This file is indexed.

/usr/lib/python2.7/dist-packages/ufl/mathfunctions.py is in python-ufl 1.6.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
"""This module provides basic mathematical functions."""

# Copyright (C) 2008-2014 Martin Sandve Alnes
#
# This file is part of UFL.
#
# UFL is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# UFL is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with UFL. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Anders Logg, 2008
# Modified by Kristian B. Oelgaard, 2011

import math
from ufl.log import warning, error
from ufl.assertions import ufl_assert
from ufl.core.operator import Operator
from ufl.constantvalue import is_true_ufl_scalar, ScalarValue, Zero, FloatValue, IntValue, as_ufl
from ufl.common import EmptyDict
from ufl.core.ufl_type import ufl_type

"""
TODO: Include additional functions available in <cmath> (need derivatives as well):

Exponential and logarithmic functions:
log10    Compute common logarithm (function)

TODO: Any other useful special functions?

About bessel functions:
http://en.wikipedia.org/wiki/Bessel_function

Portable implementations of bessel functions:
http://www.boost.org/doc/libs/1_47_0/libs/math/doc/sf_and_dist/html/math_toolkit/main_overview/tr1.html

Implementation in C++ std::tr1:: or boost::math::tr1::
- BesselK: cyl_bessel_k(nu, x)
- BesselI: cyl_bessel_i(nu, x)
- BesselJ: cyl_bessel_j(nu, x)
- BesselY: cyl_neumann(nu, x)
"""

#--- Function representations ---

@ufl_type(is_abstract=True, is_scalar=True, num_ops=1)
class MathFunction(Operator):
    "Base class for all unary scalar math functions."
    # Freeze member variables for objects in this class
    __slots__ = ("_name",)
    def __init__(self, name, argument):
        Operator.__init__(self, (argument,))
        ufl_assert(is_true_ufl_scalar(argument), "Expecting scalar argument.")
        self._name     = name

    def evaluate(self, x, mapping, component, index_values):
        a = self.ufl_operands[0].evaluate(x, mapping, component, index_values)
        try:
            res = getattr(math, self._name)(a)
        except ValueError:
            warning('Value error in evaluation of function %s with argument %s.' % (self._name, a))
            raise
        return res

    def __str__(self):
        return "%s(%s)" % (self._name, self.ufl_operands[0])

    def __repr__(self):
        return "%s(%r)" % (self._name, self.ufl_operands[0])

@ufl_type()
class Sqrt(MathFunction):
    __slots__ = ()
    def __new__(cls, argument):
        if isinstance(argument, (ScalarValue, Zero)):
            return FloatValue(math.sqrt(float(argument)))
        return MathFunction.__new__(cls)

    def __init__(self, argument):
        MathFunction.__init__(self, "sqrt", argument)

@ufl_type()
class Exp(MathFunction):
    __slots__ = ()
    def __new__(cls, argument):
        if isinstance(argument, (ScalarValue, Zero)):
            return FloatValue(math.exp(float(argument)))
        return MathFunction.__new__(cls)

    def __init__(self, argument):
        MathFunction.__init__(self, "exp", argument)

@ufl_type()
class Ln(MathFunction):
    __slots__ = ()
    def __new__(cls, argument):
        if isinstance(argument, (ScalarValue, Zero)):
            return FloatValue(math.log(float(argument)))
        return MathFunction.__new__(cls)

    def __init__(self, argument):
        MathFunction.__init__(self, "ln", argument)

    def evaluate(self, x, mapping, component, index_values):
        a = self.ufl_operands[0].evaluate(x, mapping, component, index_values)
        return math.log(a)

@ufl_type()
class Cos(MathFunction):
    __slots__ = ()
    def __new__(cls, argument):
        if isinstance(argument, (ScalarValue, Zero)):
            return FloatValue(math.cos(float(argument)))
        return MathFunction.__new__(cls)

    def __init__(self, argument):
        MathFunction.__init__(self, "cos", argument)

@ufl_type()
class Sin(MathFunction):
    __slots__ = ()
    def __new__(cls, argument):
        if isinstance(argument, (ScalarValue, Zero)):
            return FloatValue(math.sin(float(argument)))
        return MathFunction.__new__(cls)

    def __init__(self, argument):
        MathFunction.__init__(self, "sin", argument)

@ufl_type()
class Tan(MathFunction):
    __slots__ = ()
    def __new__(cls, argument):
        if isinstance(argument, (ScalarValue, Zero)):
            return FloatValue(math.tan(float(argument)))
        return MathFunction.__new__(cls)

    def __init__(self, argument):
        MathFunction.__init__(self, "tan", argument)

@ufl_type()
class Cosh(MathFunction):
    __slots__ = ()
    def __new__(cls, argument):
        if isinstance(argument, (ScalarValue, Zero)):
            return FloatValue(math.cosh(float(argument)))
        return MathFunction.__new__(cls)

    def __init__(self, argument):
        MathFunction.__init__(self, "cosh", argument)

@ufl_type()
class Sinh(MathFunction):
    __slots__ = ()
    def __new__(cls, argument):
        if isinstance(argument, (ScalarValue, Zero)):
            return FloatValue(math.sinh(float(argument)))
        return MathFunction.__new__(cls)

    def __init__(self, argument):
        MathFunction.__init__(self, "sinh", argument)

@ufl_type()
class Tanh(MathFunction):
    __slots__ = ()
    def __new__(cls, argument):
        if isinstance(argument, (ScalarValue, Zero)):
            return FloatValue(math.tanh(float(argument)))
        return MathFunction.__new__(cls)

    def __init__(self, argument):
        MathFunction.__init__(self, "tanh", argument)

@ufl_type()
class Acos(MathFunction):
    __slots__ = ()
    def __new__(cls, argument):
        if isinstance(argument, (ScalarValue, Zero)):
            return FloatValue(math.acos(float(argument)))
        return MathFunction.__new__(cls)

    def __init__(self, argument):
        MathFunction.__init__(self, "acos", argument)

@ufl_type()
class Asin(MathFunction):
    __slots__ = ()
    def __new__(cls, argument):
        if isinstance(argument, (ScalarValue, Zero)):
            return FloatValue(math.asin(float(argument)))
        return MathFunction.__new__(cls)

    def __init__(self, argument):
        MathFunction.__init__(self, "asin", argument)

@ufl_type()
class Atan(MathFunction):
    __slots__ = ()
    def __new__(cls, argument):
        if isinstance(argument, (ScalarValue, Zero)):
            return FloatValue(math.atan(float(argument)))
        return MathFunction.__new__(cls)

    def __init__(self, argument):
        MathFunction.__init__(self, "atan", argument)

@ufl_type(is_scalar=True, num_ops=2)
class Atan2(Operator):
    __slots__ = ()

    def __new__(cls, arg1, arg2):
        if isinstance(arg1, (ScalarValue, Zero)) and isinstance(arg2, (ScalarValue, Zero)):
            return FloatValue(math.atan2(float(arg1), float(arg2)))
        return Operator.__new__(cls)

    def __init__(self, arg1, arg2):
        Operator.__init__(self, (arg1, arg2))
        ufl_assert(is_true_ufl_scalar(arg1), "Expecting scalar argument 1.")
        ufl_assert(is_true_ufl_scalar(arg2), "Expecting scalar argument 2.")

    def evaluate(self, x, mapping, component, index_values):
        a = self.ufl_operands[0].evaluate(x, mapping, component, index_values)
        b = self.ufl_operands[1].evaluate(x, mapping, component, index_values)
        try:
            res = math.atan2(a, b)
        except ValueError:
            warning('Value error in evaluation of function atan_2 with arguments %s, %s.' % (a, b))
            raise
        return res

    def __str__(self):
        return "atan_2(%s,%s)" % (self.ufl_operands[0], self.ufl_operands[1])

    def __repr__(self):
        return "atan_2(%s,%s)" % (self.ufl_operands[0], self.ufl_operands[1])


def _find_erf():
    import math
    if hasattr(math, 'erf'):
        return math.erf
    import scipy.special
    if hasattr(scipy.special, 'erf'):
        return scipy.special.erf
    return None

@ufl_type()
class Erf(MathFunction):
    __slots__ = ()
    def __new__(cls, argument):
        if isinstance(argument, (ScalarValue, Zero)):
            erf = _find_erf()
            if erf is not None:
                return FloatValue(erf(float(argument)))
        return MathFunction.__new__(cls)

    def __init__(self, argument):
        MathFunction.__init__(self, "erf", argument)

    def evaluate(self, x, mapping, component, index_values):
        a = self.ufl_operands[0].evaluate(x, mapping, component, index_values)
        erf = _find_erf()
        if erf is None:
            error("No python implementation of erf available on this system, cannot evaluate. Upgrade python or install scipy.")
        return erf(a)

@ufl_type(is_abstract=True, is_scalar=True, num_ops=2)
class BesselFunction(Operator):
    "Base class for all bessel functions"
    # Freeze member variables for objects in this class
    __slots__ = ("_name", "_classname")
    def __init__(self, name, classname, nu, argument):
        ufl_assert(is_true_ufl_scalar(nu), "Expecting scalar nu.")
        ufl_assert(is_true_ufl_scalar(argument), "Expecting scalar argument.")

        # Use integer representation if suitable
        fnu = float(nu)
        inu = int(nu)
        if fnu == inu:
            nu = as_ufl(inu)
        else:
            nu = as_ufl(fnu)

        Operator.__init__(self, (nu, argument))

        self._classname = classname
        self._name     = name

    def evaluate(self, x, mapping, component, index_values):
        a = self.ufl_operands[1].evaluate(x, mapping, component, index_values)
        try:
            import scipy.special
        except:
            error("You must have scipy installed to evaluate bessel functions in python.")
        name = self._name[-1]
        if isinstance(self.ufl_operands[0], IntValue):
            nu = int(self.ufl_operands[0])
            functype = 'n' if name != 'i' else 'v'
        else:
            nu = self.ufl_operands[0].evaluate(x, mapping, component, index_values)
            functype = 'v'
        func = getattr(scipy.special, name + functype)
        return func(nu, a)

    def __str__(self):
        return "%s(%s, %s)" % (self._name, self.ufl_operands[0], self.ufl_operands[1])

    def __repr__(self):
        return "%s(%r, %r)" % (self._classname, self.ufl_operands[0], self.ufl_operands[1])

@ufl_type()
class BesselJ(BesselFunction):
    __slots__ = ()
    def __init__(self, nu, argument):
        BesselFunction.__init__(self, "cyl_bessel_j", "BesselJ", nu, argument)

@ufl_type()
class BesselY(BesselFunction):
    __slots__ = ()
    def __init__(self, nu, argument):
        BesselFunction.__init__(self, "cyl_bessel_y", "BesselY", nu, argument)

@ufl_type()
class BesselI(BesselFunction):
    __slots__ = ()
    def __init__(self, nu, argument):
        BesselFunction.__init__(self, "cyl_bessel_i", "BesselI", nu, argument)

@ufl_type()
class BesselK(BesselFunction):
    __slots__ = ()
    def __init__(self, nu, argument):
        BesselFunction.__init__(self, "cyl_bessel_k", "BesselK", nu, argument)