np.concatenate(row, axis=0)
return data
def screenshot_single(self, mode='rgb', antialiased=False, row=-1, col=-1):
"""Generate a screenshot of current view from a single panel
Wraps to mlab.screenshot for ease of use.
Parameters
----------
mode: string
Either 'rgb' or 'rgba' for values to return
antialiased: bool
Antialias the image (see mlab.screenshot() for details)
row : int
row index of the brain to use
col : int
column index of the brain to use
Returns
-------
screenshot: array
Image pixel values
Notes
-----
Due to limitations in TraitsUI, if multiple views or hemi='split'
is used, there is no guarantee painting of the windows will
complete before control is returned to the command line. Thus
we strongly recommend using only one figure window (which uses
a Mayavi figure to plot instead of TraitsUI) if you intend to
script plotting commands.
"""
brain = self.brain_matrix[row, col]
return mlab.screenshot(brain._f, mode, antialiased)
def save_imageset(self, prefix, views, filetype='png', colorbar='auto',
row=-1, col=-1):
"""Convenience wrapper for save_image
Files created are prefix+'_$view'+filetype
Parameters
----------
prefix: string | None
filename prefix for image to be created. If None, a list of
arrays representing images is returned (not saved to disk).
views: list
desired views for images
filetype: string
image type
colorbar: 'auto' | int | list of int | None
For 'auto', the colorbar is shown in the middle view (default).
For int or list of int, the colorbar is shown in the specified
views. For ``None``, no colorbar is shown.
row : int
row index of the brain to use
col : int
column index of the brain to use
Returns
-------
images_written: list
all filenames written
"""
if isinstance(views, string_types):
raise ValueError("Views must be a non-string sequence"
"Use show_view & save_image for a single view")
if colorbar == 'auto':
colorbar = [len(views) // 2]
elif isinstance(colorbar, int):
colorbar = [colorbar]
images_written = []
for iview, view in enumerate(views):
try:
if colorbar is not None and iview in colorbar:
self.show_colorbar(row, col)
else:
self.hide_colorbar(row, col)
self.show_view(view, row=row, col=col)
if prefix is not None:
fname = "%s_%s.%s" % (prefix, view, filetype)
images_written.append(fname)
self.save_single_image(fname, row, col)
else:
images_written.append(self.screenshot_single(row=row,
col=col))
except ValueError:
print("Skipping %s: not in view dict" % view)
return images_written
def save_image_sequence(self, time_idx, fname_pattern, use_abs_idx=True,
row=-1, col=-1, montage='single', border_size=15,
colorbar='auto', interpolation='quadratic'):
"""Save a temporal image sequence
The files saved are named "fname_pattern % (pos)" where "pos" is a
relative or absolute index (controlled by "use_abs_idx")
Parameters
----------
time_idx : array-like
Time indices to save. Non-integer values will be displayed using
interpolation between samples.
fname_pattern : str
Filename pattern, e.g. 'movie-frame_%0.4d.png'.
use_abs_idx : boolean
If True the indices given by "time_idx" are used in the filename
if False the index in the filename starts at zero and is
incremented by one for each image (Default: True).
row : int
Row index of the brain to use.
col : int
Column index of the brain to use.
montage: 'current' | 'single' | list
Views to include in the images: 'current' uses the currently
displayed image; 'single' (default) uses a single view, specified
by the ``row`` and ``col`` parameters; a 1 or 2 dimensional list
can be used to specify a complete montage. Examples:
``['lat', 'med']`` lateral and ventral views ordered horizontally;
``[['fro'], ['ven']]`` frontal and ventral views ordered
vertically.
border_size: int
Size of image border (more or less space between images).
colorbar: 'auto' | int | list of int | None
For 'auto', the colorbar is shown in the middle view (default).
For int or list of int, the colorbar is shown in the specified
views. For ``None``, no colorbar is shown.
interpolation : str
Interpolation method (``scipy.interpolate.interp1d`` parameter,
one of 'linear' | 'nearest' | 'zero' | 'slinear' | 'quadratic' |
'cubic', default 'quadratic'). Interpolation is only used for
non-integer indexes.
Returns
-------
images_written: list
all filenames written
"""
current_time_idx = self.data_time_index
images_written = list()
rel_pos = 0
for idx in time_idx:
self.set_data_time_index(idx, interpolation)
fname = fname_pattern % (idx if use_abs_idx else rel_pos)
if montage == 'single':
self.save_single_image(fname, row, col)
elif montage == 'current':
self.save_image(fname)
else:
self.save_montage(fname, montage, 'h', border_size, colorbar,
row, col)
images_written.append(fname)
rel_pos += 1
# Restore original time index
self.set_data_time_index(current_time_idx)
return images_written
def save_montage(self, filename, order=['lat', 'ven', 'med'],
orientation='h', border_size=15, colorbar='auto',
row=-1, col=-1):
"""Create a montage from a given order of images
Parameters
----------
filename: string | None
path to final image. If None, the image will not be saved.
order: list
list of views: order of views to build montage (default ['lat',
'ven', 'med']; nested list of views to specify views in a
2-dimensional grid (e.g, [['lat', 'ven'], ['med', 'fro']])
orientation: {'h' | 'v'}
montage image orientation (horizontal of vertical alignment; only
applies if ``order`` is a flat list)
border_size: int
Size of image border (more or less space between images)
colorbar: 'auto' | int | list of int | None
For 'auto', the colorbar is shown in the middle view (default).
For int or list of int, the colorbar is shown in the specified
views. For ``None``, no colorbar is shown.
row : int
row index of the brain to use
col : int
column index of the brain to use
Returns
-------
out : array
The montage image, useable with matplotlib.imshow().
"""
# find flat list of views and nested list of view indexes
assert orientation in ['h', 'v']
if isinstance(order, (str, dict)):
views = [order]
elif all(isinstance(x, (str, dict)) for x in order):
views = order
else:
views = []
orientation = []
for row_order in order:
if isinstance(row_order, (str, dict)):
orientation.append([len(views)])
views.append(row_order)
else:
orientation.append([])
for view in row_order:
orientation[-1].append(len(views))
views.append(view)
if colorbar == 'auto':
colorbar = [len(views) // 2]
elif isinstance(colorbar, int):
colorbar = [colorbar]
brain = self.brain_matrix[row, col]
# store current view + colorbar visibility
current_view = mlab.view(figure=brain._f)
colorbars = self._get_colorbars(row, col)
colorbars_visibility = dict()
for cb in colorbars:
if cb is not None:
colorbars_visibility[cb] = cb.visible
images = self.save_imageset(None, views, colorbar=colorbar, row=row,
col=col)
out = make_montage(filename, images, orientation, colorbar,
border_size)
# get back original view and colorbars
mlab.view(*current_view, figure=brain._f)
for cb in colorbars:
if cb is not None:
cb.visible = colorbars_visibility[cb]
return out
def save_movie(self, fname, time_dilation=4., tmin=None, tmax=None,
framerate=24, interpolation='quadratic', codec='mpeg4',
bitrate='1M'):
"""Save a movie (for data with a time axis)
.. Warning::
This method assumes that time is specified in seconds when adding
data. If time is specified in milliseconds this will result in
movies 1000 times longer than expected.
Parameters
----------
fname : str
Path at which to save the movie.
time_dilation : float
Factor by which to stretch time (default 4). For example, an epoch
from -100 to 600 ms lasts 700 ms. With ``time_dilation=4`` this
would result in a 2.8 s long movie.
tmin : float
First time point to include (default: all data).
tmax : float
Last time point to include (default: all data).
framerate : float
Framerate of the movie (frames per second, default 24).
interpolation : str
Interpolation method (``scipy.interpolate.interp1d`` parameter,
one of 'linear' | 'nearest' | 'zero' | 'slinear' | 'quadratic' |
'cubic', default 'quadratic').
codec : str
Codec to use with ffmpeg (default 'mpeg4').
bitrate : str | float
Bitrate to use to encode movie. Can be specified as number (e.g.
64000) or string (e.g. '64k'). Default value is 1M
Notes
-----
This method requires FFmpeg to be installed in the system PATH. FFmpeg
is free and can be obtained from `here
<http://ffmpeg.org/download.html>`_.
"""
assert_ffmpeg_is_available()
if tmin is None:
tmin = self._times[0]
elif tmin < self._times[0]:
raise ValueError("tmin=%r is smaller than the first time point "
"(%r)" % (tmin, self._times[0]))
# find indexes at which to create frames
if tmax is None:
tmax = self._times[-1]
elif tmax > self._times[-1]:
raise ValueError("tmax=%r is greater than the latest time point "
"(%r)" % (tmax, self._times[-1]))
n_frames = floor((tmax - tmin) * time_dilation * framerate)
times = np.arange(n_frames)
times /= framerate * time_dilation
times += tmin
interp_func = interp1d(self._times, np.arange(self.n_times))
time_idx = interp_func(times)
n_times = len(time_idx)
if n_times == 0:
raise ValueError("No time points selected")
logger.debug("Save movie for time points/samples\n%s\n%s"
% (times, time_idx))
tempdir = mkdtemp()
frame_pattern = 'frame%%0%id.png' % (np.floor(np.log10(n_times)) + 1)
fname_pattern = os.path.join(tempdir, frame_pattern)
self.save_image_sequence(time_idx, fname_pattern, False, -1, -1,
'current', interpolation=interpolation)
ffmpeg(fname, fname_pattern, framerate, codec=codec, bitrate=bitrate)
def animate(self, views, n_steps=180., fname=None, use_cache=False,
row=-1, col=-1):
"""Animate a rotation.
Currently only rotations through the axial plane are allowed.
Parameters
----------
views: sequence
views to animate through
n_steps: float
number of steps to take in between
fname: string
If not None, it saves the animation as a movie.
fname should end in '.avi' as only the AVI format is supported
use_cache: bool
Use previously generated images in ./.tmp/
row : int
Row index of the brain to use
col : int
Column index of the brain to use
"""
brain = self.brain_matrix[row, col]
gviews = map(brain._xfm_view, views)
allowed = ('lateral', 'caudal', 'medial', 'rostral')
if not len([v for v in gviews if v in allowed]) == len(gviews):
raise ValueError('Animate through %s views.' % ' '.join(allowed))
if fname is not None:
if not fname.endswith('.avi'):
raise ValueError('Can only output to AVI currently.')
tmp_dir = './.tmp'
tmp_fname = pjoin(tmp_dir, '%05d.png')
if not os.path.isdir(tmp_dir):
os.mkdir(tmp_dir)
for i, beg in enumerate(gviews):
try:
end = gviews[i + 1]
dv, dr = brain._min_diff(beg, end)
dv /= np.array((n_steps))
dr /= np.array((n_steps))
brain.show_view(beg)
for i in range(int(n_steps)):
brain._f.scene.camera.orthogonalize_view_up()
brain._f.scene.camera.azimuth(dv[0])
brain._f.scene.camera.elevation(dv[1])
brain._f.scene.renderer.reset_camera_clipping_range()
_force_render([[brain._f]], self._window_backend)
if fname is not None:
if not (os.path.isfile(tmp_fname % i) and use_cache):
self.save_single_image(tmp_fname % i, row, col)
except IndexError:
pass
if fname is not None:
fps = 10
# we'll probably want some config options here
enc_cmd = " ".join(["mencoder",
"-ovc lavc",
"-mf fps=%d" % fps,
"mf://%s" % tmp_fname,
"-of avi",
"-lavcopts vcodec=mjpeg",
"-ofps %d" % fps,
"-noskip",
"-o %s" % fname])
ret = os.system(enc_cmd)
if ret:
print("\n\nError occured when exporting movie\n\n")
class _Hemisphere(object):
"""Object for visualizing one hemisphere with mlab"""
def __init__(self, subject_id, hemi, surf, figure, geo, curv, title,
cortex, subjects_dir, bg_color, offset, backend):
if hemi not in ['lh', 'rh']:
raise ValueError('hemi must be either "lh" or "rh"')
# Set the identifying info
self.subject_id = subject_id
self.hemi = hemi
self.subjects_dir = subjects_dir
self.viewdict = viewdicts[hemi]
self.surf = surf
self._f = figure
self._bg_color = bg_color
self._backend = backend
# mlab pipeline mesh and surface for geomtery
self._geo = geo
if curv:
curv_data = self._geo.bin_curv
meshargs = dict(scalars=curv_data)
colormap, vmin, vmax, reverse = self._get_geo_colors(cortex)
kwargs = dict(colormap=colormap, vmin=vmin, vmax=vmax)
else:
curv_data = None
meshargs = dict()
kwargs = dict(color=(.5, .5, .5))
meshargs['figure'] = self._f
x, y, z, f = self._geo.x, self._geo.y, self._geo.z, self._geo.faces
self._geo_mesh = mlab.pipeline.triangular_mesh_source(x, y, z, f,
**meshargs)
# add surface normals
self._geo_mesh.data.point_data.normals = self._geo.nn
self._geo_mesh.data.cell_data.normals = None
self._geo_surf = mlab.pipeline.surface(self._geo_mesh,
figure=self._f, reset_zoom=True,
**kwargs)
if curv and reverse:
curv_bar = mlab.scalarbar(self._geo_surf)
curv_bar.reverse_lut = True
curv_bar.visible = False
def show_view(self, view=None, roll=None, distance=None):
"""Orient camera to display view"""
if isinstance(view, string_types):
try:
vd = self._xfm_view(view, 'd')
view = dict(azimuth=vd['v'][0], elevation=vd['v'][1])
roll = vd['r']
except ValueError as v:
print(v)
raise
_force_render(self._f, self._backend)
if view is not None:
view['reset_roll'] = True
view['figure'] = self._f
view['distance'] = distance
# DO NOT set focal point, can screw up non-centered brains
# view['focalpoint'] = (0.0, 0.0, 0.0)
mlab.view(**view)
if roll is not None:
mlab.roll(roll=roll, figure=self._f)
_force_render(self._f, self._backend)
view = mlab.view(figure=self._f)
roll = mlab.roll(figure=self._f)
return view, roll
def _xfm_view(self, view, out='s'):
"""Normalize a given string to available view
Parameters
----------
view: string
view which may match leading substring of available views
Returns
-------
good: string
matching view string
out: {'s' | 'd'}
's' to return string, 'd' to return dict
"""
if view not in self.viewdict:
good_view = [k for k in self.viewdict if view == k[:len(view)]]
if len(good_view) == 0:
raise ValueError('No views exist with this substring')
if len(good_view) > 1:
raise ValueError("Multiple views exist with this substring."
"Try a longer substring")
view = good_view[0]
if out == 'd':
return self.viewdict[view]
else:
return view
def _min_diff(self, beg, end):
"""Determine minimum "camera distance" between two views.
Parameters
----------
beg: string
origin anatomical view
end: string
destination anatomical view
Returns
-------
diffs: tuple
(min view "distance", min roll "distance")
"""
beg = self._xfm_view(beg)
end = self._xfm_view(end)
if beg == end:
dv = [360., 0.]
dr = 0
else:
end_d = self._xfm_view(end, 'd')
beg_d = self._xfm_view(beg, 'd')
dv = []
for b, e in zip(beg_d['v'], end_d['v']):
diff = e - b
# to minimize the rotation we need -180 <= diff <= 180
if diff > 180:
dv.append(diff - 360)
elif diff < -180:
dv.append(diff + 360)
else:
dv.append(diff)
dr = np.array(end_d['r']) - np.array(beg_d['r'])
return (np.array(dv), dr)
def add_overlay(self, old):
"""Add an overlay to the overlay dict from a file or array"""
surf = OverlayDisplay(old, figure=self._f)
for bar in ["pos_bar", "neg_bar"]:
try:
self._format_cbar_text(getattr(surf, bar))
except AttributeError:
pass
return surf
@verbose
def add_data(self, array, mlab_plot, vertices, smooth_mat, min, max,
thresh, lut, colormap, alpha, time, time_label, colorbar):
"""Add data to the brain"""
# Calculate initial data to plot
if array.ndim == 1:
array_plot = array
elif array.ndim == 2:
array_plot = array[:, 0]
else:
raise ValueError("data has to be 1D or 2D")
# Set up the visualization pipeline
mesh = mlab.pipeline.triangular_mesh_source(self._geo.x,
self._geo.y,
self._geo.z,
self._geo.faces,
scalars=mlab_plot,
figure=self._f)
mesh.data.point_data.normals = self._geo.nn
mesh.data.cell_data.normals = None
if thresh is not None:
if array_plot.min() >= thresh:
warn("Data min is greater than threshold.")
else:
mesh = mlab.pipeline.threshold(mesh, low=thresh)
surf = mlab.pipeline.surface(mesh, colormap=colormap,
vmin=min, vmax=max,
opacity=float(alpha), figure=self._f)
# apply look up table if given
if lut is not None:
surf.module_manager.scalar_lut_manager.lut.table = lut
# Get the original colormap table
orig_ctable = \
surf.module_manager.scalar_lut_manager.lut.table.to_array().copy()
# Get the colorbar
if colorbar:
bar = mlab.scalarbar(surf)
self._format_cbar_text(bar)
bar.scalar_bar_representation.position2 = .8, 0.09
else:
bar = None
return surf, orig_ctable, bar
def add_annotation(self, annot, ids, cmap):
"""Add an annotation file"""
# Create an mlab surface to visualize the annot
mesh = mlab.pipeline.triangular_mesh_source(self._geo.x,
self._geo.y,
self._geo.z,
self._geo.faces,
scalars=ids,
figure=self._f)
mesh.data.point_data.normals = self._geo.nn
mesh.data.cell_data.normals = None
surf = mlab.pipeline.surface(mesh, name=annot, figure=self._f)
# Set the color table
surf.module_manager.scalar_lut_manager.lut.table = cmap
# Set the brain attributes
annot = dict(surface=surf, name=annot, colormap=cmap)
return annot
def add_label(self, label, label_name, color, alpha):
"""Add an ROI label to the image"""
mesh = mlab.pipeline.triangular_mesh_source(self._geo.x,
self._geo.y,
self._geo.z,
self._geo.faces,
scalars=label,
figure=self._f)
mesh.data.point_data.normals = self._geo.nn
mesh.data.cell_data.normals = None
surf = mlab.pipeline.surface(mesh, name=label_name, figure=self._f)
color = colorConverter.to_rgba(color, alpha)
cmap = np.array([(0, 0, 0, 0,), color]) * 255
surf.module_manager.scalar_lut_manager.lut.table = cmap
return surf
def add_morphometry(self, morph_data, colormap, measure,
min, max, colorbar):
"""Add a morphometry overlay to the image"""
mesh = mlab.pipeline.triangular_mesh_source(self._geo.x,
self._geo.y,
self._geo.z,
self._geo.faces,
scalars=morph_data,
figure=self._f)
mesh.data.point_data.normals = self._geo.nn
mesh.data.cell_data.normals = None
surf = mlab.pipeline.surface(mesh, colormap=colormap,
vmin=min, vmax=max,
name=measure, figure=self._f)
# Get the colorbar
if colorbar:
bar = mlab.scalarbar(surf)
self._format_cbar_text(bar)
bar.scalar_bar_representation.position2 = .8, 0.09
else:
bar = None
# Fil in the morphometry dict
return dict(surface=surf, colorbar=bar, measure=measure)
def add_foci(self, foci_coords, scale_factor, color, alpha, name):
"""Add spherical foci, possibly mapping to displayed surf"""
# Create the visualization
points = mlab.points3d(foci_coords[:, 0],
foci_coords[:, 1],
foci_coords[:, 2],
np.ones(foci_coords.shape[0]),
scale_factor=(10. * scale_factor),
color=color, opacity=alpha, name=name,
figure=self._f)
return points
def add_contour_overlay(self, scalar_data, min=None, max=None,
n_contours=7, line_width=1.5, lut=None,
colorbar=True):
"""Add a topographic contour overlay of the positive data"""
# Set up the pipeline
mesh = mlab.pipeline.triangular_mesh_source(self._geo.x, self._geo.y,
self._geo.z,
self._geo.faces,
scalars=scalar_data,
figure=self._f)
mesh.data.point_data.normals = self._geo.nn
mesh.data.cell_data.normals = None
thresh = mlab.pipeline.threshold(mesh, low=min)
surf = mlab.pipeline.contour_surface(thresh, contours=n_contours,
line_width=line_width)
if lut is not None:
surf.module_manager.scalar_lut_manager.lut.table = lut
# Set the colorbar and range correctly
bar = mlab.scalarbar(surf,
nb_colors=n_contours,
nb_labels=n_contours + 1)
bar.data_range = min, max
self._format_cbar_text(bar)
bar.scalar_bar_representation.position2 = .8, 0.09
if not colorbar:
bar.visible = False
# Set up a dict attribute with pointers at important things
return dict(surface=surf, colorbar=bar)
def add_text(self, x, y, text, name, color=None, opacity=1.0):
""" Add a text to the visualization"""
return mlab.text(x, y, text, name=name, color=color,
opacity=opacity, figure=self._f)
def _orient_lights(self):
"""Set lights to come from same direction relative to brain."""
if self.hemi == "rh":
if self._f.scene is not None and \
self._f.scene.light_manager is not None:
for light in self._f.scene.light_manager.lights:
light.azimuth *= -1
def _get_geo_colors(self, cortex):
"""Return an mlab colormap name, vmin, and vmax for binary curvature.
Parameters
----------
cortex : {classic, high_contrast, low_contrast, bone, tuple}
The name of one of the preset cortex styles, or a tuple
with four entries as described in the return vales.
Returns
-------
colormap : string
mlab colormap name
vmin : float
curv colormap minimum
vmax : float
curv colormap maximum
reverse : boolean
boolean indicating whether the colormap should be reversed
"""
colormap_map = dict(classic=("Greys", -1, 2, False),
high_contrast=("Greys", -.1, 1.3, False),
low_contrast=("Greys", -5, 5, False),
bone=("bone", -.2, 2, True))
if cortex in colormap_map:
color_data = colormap_map[cortex]
elif cortex in lut_manager.lut_mode_list():
color_data = cortex, -1, 2, False
else:
color_data = cortex
return color_data
def _format_cbar_text(self, cbar):
bg_color = self._bg_color
if bg_color is None or sum(bg_color) < 2:
text_color = (1., 1., 1.)
else:
text_color = (0., 0., 0.)
cbar.label_text_property.color = text_color
class OverlayData(object):
"""Encapsulation of statistical neuroimaging overlay viz data"""
def __init__(self, scalar_data, geo, min, max, sign):
if scalar_data.min() >= 0:
sign = "pos"
elif scalar_data.max() <= 0:
sign = "neg"
self.geo = geo
if sign in ["abs", "pos"]:
# Figure out the correct threshold to avoid TraitErrors
# This seems like not the cleanest way to do this
pos_max = np.max((0.0, np.max(scalar_data)))
if pos_max < min:
thresh_low = pos_max
else:
thresh_low = min
self.pos_lims = [thresh_low, min, max]
else:
self.pos_lims = None
if sign in ["abs", "neg"]:
# Figure out the correct threshold to avoid TraitErrors
# This seems even less clean due to negative convolutedness
neg_min = np.min((0.0, np.min(scalar_data)))
if neg_min > -min:
thresh_up = neg_min
else:
thresh_up = -min
self.neg_lims = [thresh_up, -max, -min]
else:
self.neg_lims = None
# Byte swap copy; due to mayavi bug
self.mlab_data = _prepare_data(scalar_data)
class OverlayDisplay():
"""Encapsulation of overlay viz plotting"""
def __init__(self, ol, figure):
args = [ol.geo.x, ol.geo.y, ol.geo.z, ol.geo.faces]
kwargs = dict(scalars=ol.mlab_data, figure=figure)
if ol.pos_lims is not None:
pos_mesh = mlab.pipeline.triangular_mesh_source(*args, **kwargs)
pos_mesh.data.point_data.normals = ol.geo.nn
pos_mesh.data.cell_data.normals = None
pos_thresh = mlab.pipeline.threshold(pos_mesh, low=ol.pos_lims[0])
self.pos = mlab.pipeline.surface(pos_thresh, colormap="YlOrRd",
vmin=ol.pos_lims[1],
vmax=ol.pos_lims[2],
figure=figure)
self.pos_bar = mlab.scalarbar(self.pos, nb_labels=5)
self.pos_bar.reverse_lut = True
else:
self.pos = None
if ol.neg_lims is not None:
neg_mesh = mlab.pipeline.triangular_mesh_source(*args, **kwargs)
neg_mesh.data.point_data.normals = ol.geo.nn
neg_mesh.data.cell_data.normals = None
neg_thresh = mlab.pipeline.threshold(neg_mesh,
up=ol.neg_lims[0])
self.neg = mlab.pipeline.surface(neg_thresh, colormap="PuBu",
vmin=ol.neg_lims[1],
vmax=ol.neg_lims[2],
figure=figure)
self.neg_bar = mlab.scalarbar(self.neg, nb_labels=5)
else:
self.neg = None
self._format_colorbar()
def remove(self):
if self.pos is not None:
self.pos.remove()
self.pos_bar.visible = False
if self.neg is not None:
self.neg.remove()
self.neg_bar.visible = False
def _format_colorbar(self):
if self.pos is not None:
self.pos_bar.scalar_bar_representation.position = (0.53, 0.01)
self.pos_bar.scalar_bar_representation.position2 = (0.42, 0.09)
if self.neg is not None:
self.neg_bar.scalar_bar_representation.position = (0.05, 0.01)
self.neg_bar.scalar_bar_representation.position2 = (0.42, 0.09)
class TimeViewer(HasTraits):
"""TimeViewer object providing a GUI for visualizing time series
Useful for visualizing M/EEG inverse solutions on Brain object(s).
Parameters
----------
brain : Brain (or list of Brain)
brain(s) to control
"""
# Nested import of traisui for setup.py without X server
from traitsui.api import (View, Item, VSplit, HSplit, Group)
min_time = Int(0)
max_time = Int(1E9)
current_time = Range(low="min_time", high="max_time", value=0)
# colormap: only update when user presses Enter
fmax = Float(enter_set=True, auto_set=False)
fmid = Float(enter_set=True, auto_set=False)
fmin = Float(enter_set=True, auto_set=False)
transparent = Bool(True)
smoothing_steps = Int(20, enter_set=True, auto_set=False,
desc="number of smoothing steps. Use -1 for"
"automatic number of steps")
orientation = Enum("lateral", "medial", "rostral", "caudal",
"dorsal", "ventral", "frontal", "parietal")
# GUI layout
view = View(VSplit(Item(name="current_time"),
Group(HSplit(Item(name="fmin"),
Item(name="fmid"),
Item(name="fmax"),
Item(name="transparent")
),
label="Color scale",
show_border=True),
Item(name="smoothing_steps"),
Item(name="orientation")
)
)
def __init__(self, brain):
super(TimeViewer, self).__init__()
if isinstance(brain, (list, tuple)):
self.brains = brain
else:
self.brains = [brain]
# Initialize GUI with values from first brain
props = self.brains[0].get_data_properties()
self._disable_updates = True
self.max_time = len(props["time"]) - 1
self.current_time = props["time_idx"]
self.fmin = props["fmin"]
self.fmid = props["fmid"]
self.fmax = props["fmax"]
self.transparent = props["transparent"]
if props["smoothing_steps"] is None:
self.smoothing_steps = -1
else:
self.smoothing_steps = props["smoothing_steps"]
self._disable_updates = False
# Make sure all brains have the same time points
for brain in self.brains[1:]:
this_props = brain.get_data_properties()
if not np.all(props["time"] == this_props["time"]):
raise ValueError("all brains must have the same time"
"points")
# Show GUI
self.configure_traits()
@on_trait_change("smoothing_steps")
def set_smoothing_steps(self):
""" Change number of smooting steps
"""
if self._disable_updates:
return
smoothing_steps = self.smoothing_steps
if smoothing_steps < 0:
smoothing_steps = None
for brain in self.brains:
brain.set_data_smoothing_steps(self.smoothing_steps)
@on_trait_change("orientation")
def set_orientation(self):
""" Set the orientation
"""
if self._disable_updates:
return
for brain in self.brains:
brain.show_view(view=self.orientation)
@on_trait_change("current_time")
def set_time_point(self):
""" Set the time point shown
"""
if self._disable_updates:
return
for brain in self.brains:
brain.set_data_time_index(self.current_time)
@on_trait_change("fmin, fmid, fmax, transparent")
def scale_colormap(self):
""" Scale the colormap
"""
if self._disable_updates:
return
for brain in self.brains:
brain.scale_data_colormap(self.fmin, self.fmid, self.fmax,
self.transparent)
|