This file is indexed.

/usr/lib/python2.7/dist-packages/tegaki/trainer.py is in python-tegaki 0.3.1-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# -*- coding: utf-8 -*-

# Copyright (C) 2008-2009 The Tegaki project contributors
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

# Contributors to this file:
# - Mathieu Blondel

import glob
import os
import imp
from cStringIO import StringIO

from tegaki.engine import Engine
from tegaki.dictutils import SortedDict

class TrainerError(Exception):
    """
    Raised when something went wrong in a Trainer.
    """
    pass

class Trainer(Engine):
    """
    Base Trainer class.

    A trainer can train models based on sample data annotated with labels.
    """

    def __init__(self):
        pass
   
    @classmethod
    def get_available_trainers(cls):
        """
        Return trainers installed on the system.

        @rtype: dict
        @return: a dict where keys are trainer names and values \
                 are trainer classes
        """
        if not "available_trainers" in cls.__dict__:
            cls._load_available_trainers()
        return cls.available_trainers

    @classmethod
    def _load_available_trainers(cls):
        cls.available_trainers  = SortedDict()

        for directory in cls._get_search_path("engines"):
            if not os.path.exists(directory):
                continue

            for f in glob.glob(os.path.join(directory, "*.py")):
                if f.endswith("__init__.py") or f.endswith("setup.py"):
                    continue

                module_name = os.path.basename(f).replace(".py", "")
                module_name += "trainer"
                module = imp.load_source(module_name, f)

                try:
                    name = module.TRAINER_CLASS.TRAINER_NAME
                    cls.available_trainers[name] = module.TRAINER_CLASS
                except AttributeError:
                    pass         

    def set_options(self, options):
        """
        Process trainer/model specific options.

        @type options: dict
        @param options: a dict where keys are option names and values are \
                        option values
        """
        pass

    # To be implemented by child class
    def train(self, character_collection, meta, path=None):
        """
        Train a model.

        @type character_collection: L{CharacterCollection}
        @param character_collection: collection containing training data

        @type meta: dict
        @param meta: meta dict obtained with L{Engine.read_meta_file}

        @type path: str
        @param path: path to the ouput model \
                     (if None, the personal directory is assumed)

        The meta dict needs the following keys:
            - name: full name (mandatory)
            - shortname: name with less than 3 characters (mandatory)
            - language: model language (optional)
        """
        raise NotImplementedError

    def _check_meta(self, meta):
        if not meta.has_key("name") or not meta.has_key("shortname"):
            raise TrainerError, "meta must contain a name and a shortname"

    def _write_meta_file(self, meta, meta_file):
        io = StringIO()
        for k,v in meta.items():
            io.write("%s = %s\n" % (k,v))

        if os.path.exists(meta_file):
            f = open(meta_file)
            contents = f.read() 
            f.close()
            # don't rewrite the file if same
            if io.getvalue() == contents:
                return

        f = open(meta_file, "w")
        f.write(io.getvalue())
        f.close()