/usr/lib/python2.7/dist-packages/tegaki/arrayutils.py is in python-tegaki 0.3.1-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 | # -*- coding: utf-8 -*-
# Copyright (C) 2008 The Tegaki project contributors
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
# Contributors to this file:
# - Mathieu Blondel
__doctest__ = True
def array_sample(arr, rate):
"""
Sample array.
@type arr: list/tuple/array
@param arr: the list/tuple/array to sample
@type rate: float
@param rate: the rate (between 0 and 1.0) at which to sample
@rtype: list
@return: the sampled list
>>> array_sample([1,2,3,4,5,6], 0.5)
[1, 3, 5]
"""
n = int(round(1 / rate))
return [arr[i] for i in range(0, len(arr), n)]
def array_flatten(l, ltypes=(list, tuple)):
"""
Reduce array of possibly multiple dimensions to one dimension.
@type l: list/tuple/array
@param l: the list/tuple/array to flatten
@rtype: list
@return: the flatten list
>>> array_flatten([[1,2,3], [4,5], [[7,8]]])
[1, 2, 3, 4, 5, 7, 8]
"""
i = 0
while i < len(l):
while isinstance(l[i], ltypes):
if not l[i]:
l.pop(i)
if not len(l):
break
else:
l[i:i+1] = list(l[i])
i += 1
return l
def array_reshape(arr, n):
"""
Reshape one-dimensional array to a list of n-element lists.
@type arr: list/tuple/array
@param arr: the array to reshape
@type n: int
@param n: the number of elements in each list
@rtype: list
@return: the reshaped array
>>> array_reshape([1,2,3,4,5,6,7,8,9], 3)
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
"""
newarr = []
subarr = []
i = 0
for ele in arr:
subarr.append(ele)
i += 1
if i % n == 0 and i != 0:
newarr.append(subarr)
subarr = []
return newarr
def array_split(seq, p):
"""
Split an array into p arrays of about the same size.
@type seq: list/tuple/array
@param seq: the array to split
@type p: int
@param p: the split size
@rtype: list
@return: the split array
>>> array_split([1,2,3,4,5,6,7], 3)
[[1, 2, 3], [4, 5], [6, 7]]
"""
newseq = []
n = len(seq) / p # min items per subsequence
r = len(seq) % p # remaindered items
b,e = 0, n + min(1, r) # first split
for i in range(p):
newseq.append(seq[b:e])
r = max(0, r-1) # use up remainders
b,e = e, e + n + min(1, r) # min(1,r) is always 0 or 1
return newseq
def array_mean(arr):
"""
Calculate the mean of the elements contained in an array.
@type arr: list/tuple/array
@rtype: float
@return: mean
>>> array_mean([100, 150, 300])
183.33333333333334
"""
return float(sum(arr)) / float(len(arr))
def array_variance(arr, mean=None):
"""
Calculate the variance of the elements contained in an array.
@type arr: list/tuple/array
@rtype: float
@return: variance
>>> array_variance([100, 150, 300])
7222.2222222222226
"""
if mean is None:
mean = array_mean(arr)
var = array_mean([(val - mean) ** 2 for val in arr])
if var == 0.0:
return 1.0
else:
return var
def array_mean_vector(vectors):
"""
Calculate the mean of the vectors, element-wise.
@type arr: list of vectors
@rtype: list of floats
@return: list of means
>>> array_mean_vector([[10,20], [100, 200]])
[55.0, 110.0]
"""
assert(len(vectors) > 0)
n_dimensions = len(vectors[0])
mean_vector = []
for i in range(n_dimensions):
arr = [vector[i] for vector in vectors]
mean_vector.append(array_mean(arr))
return mean_vector
def array_variance_vector(vectors, means=None):
"""
Calculate the variance of the vectors, element-wise.
@type arr: list of vectors
@rtype: list of floats
@return: list of variances
>>> array_variance_vector([[10,20], [100, 200]])
[2025.0, 8100.0]
"""
assert(len(vectors) > 0)
n_dimensions = len(vectors[0])
if means is not None:
assert(n_dimensions == len(means))
else:
means = array_mean_vector(vectors)
variance_vector = []
for i in range(n_dimensions):
arr = [vector[i] for vector in vectors]
variance_vector.append(array_variance(arr, means[i]))
return variance_vector
def array_covariance_matrix(vectors, non_diagonal=False):
"""
Calculate the covariance matrix of vectors.
@type vectors: list of arrays
@type non_diagonal: boolean
@param non_diagonal: whether to calculate non-diagonal elements of the \
matrix or not
>>> array_covariance_matrix([[10,20], [100, 200]])
[2025.0, 0.0, 0.0, 8100.0]
>>> array_covariance_matrix([[10,20], [100, 200]], non_diagonal=True)
[2025.0, 4050.0, 4050.0, 8100.0]
"""
assert(len(vectors) > 0)
n_dimensions = len(vectors[0])
cov_matrix = []
for i in range(n_dimensions):
for j in range(n_dimensions):
if i == j:
# diagonal value: COV(X,X) = VAR(X)
arr = [vector[i] for vector in vectors]
cov_matrix.append(array_variance(arr))
else:
# non-diagonal value
if non_diagonal:
# COV(X,Y) = E(XY) - E(X)E(Y)
arr_x = [vector[i] for vector in vectors]
arr_y = [vector[j] for vector in vectors]
arr_xy = array_mul(arr_x, arr_y)
mean_xy = array_mean(arr_xy)
mean_x = array_mean(arr_x)
mean_y = array_mean(arr_y)
cov_matrix.append(mean_xy - mean_x * mean_y)
else:
# X and Y indep => COV(X,Y) = 0
cov_matrix.append(0.0)
return cov_matrix
def array_add(arr1, arr2):
"""
Add two arrays element-wise.
>>> array_add([1,2],[3,4])
[4, 6]
"""
assert(len(arr1) == len(arr1))
newarr = []
for i in range(len(arr1)):
newarr.append(arr1[i] + arr2[i])
return newarr
def array_mul(arr1, arr2):
"""
Multiply two arrays element-wise.
>>> array_mul([1,2],[3,4])
[3, 8]
"""
assert(len(arr1) == len(arr1))
newarr = []
for i in range(len(arr1)):
newarr.append(arr1[i] * arr2[i])
return newarr
if __name__ == '__main__':
import doctest
doctest.testmod()
|