This file is indexed.

/usr/lib/python2.7/dist-packages/ufl/constantvalue.py is in python-ufl 1.6.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
"This module defines classes representing constant values."

# Copyright (C) 2008-2014 Martin Sandve Alnes
#
# This file is part of UFL.
#
# UFL is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# UFL is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with UFL. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Anders Logg, 2011.

from six.moves import zip
from six.moves import xrange as range
from six import iteritems

from ufl.log import warning, error
from ufl.assertions import ufl_assert, expecting_python_scalar
from ufl.core.expr import Expr
from ufl.core.terminal import Terminal
from ufl.core.multiindex import Index, FixedIndex
from ufl.common import EmptyDict
from ufl.core.ufl_type import ufl_type

#--- Helper functions imported here for compatibility---
from ufl.checks import is_python_scalar, is_ufl_scalar, is_true_ufl_scalar

# Precision for float formatting
precision = None
def format_float(x):
    "Format float value based on global UFL precision."
    if precision is None:
        return repr(x)
    else:
        return ("%%.%dg" % precision) % x


#--- Base classes for constant types ---

@ufl_type(is_abstract=True)
class ConstantValue(Terminal):
    __slots__ = ()
    def __init__(self):
        Terminal.__init__(self)

    def is_cellwise_constant(self):
        "Return whether this expression is spatially constant over each cell."
        return True

    def domains(self):
        "Return tuple of domains related to this terminal object."
        return ()


#--- Class for representing abstract constant symbol only for use internally in form compilers
#@ufl_type()
#class AbstractSymbol(ConstantValue):
#    "UFL literal type: Representation of a constant valued symbol with unknown properties."
#    __slots__ = ("_name", "ufl_shape")
#    def __init__(self, name, shape):
#        ConstantValue.__init__(self)
#        self._name = name
#        self.ufl_shape = shape
#
#    def reconstruct(self, name=None):
#        if name is None:
#            name = self._name
#        return AbstractSymbol(name, self.ufl_shape)
#
#    def __str__(self):
#        return "<Abstract symbol named '%s' with shape %s>" % (self._name, self.ufl_shape)
#
#    def __repr__(self):
#        return "AbstractSymbol(%r, %r)" % (self._name, self.ufl_shape)
#
#    def __eq__(self, other):
#        return isinstance(other, AbstractSymbol) and self._name == other._name and self.ufl_shape == other.ufl_shape


#--- Class for representing zero tensors of different shapes ---

# TODO: Add geometric dimension/domain and Argument dependencies to Zero?
@ufl_type(is_literal=True)
class Zero(ConstantValue):
    "UFL literal type: Representation of a zero valued expression."
    __slots__ = ("ufl_shape", "ufl_free_indices", "ufl_index_dimensions")

    _cache = {}

    def __getnewargs__(self):
        return (self.ufl_shape, self.ufl_free_indices, self.ufl_index_dimensions)

    def __new__(cls, shape=(), free_indices=(), index_dimensions=None):
        if free_indices:
            self = ConstantValue.__new__(cls)
        else:
            self = Zero._cache.get(shape)
            if self is not None:
                return self
            self = ConstantValue.__new__(cls)
            Zero._cache[shape] = self
        self._init(shape, free_indices, index_dimensions)
        return self

    def __init__(self, shape=(), free_indices=(), index_dimensions=None):
        pass

    def _init(self, shape=(), free_indices=(), index_dimensions=None):
        ConstantValue.__init__(self)

        if not all(isinstance(i, int) for i in shape):
            error("Expecting tuple of int.")
        if not isinstance(free_indices, tuple):
            error("Expecting tuple for free_indices, not %s" % str(free_indices))

        self.ufl_shape = shape
        if not free_indices:
            self.ufl_free_indices = ()
            self.ufl_index_dimensions = ()
        elif all(isinstance(i, Index) for i in free_indices): # Handle old input format
            if not (isinstance(index_dimensions, dict)
                    and all(isinstance(i, Index) for i in index_dimensions.keys())):
                error("Expecting tuple of index dimensions, not %s" % str(index_dimensions))
            self.ufl_free_indices = tuple(sorted(i.count() for i in free_indices))
            self.ufl_index_dimensions = tuple(d for i, d in sorted(iteritems(index_dimensions), key=lambda x: x[0].count()))
        else: # Handle new input format
            if not all(isinstance(i, int) for i in free_indices):
                error("Expecting tuple of integer free index ids, not %s" % str(free_indices))
            if not (isinstance(index_dimensions, tuple)
                    and all(isinstance(i, int) for i in index_dimensions)):
                error("Expecting tuple of integer index dimensions, not %s" % str(index_dimensions))
            # TODO: Assume sorted and avoid this cost.
            ufl_assert(sorted(free_indices) == list(free_indices),
                       "Expecting sorted input. Remove this check later for efficiency.")
            self.ufl_free_indices = free_indices
            self.ufl_index_dimensions = index_dimensions

    def free_indices(self):
        "Intermediate helper property getter to transition from .free_indices() to .ufl_free_indices."
        return tuple(Index(count=i) for i in self.ufl_free_indices)

    def index_dimensions(self):
        "Intermediate helper property getter to transition from .index_dimensions() to .ufl_index_dimensions."
        return { Index(count=i): d for i, d in zip(self.ufl_free_indices, self.ufl_index_dimensions) }

    def reconstruct(self, free_indices=None):
        if not free_indices:
            return self
        ufl_assert(len(free_indices) == len(self.ufl_free_indices),
                   "Size mismatch between old and new indices.")
        fid = self.ufl_index_dimensions
        new_fi, new_fid = zip(*tuple(sorted((free_indices[pos], fid[pos]) for pos, a in enumerate(self.ufl_free_indices))))
        return Zero(self.ufl_shape, new_fi, new_fid)

    def evaluate(self, x, mapping, component, index_values):
        return 0.0

    def __str__(self):
        if self.ufl_shape == () and self.ufl_free_indices == ():
            return "0"
        return "(0<%r, %r>)" % (self.ufl_shape, self.ufl_free_indices)

    def __repr__(self):
        return "Zero(%r, %r, %r)" % (self.ufl_shape,
                self.ufl_free_indices, self.ufl_index_dimensions)

    def __eq__(self, other):
        if isinstance(other, Zero):
            if self is other:
                return True
            return (self.ufl_shape == other.ufl_shape and
                    self.ufl_free_indices == other.ufl_free_indices and
                    self.ufl_index_dimensions == other.ufl_index_dimensions)
        elif isinstance(other, (int, float)):
            return other == 0
        else:
            return False

    def __neg__(self):
        return self

    def __abs__(self):
        return self

    def __bool__(self):
        return False
    __nonzero__ = __bool__

    def __float__(self):
        return 0.0

    def __int__(self):
        return 0

def zero(*shape):
    "UFL literal constant: Return a zero tensor with the given shape."
    if len(shape) == 1 and isinstance(shape[0], tuple):
        return Zero(shape[0])
    else:
        return Zero(shape)


#--- Scalar value types ---

@ufl_type(is_abstract=True, is_scalar=True)
class ScalarValue(ConstantValue):
    "A constant scalar value."
    __slots__ = ("_value",)

    def __init__(self, value):
        ConstantValue.__init__(self)
        self._value = value

    def value(self):
        return self._value

    def evaluate(self, x, mapping, component, index_values):
        return self._value

    def __eq__(self, other):
        """This is implemented to allow comparison with python scalars.

        Note that this will make IntValue(1) != FloatValue(1.0),
        but ufl-python comparisons like
            IntValue(1) == 1.0
            FloatValue(1.0) == 1
        can still succeed. These will however not have the same
        hash value and therefore not collide in a dict.
        """
        if isinstance(other, self._ufl_class_):
            return self._value == other._value
        elif isinstance(other, (int, float)):
            # FIXME: Disallow this, require explicit 'expr == IntValue(3)' instead to avoid ambiguities!
            return other == self._value
        else:
            return False

    def __str__(self):
        return str(self._value)

    def __float__(self):
        return float(self._value)

    def __int__(self):
        return int(self._value)

    def __neg__(self):
        return type(self)(-self._value)

    def __abs__(self):
        return type(self)(abs(self._value))


@ufl_type(wraps_type=float, is_literal=True)
class FloatValue(ScalarValue):
    "UFL literal type: Representation of a constant scalar floating point value."
    __slots__ = ()

    def __getnewargs__(self):
        return (self._value,)

    def __new__(cls, value):
        if value == 0.0:
            # Always represent zero with Zero
            return Zero()
        return ConstantValue.__new__(cls)

    def __init__(self, value):
        ScalarValue.__init__(self, float(value))

    def __repr__(self):
        return "%s(%s)" % (type(self).__name__, format_float(self._value))


@ufl_type(wraps_type=int, is_literal=True)
class IntValue(ScalarValue):
    "UFL literal type: Representation of a constant scalar integer value."
    __slots__ = ()

    _cache = {}

    def __getnewargs__(self):
        return (self._value,)

    def __new__(cls, value):
        if value == 0:
            # Always represent zero with Zero
            return Zero()
        elif abs(value) < 100:
            # Small numbers are cached to reduce memory usage (fly-weight pattern)
            self = IntValue._cache.get(value)
            if self is not None:
                return self
            self = ScalarValue.__new__(cls)
            IntValue._cache[value] = self
        else:
            self = ScalarValue.__new__(cls)
        self._init(value)
        return self

    def _init(self, value):
        ScalarValue.__init__(self, int(value))

    def __init__(self, value):
        pass

    def __repr__(self):
        return "%s(%s)" % (type(self).__name__, repr(self._value))


#--- Identity matrix ---

@ufl_type()
class Identity(ConstantValue):
    "UFL literal type: Representation of an identity matrix."
    __slots__ = ("_dim", "ufl_shape")

    def __init__(self, dim):
        ConstantValue.__init__(self)
        self._dim = dim
        self.ufl_shape = (dim, dim)

    def evaluate(self, x, mapping, component, index_values):
        a, b = component
        return 1 if a == b else 0

    def __getitem__(self, key):
        ufl_assert(len(key) == 2, "Size mismatch for Identity.")
        if all(isinstance(k, (int, FixedIndex)) for k in key):
            return IntValue(1) if (int(key[0]) == int(key[1])) else Zero()
        return Expr.__getitem__(self, key)

    def __str__(self):
        return "I"

    def __repr__(self):
        return "Identity(%d)" % self._dim

    def __eq__(self, other):
        return isinstance(other, Identity) and self._dim == other._dim

#--- Permutation symbol ---

@ufl_type()
class PermutationSymbol(ConstantValue):
    """UFL literal type: Representation of a permutation symbol.

    This is also known as the Levi-Civita symbol, antisymmetric symbol,
    or alternating symbol."""
    __slots__ = ("ufl_shape", "_dim")

    def __init__(self, dim):
        ConstantValue.__init__(self)
        self._dim = dim
        self.ufl_shape = (dim,)*dim

    def evaluate(self, x, mapping, component, index_values):
        return self.__eps(component)

    def __getitem__(self, key):
        ufl_assert(len(key) == self._dim, "Size mismatch for PermutationSymbol.")
        if all(isinstance(k, (int, FixedIndex)) for k in key):
            return self.__eps(key)
        return Expr.__getitem__(self, key)

    def __str__(self):
        return "eps"

    def __repr__(self):
        return "PermutationSymbol(%d)" % self._dim

    def __eq__(self, other):
        return isinstance(other, PermutationSymbol) and self._dim == other._dim

    def __eps(self, x):
        """This function body is taken from
        http://www.mathkb.com/Uwe/Forum.aspx/math/29865/N-integer-Levi-Civita"""
        result = IntValue(1)
        for i, x1 in enumerate(x):
            for j in range(i + 1, len(x)):
                x2 = x[j]
                if x1 > x2:
                    result = -result
                elif x1 == x2:
                    return Zero()
        return result

def as_ufl(expression):
    "Converts expression to an Expr if possible."
    if isinstance(expression, Expr):
        return expression
    if isinstance(expression, float):
        return FloatValue(expression)
    if isinstance(expression, int):
        return IntValue(expression)
    error(("Invalid type conversion: %s can not be converted to any UFL type.\n"+\
           "The representation of the object is:\n%r") % (type(expression), expression))