This file is indexed.

/usr/lib/python2.7/dist-packages/ufl/conditional.py is in python-ufl 1.6.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
"""This module defines classes for conditional expressions."""

# Copyright (C) 2008-2014 Martin Sandve Alnes
#
# This file is part of UFL.
#
# UFL is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# UFL is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with UFL. If not, see <http://www.gnu.org/licenses/>.

from ufl.log import warning, error
from ufl.assertions import ufl_assert
from ufl.core.operator import Operator
from ufl.constantvalue import as_ufl
from ufl.precedence import parstr
from ufl.exprequals import expr_equals
from ufl.checks import is_true_ufl_scalar
from ufl.common import EmptyDict
from ufl.core.ufl_type import ufl_type

#--- Condition classes ---

# TODO: Would be nice with some kind of type system to show that this is a boolean type not a float type

@ufl_type(is_abstract=True, is_scalar=True)
class Condition(Operator):
    __slots__ = ()
    def __init__(self, operands):
        Operator.__init__(self, operands)

    def __bool__(self):
        # Showing explicit error here to protect against misuse
        error("UFL conditions cannot be evaluated as bool in a Python context.")
        #return NotImplemented
    __nonzero__ = __bool__


@ufl_type(is_abstract=True, num_ops=2)
class BinaryCondition(Condition):
    __slots__ = ('_name',)
    def __init__(self, name, left, right):
        left = as_ufl(left)
        right = as_ufl(right)

        Condition.__init__(self, (left, right))

        self._name = name

        if name in ('!=', '=='):
            # Since equals and not-equals are used for comparing representations,
            # we have to allow any shape here. The scalar properties must be
            # checked when used in conditional instead!
            pass
        elif name in ('&&', '||'):
            # Binary operators acting on boolean expressions allow only conditions
            ufl_assert(isinstance(left, Condition),
                       "Expecting a Condition, not a %s." % left._ufl_class_)
            ufl_assert(isinstance(right, Condition),
                       "Expecting a Condition, not a %s." % right._ufl_class_)
        else:
            # Binary operators acting on non-boolean expressions allow only scalars
            ufl_assert(left.ufl_shape == () and right.ufl_shape == (),
                       "Expecting scalar arguments.")
            ufl_assert(left.ufl_free_indices == () and right.ufl_free_indices == (),
                       "Expecting scalar arguments.")

    def __str__(self):
        return "%s %s %s" % (parstr(self.ufl_operands[0], self), self._name, parstr(self.ufl_operands[1], self))

    def __repr__(self):
        return "%s(%r, %r)" % (type(self).__name__, self.ufl_operands[0], self.ufl_operands[1])


# Not associating with __eq__, the concept of equality with == is reserved for object equivalence for use in set and dict.
@ufl_type()
class EQ(BinaryCondition):
    __slots__ = ()
    def __init__(self, left, right):
        BinaryCondition.__init__(self, "==", left, right)

    def evaluate(self, x, mapping, component, index_values):
        a = self.ufl_operands[0].evaluate(x, mapping, component, index_values)
        b = self.ufl_operands[1].evaluate(x, mapping, component, index_values)
        return bool(a == b)

    def __bool__(self):
        return expr_equals(self.ufl_operands[0], self.ufl_operands[1])
    __nonzero__ = __bool__


# Not associating with __ne__, the concept of equality with == is reserved for object equivalence for use in set and dict.
@ufl_type()
class NE(BinaryCondition):
    __slots__ = ()
    def __init__(self, left, right):
        BinaryCondition.__init__(self, "!=", left, right)

    def evaluate(self, x, mapping, component, index_values):
        a = self.ufl_operands[0].evaluate(x, mapping, component, index_values)
        b = self.ufl_operands[1].evaluate(x, mapping, component, index_values)
        return bool(a != b)

    def __bool__(self):
        return not expr_equals(self.ufl_operands[0], self.ufl_operands[1])
    __nonzero__ = __bool__


@ufl_type(binop="__le__")
class LE(BinaryCondition):
    __slots__ = ()
    def __init__(self, left, right):
        BinaryCondition.__init__(self, "<=", left, right)

    def evaluate(self, x, mapping, component, index_values):
        a = self.ufl_operands[0].evaluate(x, mapping, component, index_values)
        b = self.ufl_operands[1].evaluate(x, mapping, component, index_values)
        return bool(a <= b)


@ufl_type(binop="__ge__")
class GE(BinaryCondition):
    __slots__ = ()
    def __init__(self, left, right):
        BinaryCondition.__init__(self, ">=", left, right)

    def evaluate(self, x, mapping, component, index_values):
        a = self.ufl_operands[0].evaluate(x, mapping, component, index_values)
        b = self.ufl_operands[1].evaluate(x, mapping, component, index_values)
        return bool(a >= b)

@ufl_type(binop="__lt__")
class LT(BinaryCondition):
    __slots__ = ()
    def __init__(self, left, right):
        BinaryCondition.__init__(self, "<", left, right)

    def evaluate(self, x, mapping, component, index_values):
        a = self.ufl_operands[0].evaluate(x, mapping, component, index_values)
        b = self.ufl_operands[1].evaluate(x, mapping, component, index_values)
        return bool(a < b)

@ufl_type(binop="__gt__")
class GT(BinaryCondition):
    __slots__ = ()
    def __init__(self, left, right):
        BinaryCondition.__init__(self, ">", left, right)

    def evaluate(self, x, mapping, component, index_values):
        a = self.ufl_operands[0].evaluate(x, mapping, component, index_values)
        b = self.ufl_operands[1].evaluate(x, mapping, component, index_values)
        return bool(a > b)

@ufl_type()
class AndCondition(BinaryCondition):
    __slots__ = ()
    def __init__(self, left, right):
        BinaryCondition.__init__(self, "&&", left, right)

    def evaluate(self, x, mapping, component, index_values):
        a = self.ufl_operands[0].evaluate(x, mapping, component, index_values)
        b = self.ufl_operands[1].evaluate(x, mapping, component, index_values)
        return bool(a and b)

@ufl_type()
class OrCondition(BinaryCondition):
    __slots__ = ()
    def __init__(self, left, right):
        BinaryCondition.__init__(self, "||", left, right)

    def evaluate(self, x, mapping, component, index_values):
        a = self.ufl_operands[0].evaluate(x, mapping, component, index_values)
        b = self.ufl_operands[1].evaluate(x, mapping, component, index_values)
        return bool(a or b)

@ufl_type(num_ops=1)
class NotCondition(Condition):
    __slots__ = ()

    def __init__(self, condition):
        Condition.__init__(self, (condition,))
        ufl_assert(isinstance(condition, Condition), "Expecting a condition.")

    def evaluate(self, x, mapping, component, index_values):
        a = self.ufl_operands[0].evaluate(x, mapping, component, index_values)
        return bool(not a)

    def __str__(self):
        return "!(%s)" % (str(self.ufl_operands[0]),)

    def __repr__(self):
        return "NotCondition(%r)" % (self.ufl_operands[0],)


#--- Conditional expression (condition ? true_value : false_value) ---

@ufl_type(num_ops=3, inherit_shape_from_operand=1, inherit_indices_from_operand=1)
class Conditional(Operator):
    __slots__ = ()

    def __init__(self, condition, true_value, false_value):
        ufl_assert(isinstance(condition, Condition), "Expectiong condition as first argument.")
        true_value = as_ufl(true_value)
        false_value = as_ufl(false_value)
        tsh = true_value.ufl_shape
        fsh = false_value.ufl_shape
        ufl_assert(tsh == fsh, "Shape mismatch between conditional branches.")
        tfi = true_value.ufl_free_indices
        ffi = false_value.ufl_free_indices
        ufl_assert(tfi == ffi, "Free index mismatch between conditional branches.")
        if isinstance(condition, (EQ, NE)):
            ufl_assert(    condition.ufl_operands[0].ufl_shape == ()
                       and condition.ufl_operands[0].ufl_free_indices == ()
                       and condition.ufl_operands[1].ufl_shape == ()
                       and condition.ufl_operands[1].ufl_free_indices == (),
                       "Non-scalar == or != is not allowed.")

        Operator.__init__(self, (condition, true_value, false_value))

    def evaluate(self, x, mapping, component, index_values):
        c = self.ufl_operands[0].evaluate(x, mapping, component, index_values)
        if c:
            a = self.ufl_operands[1]
        else:
            a = self.ufl_operands[2]
        return a.evaluate(x, mapping, component, index_values)

    def __str__(self):
        return "%s ? %s : %s" % tuple(parstr(o, self) for o in self.ufl_operands)

    def __repr__(self):
        return "Conditional(%r, %r, %r)" % self.ufl_operands


#--- Specific functions higher level than a conditional ---

@ufl_type(is_scalar=True, num_ops=1)
class MinValue(Operator):
    "UFL operator: Take the minimum of two values."
    __slots__ = ()

    def __init__(self, left, right):
        Operator.__init__(self, (left, right))
        ufl_assert(is_true_ufl_scalar(left) and is_true_ufl_scalar(right), "Expecting scalar arguments.")

    def evaluate(self, x, mapping, component, index_values):
        a, b = self.ufl_operands
        a = a.evaluate(x, mapping, component, index_values)
        b = b.evaluate(x, mapping, component, index_values)
        try:
            res = min(a, b)
        except ValueError:
            warning('Value error in evaluation of min() of %s and %s.' % self.ufl_operands)
            raise
        return res

    def __str__(self):
        return "min_value(%s, %s)" % self.ufl_operands

    def __repr__(self):
        return "MinValue(%r, %r)" % self.ufl_operands

@ufl_type(is_scalar=True, num_ops=1)
class MaxValue(Operator):
    "UFL operator: Take the maximum of two values."
    __slots__ = ()

    def __init__(self, left, right):
        Operator.__init__(self, (left, right))
        ufl_assert(is_true_ufl_scalar(left) and is_true_ufl_scalar(right), "Expecting scalar arguments.")

    def evaluate(self, x, mapping, component, index_values):
        a, b = self.ufl_operands
        a = a.evaluate(x, mapping, component, index_values)
        b = b.evaluate(x, mapping, component, index_values)
        try:
            res = max(a, b)
        except ValueError:
            warning('Value error in evaluation of max() of %s and %s.' % self.ufl_operands)
            raise
        return res

    def __str__(self):
        return "max_value(%s, %s)" % self.ufl_operands

    def __repr__(self):
        return "MaxValue(%r, %r)" % self.ufl_operands