/usr/lib/python2.7/dist-packages/uncertainties/umath.py is in python-uncertainties 2.4.4-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 | '''
Mathematical operations that generalize many operations from the
standard math module so that they also work on numbers with
uncertainties.
Examples:
from umath import sin
# Manipulation of numbers with uncertainties:
x = uncertainties.ufloat(3, 0.1)
print sin(x) # prints 0.141120008...+/-0.098999...
# The umath functions also work on regular Python floats:
print sin(3) # prints 0.141120008... This is a Python float.
Importing all the functions from this module into the global namespace
is possible. This is encouraged when using a Python shell as a
calculator. Example:
import uncertainties
from uncertainties.umath import * # Imports tan(), etc.
x = uncertainties.ufloat(3, 0.1)
print tan(x) # tan() is the uncertainties.umath.tan function
The numbers with uncertainties handled by this module are objects from
the uncertainties module, from either the Variable or the
AffineScalarFunc class.
(c) 2009-2013 by Eric O. LEBIGOT (EOL) <eric.lebigot@normalesup.org>.
Please send feature requests, bug reports, or feedback to this address.
This software is released under a dual license. (1) The BSD license.
(2) Any other license, as long as it is obtained from the original
author.'''
from __future__ import division # Many analytical derivatives depend on this
# Standard modules
import math
import sys
import itertools
import inspect
# Local modules
import uncertainties
from uncertainties import __author__, to_affine_scalar, AffineScalarFunc
###############################################################################
# We wrap the functions from the math module so that they keep track of
# uncertainties by returning a AffineScalarFunc object.
# Some functions from the math module cannot be adapted in a standard
# way so to work with AffineScalarFunc objects (either as their result
# or as their arguments):
# (1) Some functions return a result of a type whose value and
# variations (uncertainties) cannot be represented by AffineScalarFunc
# (e.g., math.frexp, which returns a tuple). The exception raised
# when not wrapping them with wrap() is more obvious than the
# one obtained when wrapping them (in fact, the wrapped functions
# attempts operations that are not supported, such as calculation a
# subtraction on a result of type tuple).
# (2) Some functions don't take continuous scalar arguments (which can
# be varied during differentiation): math.fsum, math.factorial...
# Such functions can either be:
# - wrapped in a special way.
# - excluded from standard wrapping by adding their name to
# no_std_wrapping
# Math functions that have a standard interface: they take
# one or more float arguments, and return a scalar:
many_scalars_to_scalar_funcs = []
# Some functions require a specific treatment and must therefore be
# excluded from standard wrapping. Functions
# no_std_wrapping = ['modf', 'frexp', 'ldexp', 'fsum', 'factorial']
# Functions with numerical derivatives:
num_deriv_funcs = ['fmod', 'gamma', 'lgamma']
# Functions are by definition locally constant (on real
# numbers): their value does not depend on the uncertainty (because
# this uncertainty is supposed to lead to a good linear approximation
# of the function in the uncertainty region). The type of their output
# for floats is preserved, as users should not care about deviations
# in their value: their value is locally constant due to the nature of
# the function (0 derivative). This situation is similar to that of
# comparisons (==, >, etc.).
locally_cst_funcs = ['ceil', 'floor', 'isinf', 'isnan', 'trunc']
# Functions that do not belong in many_scalars_to_scalar_funcs, but
# that have a version that handles uncertainties. These functions are
# also not in numpy (see unumpy/core.py).
non_std_wrapped_funcs = []
# Function that copies the relevant attributes from generalized
# functions from the math module:
# This is a copy&paste job from the functools module, changing
# the default arugment for assigned
def wraps(wrapper,
wrapped,
assigned=('__doc__',),
updated=('__dict__',)):
"""Update a wrapper function to look like the wrapped function.
wrapper -- function to be updated
wrapped -- original function
assigned -- tuple naming the attributes assigned directly
from the wrapped function to the wrapper function
updated -- tuple naming the attributes of the wrapper that
are updated with the corresponding attribute from the wrapped
function.
"""
for attr in assigned:
setattr(wrapper, attr, getattr(wrapped, attr))
for attr in updated:
getattr(wrapper, attr).update(getattr(wrapped, attr, {}))
# Return the wrapper so this can be used as a decorator via partial()
return wrapper
########################################
# Wrapping of math functions:
# Fixed formulas for the derivatives of some functions from the math
# module (some functions might not be present in all version of
# Python). Singular points are not taken into account. The user
# should never give "large" uncertainties: problems could only appear
# if this assumption does not hold.
# Functions not mentioned in _fixed_derivatives have their derivatives
# calculated numerically.
# Functions that have singularities (possibly at infinity) benefit
# from analytical calculations (instead of the default numerical
# calculation) because their derivatives generally change very fast.
# Even slowly varying functions (e.g., abs()) yield more precise
# results when differentiated analytically, because of the loss of
# precision in numerical calculations.
#def log_1arg_der(x):
# """
# Derivative of log(x) (1-argument form).
# """
# return 1/x
def log_der0(*args):
"""
Derivative of math.log() with respect to its first argument.
Works whether 1 or 2 arguments are given.
"""
if len(args) == 1:
return 1/args[0]
else:
return 1/args[0]/math.log(args[1]) # 2-argument form
# The following version goes about as fast:
## A 'try' is used for the most common case because it is fast when no
## exception is raised:
#try:
# return log_1arg_der(*args) # Argument number check
#except TypeError:
# return 1/args[0]/math.log(args[1]) # 2-argument form
def _deriv_copysign(x,y):
if x >= 0:
return math.copysign(1, y)
else:
return -math.copysign(1, y)
def _deriv_fabs(x):
if x >= 0:
return 1
else:
return -1
def _deriv_pow_0(x, y):
if y == 0:
return 0.
elif x != 0 or y % 1 == 0:
return y*math.pow(x, y-1)
else:
return float('nan')
def _deriv_pow_1(x, y):
if x == 0 and y > 0:
return 0.
else:
return math.log(x) * math.pow(x, y)
erf_coef = 2/math.sqrt(math.pi) # Optimization for erf()
fixed_derivatives = {
# In alphabetical order, here:
'acos': [lambda x: -1/math.sqrt(1-x**2)],
'acosh': [lambda x: 1/math.sqrt(x**2-1)],
'asin': [lambda x: 1/math.sqrt(1-x**2)],
'asinh': [lambda x: 1/math.sqrt(1+x**2)],
'atan': [lambda x: 1/(1+x**2)],
'atan2': [lambda y, x: x/(x**2+y**2), # Correct for x == 0
lambda y, x: -y/(x**2+y**2)], # Correct for x == 0
'atanh': [lambda x: 1/(1-x**2)],
'copysign': [_deriv_copysign,
lambda x, y: 0],
'cos': [lambda x: -math.sin(x)],
'cosh': [math.sinh],
'degrees': [lambda x: math.degrees(1)],
'erf': [lambda x: exp(-x**2)*erf_coef],
'erfc': [lambda x: -exp(-x**2)*erf_coef],
'exp': [math.exp],
'expm1': [math.exp],
'fabs': [_deriv_fabs],
'hypot': [lambda x, y: x/math.hypot(x, y),
lambda x, y: y/math.hypot(x, y)],
'log': [log_der0,
lambda x, y: -math.log(x, y)/y/math.log(y)],
'log10': [lambda x: 1/x/math.log(10)],
'log1p': [lambda x: 1/(1+x)],
'pow': [_deriv_pow_0, _deriv_pow_1],
'radians': [lambda x: math.radians(1)],
'sin': [math.cos],
'sinh': [math.cosh],
'sqrt': [lambda x: 0.5/math.sqrt(x)],
'tan': [lambda x: 1+math.tan(x)**2],
'tanh': [lambda x: 1-math.tanh(x)**2]
}
# Many built-in functions in the math module are wrapped with a
# version which is uncertainty aware:
this_module = sys.modules[__name__]
def wrap_locally_cst_func(func):
'''
Returns a function that returns the same arguments as func, but
after converting any AffineScalarFunc object to its nominal value.
This function is useful for wrapping functions that are locally
constant: the uncertainties should have no role in the result
(since they are supposed to keep the function linear and hence,
here, constant).
'''
def wrapped_func(*args, **kwargs):
args_float = map(uncertainties.nominal_value, args)
# !! In Python 2.7+, dictionary comprehension: {argname:...}
kwargs_float = dict(
(arg_name, uncertainties.nominal_value(value))
for (arg_name, value) in kwargs.iteritems())
return func(*args_float, **kwargs_float)
return wrapped_func
# for (name, attr) in vars(math).items():
for name in dir(math):
if name in fixed_derivatives: # Priority to functions in fixed_derivatives
derivatives = fixed_derivatives[name]
elif name in num_deriv_funcs:
# Functions whose derivatives are calculated numerically by
# this module fall here (isinf, fmod,...):
derivatives = [] # Means: numerical calculation required
elif name not in locally_cst_funcs:
continue # 'name' not wrapped by this module (__doc__, e, etc.)
func = getattr(math, name)
if name in locally_cst_funcs:
wrapped_func = wrap_locally_cst_func(func)
else: # Function with analytical or numerical derivatives:
# Errors during the calculation of the derivatives are converted
# to a NaN result: it is assumed that a mathematical calculation
# that cannot be calculated indicates a non-defined derivative
# (the derivatives in fixed_derivatives must be written this way):
wrapped_func = uncertainties.wrap(
func, map(uncertainties.nan_if_exception, derivatives))
setattr(this_module, name, wraps(wrapped_func, func))
many_scalars_to_scalar_funcs.append(name)
###############################################################################
########################################
# Special cases: some of the functions from no_std_wrapping:
##########
# The math.factorial function is not converted to an uncertainty-aware
# function, because it does not handle non-integer arguments: it does
# not make sense to give it an argument with a numerical error
# (whereas this would be relevant for the gamma function).
##########
# fsum takes a single argument, which cannot be differentiated.
# However, each of the arguments inside this single list can
# be a variable. We handle this in a specific way:
if sys.version_info >= (2, 6):
# For drop-in compatibility with the math module:
factorial = math.factorial
non_std_wrapped_funcs.append('factorial')
# We wrap math.fsum
original_func = math.fsum # For optimization purposes
# The function below exists so that temporary variables do not
# pollute the module namespace:
def wrapped_fsum():
"""
Returns an uncertainty-aware version of math.fsum, which must
be contained in _original_func.
"""
# The fsum function is flattened, in order to use the
# wrap() wrapper:
flat_fsum = lambda *args: original_func(args)
flat_fsum_wrap = uncertainties.wrap(
flat_fsum, itertools.repeat(lambda *args: 1))
return wraps(lambda arg_list: flat_fsum_wrap(*arg_list),
original_func)
fsum = wrapped_fsum()
non_std_wrapped_funcs.append('fsum')
##########
def modf(x):
"""
Version of modf that works for numbers with uncertainty, and also
for regular numbers.
"""
# The code below is inspired by uncertainties.wrap(). It is
# simpler because only 1 argument is given, and there is no
# delegation to other functions involved (as for __mul__, etc.).
aff_func = to_affine_scalar(x)
(frac_part, int_part) = math.modf(aff_func.nominal_value)
if aff_func.derivatives:
# The derivative of the fractional part is simply 1: the
# derivatives of modf(x)[0] are the derivatives of x:
return (AffineScalarFunc(frac_part, aff_func.derivatives), int_part)
else:
# This function was not called with an AffineScalarFunc
# argument: there is no need to return numbers with uncertainties:
return (frac_part, int_part)
modf = uncertainties.set_doc(math.modf.__doc__)(modf)
many_scalars_to_scalar_funcs.append('modf')
def ldexp(x, y):
# The code below is inspired by uncertainties.wrap(). It is
# simpler because only 1 argument is given, and there is no
# delegation to other functions involved (as for __mul__, etc.).
# Another approach would be to add an additional argument to
# uncertainties.wrap() so that some arguments are automatically
# considered as constants.
aff_func = to_affine_scalar(x) # y must be an integer, for math.ldexp
if aff_func.derivatives:
factor = 2**y
return AffineScalarFunc(
math.ldexp(aff_func.nominal_value, y),
# Chain rule:
dict([(var, factor*deriv)
for (var, deriv) in aff_func.derivatives.iteritems()]))
else:
# This function was not called with an AffineScalarFunc
# argument: there is no need to return numbers with uncertainties:
# aff_func.nominal_value is not passed instead of x, because
# we do not have to care about the type of the return value of
# math.ldexp, this way (aff_func.nominal_value might be the
# value of x coerced to a difference type [int->float, for
# instance]):
return math.ldexp(x, y)
ldexp = uncertainties.set_doc(math.ldexp.__doc__)(ldexp)
many_scalars_to_scalar_funcs.append('ldexp')
def frexp(x):
"""
Version of frexp that works for numbers with uncertainty, and also
for regular numbers.
"""
# The code below is inspired by uncertainties.wrap(). It is
# simpler because only 1 argument is given, and there is no
# delegation to other functions involved (as for __mul__, etc.).
aff_func = to_affine_scalar(x)
if aff_func.derivatives:
result = math.frexp(aff_func.nominal_value)
# With frexp(x) = (m, e), dm/dx = 1/(2**e):
factor = 1/(2**result[1])
return (
AffineScalarFunc(
result[0],
# Chain rule:
dict([(var, factor*deriv)
for (var, deriv) in aff_func.derivatives.iteritems()])),
# The exponent is an integer and is supposed to be
# continuous (small errors):
result[1])
else:
# This function was not called with an AffineScalarFunc
# argument: there is no need to return numbers with uncertainties:
return math.frexp(x)
frexp = uncertainties.set_doc(math.frexp.__doc__)(frexp)
non_std_wrapped_funcs.append('frexp')
###############################################################################
# Exported functions:
__all__ = many_scalars_to_scalar_funcs + non_std_wrapped_funcs
|