This file is indexed.

/usr/lib/python2.7/dist-packages/ufl/cell.py is in python-ufl 1.6.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
"Types for representing a cell."

# Copyright (C) 2008-2014 Martin Sandve Alnes
#
# This file is part of UFL.
#
# UFL is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# UFL is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with UFL. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Anders Logg, 2009.
# Modified by Kristian B. Oelgaard, 2009
# Modified by Marie E. Rognes 2012
# Modified by Andrew T. T. McRae, 2014

from itertools import chain
from collections import defaultdict

from ufl.log import warning, error, deprecate
from ufl.assertions import ufl_assert
from ufl.common import istr, EmptyDict
from ufl.core.terminal import Terminal
from ufl.protocols import id_or_none

# --- Basic cell properties

# Mapping from cell name to topological dimension
cellname2dim = {
    "vertex":        0,
    "interval":      1,
    "triangle":      2,
    "tetrahedron":   3,
    "quadrilateral": 2,
    "hexahedron":    3,
    }

def cell2dim(cell):
    "Maps from UFL cell or cell name to topological dimension"
    if isinstance(cell, str):
        # Backwards compatibility
        cellname = cell
    else:
        cellname = cell.cellname()

    if cellname == "OuterProductCell":
        return cell2dim(cell._A) + cell2dim(cell._B)
    else:
        return cellname2dim[cellname]

# Mapping from cell name to facet name
_cellname2facetname = {
    "interval":      "vertex",
    "triangle":      "interval",
    "quadrilateral": "interval",
    "tetrahedron":   "triangle",
    "hexahedron":    "quadrilateral",
    }

_reference_cell_volume = {
    "vertex": 0.0,
    "interval": 1.0,
    "triangle": 0.5,
    "tetrahedron": 1.0/6.0,
    "quadrilateral": 1.0,
    "hexahedron": 1.0
    }

num_cell_entities = {
    "interval":      (2, 1),
    "triangle":      (3,  3, 1),
    "quadrilateral": (4,  4, 1),
    "tetrahedron":   (4,  6, 4, 1),
    "hexahedron":    (8, 12, 6, 1),
    }

affine_cells = {"vertex", "interval", "triangle", "tetrahedron"}


# --- Basic cell representation classes

class Cell(object):
    "Representation of a finite element cell."
    __slots__ = ("_cellname",
                 "_geometric_dimension",
                 "_topological_dimension"
                 )
    def __init__(self, cellname, geometric_dimension=None, topological_dimension=None):
        "Initialize basic cell description."

        # The topological dimension is defined by the cell type,
        # so the cellname must be among the known ones,
        # so we can find the known dimension, unless we have
        # a product cell, in which the given dimension is used
        tdim = cellname2dim.get(cellname, topological_dimension)

        # The geometric dimension defaults to equal the topological
        # dimension if undefined
        if geometric_dimension is None:
            gdim = tdim
        else:
            gdim = geometric_dimension

        # Validate dimensions
        ufl_assert(isinstance(gdim, int),
                   "Expecting integer dimension, not '%r'" % (gdim,))
        ufl_assert(isinstance(tdim, int),
                   "Expecting integer dimension, not '%r'" % (tdim,))
        ufl_assert(tdim <= gdim,
                   "Topological dimension cannot be larger than geometric dimension.")

        # ... Finally store validated data
        self._cellname = cellname
        self._topological_dimension = tdim
        self._geometric_dimension = gdim

    # --- Fundamental dimensions ---

    def topological_dimension(self):
        "Return the dimension of the topology of this cell."
        return self._topological_dimension

    def geometric_dimension(self):
        "Return the dimension of the space this cell is embedded in."
        return self._geometric_dimension

    # --- Cell properties ---

    def cellname(self):
        "Return the cellname of the cell."
        return self._cellname

    def num_entities(self, dim=None):
        "The number of cell entities of given topological dimension."
        num = num_cell_entities[self.cellname()]
        if dim is None:
            return num
        else:
            return num[dim]

    def num_vertices(self):
        "The number of cell vertices."
        return self.num_entities(0)

    def num_edges(self):
        "The number of cell edges."
        return self.num_entities(1)

    def num_facets(self):
        "The number of cell facets."
        tdim = self.topological_dimension()
        return self.num_entities(tdim-1)

    def reference_volume(self):
        "The volume of a reference cell of the same type."
        return _reference_cell_volume[self.cellname()]

    # --- Facet properties ---
    # TODO: The concept of a fixed name and number of entities for a facet does not work with product cells.
    #       Search for 'facet_cellname' and 'num_facet_' to find usage and figure out another way to handle those places.

    # TODO: Maybe return a facet cell instead of all these accessors
    #def facet(self):
    #    return Cell(self.facet_cellname(), self.geometric_dimension())

    def facet_cellname(self):
        "Return the cellname of the facet of this cell, or None if not available."
        return _cellname2facetname.get(self.cellname())

    def num_facet_entities(self, dim):
        "Return the number of cell entities of given topological dimension, or None if not available."
        num = num_cell_entities.get(self.cellname())
        return num[dim] if num else None

    def num_facet_vertices(self):
        "The number of cell vertices, or None if not available."
        return self.num_facet_entities(0)

    def num_facet_edges(self):
        "The number of facet edges, or None if not available."
        return self.num_facet_entities(1)

    def reference_facet_volume(self):
        "The volume of a reference cell of the same type."
        return _reference_cell_volume[self.facet_cellname()]

    # --- Special functions for proper object behaviour ---

    def __eq__(self, other):
        if not isinstance(other, Cell):
            return False
        s = (self.geometric_dimension(), self.topological_dimension(), self.cellname())
        o = (other.geometric_dimension(), other.topological_dimension(), other.cellname())
        return s == o

    def __ne__(self, other):
        return not self == other

    def __lt__(self, other):
        if not isinstance(other, Cell):
            return False
        s = (self.geometric_dimension(), self.topological_dimension(), self.cellname())
        o = (other.geometric_dimension(), other.topological_dimension(), other.cellname())
        return s < o

    def __hash__(self):
        return hash(repr(self))

    def __str__(self):
        return "<%s cell in %sD>" % (istr(self.cellname()),
                                     istr(self.geometric_dimension()))

    def __repr__(self):
        return "Cell(%r, %r)" % (self.cellname(), self.geometric_dimension())

    def _repr_svg_(self):
        ""

        name = self.cellname()
        m = 200
        if name == "interval":
            points = [(0, 0), (m, 0)]
        elif name == "triangle":
            points = [(0, m), (m, m), (0, 0), (0, m)]
        elif name == "quadrilateral":
            points = [(0, m), (m, m), (m, 0), (0, 0), (0, m)]
        else:
            points = None

        svg = '''
        <svg xmlns="http://www.w3.org/2000/svg" version="1.1" width="%s" height="%s">
        <polyline points="%s" style="%s" />
        </svg>
        '''

        if points:
            fill = "none"
            stroke = "black"
            strokewidth = 3

            width = max(p[0] for p in points) - min(p[0] for p in points)
            height = max(p[1] for p in points) - min(p[1] for p in points)
            width = max(width, strokewidth)
            height = max(height, strokewidth)
            style = "fill:%s; stroke:%s; stroke-width:%s" % (fill, stroke, strokewidth)
            points = " ".join(','.join(map(str, p)) for p in points)
            return svg % (width, height, points, style)
        else:
            return None

class ProductCell(Cell):
    __slots__ = ("_cells",)
    def __init__(self, *cells):
        cells = tuple(as_cell(cell) for cell in cells)
        gdim = sum(cell.geometric_dimension() for cell in cells)
        tdim = sum(cell.topological_dimension() for cell in cells)
        Cell.__init__(self, "product", gdim, tdim)
        self._cells = tuple(cells)

    def sub_cells(self):
        "Return list of cell factors."
        return self._cells

    def __eq__(self, other):
        if not isinstance(other, ProductCell):
            return False
        return self._cells == other._cells

    def __lt__(self, other):
        if not isinstance(other, ProductCell):
            return False
        return self._cells < other._cells

    def __repr__(self):
        return "ProductCell(*%r)" % (self._cells,)


class OuterProductCell(Cell):
    """Representation of a cell formed as the Cartesian product of
    two existing cells"""
    __slots__ = ("_A", "_B", "facet_horiz", "facet_vert")

    def __init__(self, A, B, gdim=None):
        self._A = A
        self._B = B

        tdim = A.topological_dimension() + B.topological_dimension()
        # default gdim -- "only as big as it needs to be, but not smaller than A or B"
        gdim_temp = max(A.geometric_dimension(),
                        B.geometric_dimension(),
                        A.topological_dimension() + B.topological_dimension())
        if gdim is None:
            # default gdim
            gdim = gdim_temp
        else:
            # otherwise, validate custom gdim
            if not isinstance(gdim, int):
                raise TypeError("gdim must be an integer")
            if gdim < gdim_temp:
                raise ValueError("gdim must be at least %d" % gdim_temp)
        Cell.__init__(self, "OuterProductCell", gdim, tdim)

        # facets for extruded cells
        if B.cellname() == "interval":
            self.facet_horiz = A
            if A.topological_dimension() == 2:
                self.facet_vert = OuterProductCell(Cell("interval"), Cell("interval"))
            elif A.topological_dimension() == 1:
                # Terminate this recursion somewhere!
                self.facet_vert = Cell("interval")
            else:
                # Don't know how to extrude this
                self.facet_vert = None

    def num_entities(self, dim):
        "The number of cell entities of given topological dimension."
        # Return None unless asked for the number of vertices / volumes
        templist = [None,] * (self.topological_dimension() + 1)
        templist[0] = self._A.num_vertices() * self._B.num_vertices()
        templist[-1] = 1
        return templist[dim]

    def reference_volume(self):
        "The volume of a reference cell of the same type."
        return _reference_cell_volume[self._A.cellname()] * _reference_cell_volume[self._B.cellname()]

    def __eq__(self, other):
        if not isinstance(other, OuterProductCell):
            return False
        # This is quite subtle: my intuition says that the OPCs of
        # Cell("triangle") with Cell("interval"), and
        # Cell("triangle", 3) with Cell("interval")
        # are essentially the same: triangular prisms with gdim = tdim = 3.
        # For safety, though, we will only compare equal if the
        # subcells are *identical*, including immersion.
        return (self._A, self._B) == (other._A, other._B) and self.geometric_dimension() == other.geometric_dimension()

    def __lt__(self, other):
        if not isinstance(other, OuterProductCell):
            return NotImplemented
        return (self._A, self._B) < (other._A, other._B)

    def __repr__(self):
        return "OuterProductCell(*%r)" % list([self._A, self._B])


# --- Utility conversion functions

def as_cell(cell):
    """Convert any valid object to a Cell (in particular, cellname string),
    or return cell if it is already a Cell."""
    if isinstance(cell, Cell):
        return cell
    elif hasattr(cell, "ufl_cell"):
        return cell.ufl_cell()
    elif isinstance(cell, str):
        return Cell(cell)
    else:
        error("Invalid cell %s." % cell)