/usr/lib/python2.7/dist-packages/tegaki/recognizer.py is in python-tegaki 0.3.1-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 | # -*- coding: utf-8 -*-
# Copyright (C) 2008-2009 The Tegaki project contributors
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
# Contributors to this file:
# - Mathieu Blondel
import glob
import os
import imp
from tegaki.engine import Engine
from tegaki.dictutils import SortedDict
class RecognizerError(Exception):
"""
Raised when something went wrong in a Recognizer.
"""
pass
class Recognizer(Engine):
"""
Base Recognizer class.
A recognizer can recognize handwritten characters based on a model.
The L{open} method should be used to load a model from an
absolute path on the disk.
The L{set_model} method should be used to load a model from its name.
Two models can't have the same name within one recognizer.
However, two models can be named the same if they belong to two different
recognizers.
Recognizers usually have a corresponding L{Trainer}.
"""
def __init__(self):
self._model = None
@classmethod
def get_available_recognizers(cls):
"""
Return recognizers installed on the system.
@rtype: dict
@return: a dict where keys are recognizer names and values \
are recognizer classes
"""
if not "available_recognizers" in cls.__dict__:
cls._load_available_recognizers()
return cls.available_recognizers
@classmethod
def _load_available_recognizers(cls):
cls.available_recognizers = SortedDict()
for directory in cls._get_search_path("engines"):
if not os.path.exists(directory):
continue
for f in glob.glob(os.path.join(directory, "*.py")):
if f.endswith("__init__.py") or f.endswith("setup.py"):
continue
module_name = os.path.basename(f).replace(".py", "")
module_name += "recognizer"
module = imp.load_source(module_name, f)
try:
name = module.RECOGNIZER_CLASS.RECOGNIZER_NAME
cls.available_recognizers[name] = module.RECOGNIZER_CLASS
except AttributeError:
pass
@staticmethod
def get_all_available_models():
"""
Return available models from all recognizers.
@rtype: list
@return: a list of tuples (recognizer_name, model_name, meta_dict)
"""
all_models = []
for r_name, klass in Recognizer.get_available_recognizers().items():
for model_name, meta in klass.get_available_models().items():
all_models.append([r_name, model_name, meta])
return all_models
@classmethod
def get_available_models(cls):
"""
Return available models for the current recognizer.
@rtype; dict
@return: a dict where keys are models names and values are meta dict
"""
if "available_models" in cls.__dict__:
return cls.available_models
else:
name = cls.RECOGNIZER_NAME
cls.available_models = cls._get_available_models(name)
return cls.__dict__["available_models"]
@classmethod
def _get_available_models(cls, recognizer):
available_models = SortedDict()
for directory in cls._get_search_path("models"):
directory = os.path.join(directory, recognizer)
if not os.path.exists(directory):
continue
meta_files = glob.glob(os.path.join(directory, "*.meta"))
for meta_file in meta_files:
meta = Recognizer.read_meta_file(meta_file)
if not meta.has_key("name") or \
not meta.has_key("shortname"):
continue
model_file = meta_file.replace(".meta", ".model")
if meta.has_key("path") and not os.path.exists(meta["path"]):
# skip model if specified path is incorrect
continue
elif not meta.has_key("path") and os.path.exists(model_file):
# if path option is missing, assume the .model file
# is in the same directory
meta["path"] = model_file
available_models[meta["name"]] = meta
return available_models
def open(self, path):
"""
Open a model.
@type path: str
@param path: model path
Raises RecognizerError if could not open.
"""
raise NotImplementedError
def set_options(self, options):
"""
Process recognizer/model specific options.
@type options: dict
@param options: a dict where keys are option names and values are \
option values
"""
pass
def get_model(self):
"""
Return the currently selected model.
@rtype: str
@return: name which identifies model uniquely on the system
"""
return self._model
def set_model(self, model_name):
"""
Set the currently selected model.
@type model_name: str
@param model_name: name which identifies model uniquely on the system
model_name must exist for that recognizer.
"""
if not model_name in self.__class__.get_available_models():
raise RecognizerError, "Model does not exist"
self._model = model_name
meta = self.__class__.get_available_models()[model_name]
self.set_options(meta)
path = meta["path"]
self.open(path)
# To be implemented by child class
def recognize(self, writing, n=10):
"""
Recognizes handwriting.
@type writing: L{Writing}
@param writing: the handwriting to recognize
@type n: int
@param n: the number of candidates to return
@rtype: list
@return: a list of tuple (label, probability/distance)
A model must be loaded with open or set_model() beforehand.
"""
raise NotImplementedError
if __name__ == "__main__":
import sys
from tegaki.character import Character
recognizer = sys.argv[1] # name of recognizer
model = sys.argv[2] # name of model file
char = Character()
char.read(sys.argv[3]) # path of .xml file
writing = char.get_writing()
recognizers = Recognizer.get_available_recognizers()
print "Available recognizers", recognizers
if not recognizer in recognizers:
raise Exception, "Not an available recognizer"
recognizer_klass = recognizers[recognizer]
recognizer = recognizer_klass()
models = recognizer_klass.get_available_models()
print "Available models", models
if not model in models:
raise Exception, "Not an available model"
recognizer.set_model(model)
print recognizer.recognize(writing)
|