This file is indexed.

/usr/lib/python2.7/dist-packages/ufl/algebra.py is in python-ufl 1.6.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
"Basic algebra operations."

# Copyright (C) 2008-2014 Martin Sandve Alnes
#
# This file is part of UFL.
#
# UFL is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# UFL is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with UFL. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Anders Logg, 2008

from itertools import chain
from six import iteritems

from ufl.log import error, warning
from ufl.assertions import ufl_assert
from ufl.common import product, mergedicts2, subdict, EmptyDict
from ufl.core.expr import Expr
from ufl.core.operator import Operator
from ufl.constantvalue import Zero, zero, ScalarValue, IntValue, as_ufl
from ufl.checks import is_ufl_scalar, is_true_ufl_scalar
from ufl.index_combination_utils import merge_unique_indices
from ufl.sorting import sorted_expr
from ufl.precedence import parstr
from ufl.core.ufl_type import ufl_type

#--- Algebraic operators ---

@ufl_type(num_ops=2,
          inherit_shape_from_operand=0, inherit_indices_from_operand=0,
          binop="__add__", rbinop="__radd__")
class Sum(Operator):
    __slots__ = ()

    def __new__(cls, a, b):
        # Make sure everything is an Expr
        a = as_ufl(a)
        b = as_ufl(b)

        # Assert consistent tensor properties
        sh = a.ufl_shape
        fi = a.ufl_free_indices
        fid = a.ufl_index_dimensions
        if b.ufl_shape != sh:
            error("Can't add expressions with different shapes.")
        if b.ufl_free_indices != fi:
            error("Can't add expressions with different free indices.")
        if b.ufl_index_dimensions != fid:
            error("Can't add expressions with different index dimensions.")

        # Skip adding zero
        if isinstance(a, Zero):
            return b
        elif isinstance(b, Zero):
            return a

        # Handle scalars specially and sort operands
        sa = isinstance(a, ScalarValue)
        sb = isinstance(b, ScalarValue)
        if sa and sb:
            # Apply constant propagation
            return as_ufl(a._value + b._value)
        elif sa:
            # Place scalar first
            #operands = (a, b)
            pass #a, b = a, b
        elif sb:
            # Place scalar first
            #operands = (b, a)
            a, b = b, a
        #elif a == b:
        #    # Replace a+b with 2*foo
        #    return 2*a
        else:
            # Otherwise sort operands in a canonical order
            #operands = (b, a)
            a, b = sorted_expr((a, b))

        # construct and initialize a new Sum object
        self = Operator.__new__(cls)
        self._init(a, b)
        return self

    def _init(self, a, b):
        self.ufl_operands = (a, b)

    def __init__(self, a, b):
        Operator.__init__(self)

    def evaluate(self, x, mapping, component, index_values):
        return sum(o.evaluate(x, mapping, component, index_values) for o in self.ufl_operands)

    def __str__(self):
        ops = [parstr(o, self) for o in self.ufl_operands]
        if False:
            # Implementation with line splitting:
            limit = 70
            delimop = " + \\\n    + "
            op = " + "
            s = ops[0]
            n = len(s)
            for o in ops[1:]:
                m = len(o)
                if n+m > limit:
                    s += delimop
                    n = m
                else:
                    s += op
                    n += m
                s += o
            return s
        # Implementation with no line splitting:
        return "%s" % " + ".join(ops)

    def __repr__(self):
        return "Sum(%s)" % ", ".join(repr(o) for o in self.ufl_operands)

@ufl_type(num_ops=2,
          binop="__mul__", rbinop="__rmul__")
class Product(Operator):
    """The product of two or more UFL objects."""
    __slots__ = ("ufl_free_indices", "ufl_index_dimensions",)

    def __new__(cls, a, b):
        # Conversion
        a = as_ufl(a)
        b = as_ufl(b)

        # Type checking
        # Make sure everything is scalar
        if a.ufl_shape or b.ufl_shape:
            error("Product can only represent products of scalars.")

        # Simplification
        if isinstance(a, Zero) or isinstance(b, Zero):
            # Got any zeros? Return zero.
            fi, fid = merge_unique_indices(a.ufl_free_indices, a.ufl_index_dimensions,
                                           b.ufl_free_indices, b.ufl_index_dimensions)
            return Zero((), fi, fid)
        sa = isinstance(a, ScalarValue)
        sb = isinstance(b, ScalarValue)
        if sa and sb: # const * const = const
            # FIXME: Handle free indices like with zero? I think IntValue may be index annotated now?
            return as_ufl(a._value * b._value)
        elif sa: # 1 * b = b
            if a._value == 1:
                return b
            # a, b = a, b
        elif sb: # a * 1 = a
            if b._value == 1:
                return a
            a, b = b, a
        #elif a == b: # a * a = a**2 # TODO: Why? Maybe just remove this?
        #    if not a.ufl_free_indices:
        #        return a**2
        else: # a * b = b * a
            # Sort operands in a semi-canonical order
            # (NB! This is fragile! Small changes here can have large effects.)
            a, b = sorted_expr((a, b))

        # Construction
        self = Operator.__new__(cls)
        self._init(a, b)
        return self

    def _init(self, a, b):
        "Constructor, called by __new__ with already checked arguments."
        self.ufl_operands = (a, b)

        # Extract indices
        fi, fid = merge_unique_indices(a.ufl_free_indices, a.ufl_index_dimensions,
                                       b.ufl_free_indices, b.ufl_index_dimensions)
        self.ufl_free_indices = fi
        self.ufl_index_dimensions = fid

    def __init__(self, a, b):
        Operator.__init__(self)

    ufl_shape = ()

    def evaluate(self, x, mapping, component, index_values):
        ops = self.ufl_operands
        sh = self.ufl_shape
        if sh:
            ufl_assert(sh == ops[-1].ufl_shape, "Expecting nonscalar product operand to be the last by convention.")
            tmp = ops[-1].evaluate(x, mapping, component, index_values)
            ops = ops[:-1]
        else:
            tmp = 1
        for o in ops:
            tmp *= o.evaluate(x, mapping, (), index_values)
        return tmp

    def __str__(self):
        a, b = self.ufl_operands
        return " * ".join((parstr(a, self), parstr(b, self)))

    def __repr__(self):
        return "Product(%r, %r)" % self.ufl_operands

@ufl_type(num_ops=2,
          inherit_indices_from_operand=0,
          binop="__div__", rbinop="__rdiv__")
class Division(Operator):
    __slots__ = ()

    def __new__(cls, a, b):
        # Conversion
        a = as_ufl(a)
        b = as_ufl(b)

        # Type checking
        # TODO: Enabled workaround for nonscalar division in __div__,
        # so maybe we can keep this assertion. Some algorithms may need updating.
        if not is_ufl_scalar(a):
            error("Expecting scalar nominator in Division.")
        if not is_true_ufl_scalar(b):
            error("Division by non-scalar is undefined.")
        if isinstance(b, Zero):
            error("Division by zero!")

        # Simplification
        # Simplification a/b -> a
        if isinstance(a, Zero) or (isinstance(b, ScalarValue) and b._value == 1):
            return a
        # Simplification "literal a / literal b" -> "literal value of a/b"
        # Avoiding integer division by casting to float
        if isinstance(a, ScalarValue) and isinstance(b, ScalarValue):
            return as_ufl(float(a._value) / float(b._value))
        # Simplification "a / a" -> "1"
        #if not a.ufl_free_indices and not a.ufl_shape and a == b:
        #    return as_ufl(1)

        # Construction
        self = Operator.__new__(cls)
        self._init(a, b)
        return self

    def _init(self, a, b):
        self.ufl_operands = (a, b)

    def __init__(self, a, b):
        Operator.__init__(self)

    ufl_shape = () # self.ufl_operands[0].ufl_shape

    def evaluate(self, x, mapping, component, index_values):
        a, b = self.ufl_operands
        a = a.evaluate(x, mapping, component, index_values)
        b = b.evaluate(x, mapping, component, index_values)
        # Avoiding integer division by casting to float
        return float(a) / float(b)

    def __str__(self):
        return "%s / %s" % (parstr(self.ufl_operands[0], self), parstr(self.ufl_operands[1], self))

    def __repr__(self):
        return "Division(%r, %r)" % (self.ufl_operands[0], self.ufl_operands[1])

@ufl_type(num_ops=2,
          inherit_indices_from_operand=0,
          binop="__pow__", rbinop="__rpow__")
class Power(Operator):
    __slots__ = ()

    def __new__(cls, a, b):
        # Conversion
        a = as_ufl(a)
        b = as_ufl(b)

        # Type checking
        if not is_true_ufl_scalar(a):
            error("Cannot take the power of a non-scalar expression.")
        if not is_true_ufl_scalar(b):
            error("Cannot raise an expression to a non-scalar power.")

        # Simplification
        if isinstance(a, ScalarValue) and isinstance(b, ScalarValue):
            return as_ufl(a._value ** b._value)
        if isinstance(a, Zero) and isinstance(b, ScalarValue):
            bf = float(b)
            if bf < 0:
                error("Division by zero, cannot raise 0 to a negative power.")
            else:
                return zero()
        if isinstance(b, ScalarValue) and b._value == 1:
            return a
        if isinstance(b, Zero):
            return IntValue(1)

        # Construction
        self = Operator.__new__(cls)
        self._init(a, b)
        return self

    def _init(self, a, b):
        self.ufl_operands = (a, b)

    def __init__(self, a, b):
        Operator.__init__(self)

    ufl_shape = ()

    def evaluate(self, x, mapping, component, index_values):
        a, b = self.ufl_operands
        a = a.evaluate(x, mapping, component, index_values)
        b = b.evaluate(x, mapping, component, index_values)
        return a**b

    def __str__(self):
        a, b = self.ufl_operands
        return "%s ** %s" % (parstr(a, self), parstr(b, self))

    def __repr__(self):
        return "Power(%r, %r)" % self.ufl_operands

@ufl_type(num_ops=1,
          inherit_shape_from_operand=0, inherit_indices_from_operand=0,
          unop="__abs__")
class Abs(Operator):
    __slots__ = ()

    def __init__(self, a):
        Operator.__init__(self, (a,))
        ufl_assert(isinstance(a, Expr), "Expecting Expr instance.")
        if not isinstance(a, Expr): error("Expecting Expr instances.")

    def evaluate(self, x, mapping, component, index_values):
        a = self.ufl_operands[0].evaluate(x, mapping, component, index_values)
        return abs(a)

    def __str__(self):
        a, = self.ufl_operands
        return "|%s|" % (parstr(a, self),)

    def __repr__(self):
        return "Abs(%r)" % self.ufl_operands