This file is indexed.

/usr/lib/python3/dist-packages/aplpy/ticks.py is in python3-aplpy 1.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
from __future__ import absolute_import, print_function, division

import warnings

import numpy as np
from matplotlib.pyplot import Locator

from . import wcs_util
from . import angle_util as au
from . import scalar_util as su
from . import math_util
from .decorators import auto_refresh


class Ticks(object):

    @auto_refresh
    def __init__(self, parent):

        # Store references to axes
        self._ax1 = parent._ax1
        self._ax2 = parent._ax2
        self._wcs = parent._wcs
        self._figure = parent._figure
        self._parent = parent

        # Save plotting parameters (required for @auto_refresh)
        self._parameters = parent._parameters

        # Set tick positions
        self._ax1.yaxis.tick_left()
        self._ax1.xaxis.tick_bottom()
        self._ax2.yaxis.tick_right()
        self._ax2.xaxis.tick_top()

        # Set tick spacing to default
        self.set_xspacing('auto')
        self.set_yspacing('auto')

        # Set major tick locators
        lx = WCSLocator(wcs=self._wcs, coord='x')
        self._ax1.xaxis.set_major_locator(lx)
        ly = WCSLocator(wcs=self._wcs, coord='y')
        self._ax1.yaxis.set_major_locator(ly)
        lxt = WCSLocator(wcs=self._wcs, coord='x', farside=True)
        self._ax2.xaxis.set_major_locator(lxt)
        lyt = WCSLocator(wcs=self._wcs, coord='y', farside=True)
        self._ax2.yaxis.set_major_locator(lyt)

        # Set minor tick locators
        lx = WCSLocator(wcs=self._wcs, coord='x', minor=True)
        self._ax1.xaxis.set_minor_locator(lx)
        ly = WCSLocator(wcs=self._wcs, coord='y', minor=True)
        self._ax1.yaxis.set_minor_locator(ly)
        lxt = WCSLocator(wcs=self._wcs, coord='x', farside=True, minor=True)
        self._ax2.xaxis.set_minor_locator(lxt)
        lyt = WCSLocator(wcs=self._wcs, coord='y', farside=True, minor=True)
        self._ax2.yaxis.set_minor_locator(lyt)

    @auto_refresh
    def set_xspacing(self, spacing):
        '''
        Set the x-axis tick spacing, in degrees. To set the tick spacing to be
        automatically determined, set this to 'auto'.
        '''

        if spacing == 'auto':
            self._ax1.xaxis.apl_auto_tick_spacing = True
            self._ax2.xaxis.apl_auto_tick_spacing = True
        else:

            self._ax1.xaxis.apl_auto_tick_spacing = False
            self._ax2.xaxis.apl_auto_tick_spacing = False

            if self._wcs.xaxis_coord_type in ['longitude', 'latitude']:
                try:
                    au._check_format_spacing_consistency(self._ax1.xaxis.apl_label_form, au.Angle(degrees=spacing, latitude=self._wcs.xaxis_coord_type == 'latitude'))
                except au.InconsistentSpacing:
                    warnings.warn("WARNING: Requested tick spacing format cannot be shown by current label format. The tick spacing will not be changed.")
                    return
                self._ax1.xaxis.apl_tick_spacing = au.Angle(degrees=spacing, latitude=self._wcs.xaxis_coord_type == 'latitude')
                self._ax2.xaxis.apl_tick_spacing = au.Angle(degrees=spacing, latitude=self._wcs.xaxis_coord_type == 'latitude')
            else:
                try:
                    su._check_format_spacing_consistency(self._ax1.xaxis.apl_label_form, spacing)
                except au.InconsistentSpacing:
                    warnings.warn("WARNING: Requested tick spacing format cannot be shown by current label format. The tick spacing will not be changed.")
                    return
                self._ax1.xaxis.apl_tick_spacing = spacing
                self._ax2.xaxis.apl_tick_spacing = spacing

        if hasattr(self._parent, 'grid'):
            self._parent.grid._update()

    @auto_refresh
    def set_yspacing(self, spacing):
        '''
        Set the y-axis tick spacing, in degrees. To set the tick spacing to be
        automatically determined, set this to 'auto'.
        '''

        if spacing == 'auto':
            self._ax1.yaxis.apl_auto_tick_spacing = True
            self._ax2.yaxis.apl_auto_tick_spacing = True
        else:

            self._ax1.yaxis.apl_auto_tick_spacing = False
            self._ax2.yaxis.apl_auto_tick_spacing = False

            if self._wcs.yaxis_coord_type in ['longitude', 'latitude']:
                try:
                    au._check_format_spacing_consistency(self._ax1.yaxis.apl_label_form, au.Angle(degrees=spacing, latitude=self._wcs.yaxis_coord_type == 'latitude'))
                except au.InconsistentSpacing:
                    warnings.warn("WARNING: Requested tick spacing format cannot be shown by current label format. The tick spacing will not be changed.")
                    return
                self._ax1.yaxis.apl_tick_spacing = au.Angle(degrees=spacing, latitude=self._wcs.yaxis_coord_type == 'latitude')
                self._ax2.yaxis.apl_tick_spacing = au.Angle(degrees=spacing, latitude=self._wcs.yaxis_coord_type == 'latitude')
            else:
                try:
                    su._check_format_spacing_consistency(self._ax1.yaxis.apl_label_form, spacing)
                except au.InconsistentSpacing:
                    warnings.warn("WARNING: Requested tick spacing format cannot be shown by current label format. The tick spacing will not be changed.")
                    return
                self._ax1.yaxis.apl_tick_spacing = spacing
                self._ax2.yaxis.apl_tick_spacing = spacing

        if hasattr(self._parent, 'grid'):
            self._parent.grid._update()

    @auto_refresh
    def set_color(self, color):
        '''
        Set the color of the ticks
        '''

        # Major ticks
        for line in self._ax1.xaxis.get_ticklines():
            line.set_color(color)
        for line in self._ax1.yaxis.get_ticklines():
            line.set_color(color)
        for line in self._ax2.xaxis.get_ticklines():
            line.set_color(color)
        for line in self._ax2.yaxis.get_ticklines():
            line.set_color(color)

        # Minor ticks
        for line in self._ax1.xaxis.get_minorticklines():
            line.set_color(color)
        for line in self._ax1.yaxis.get_minorticklines():
            line.set_color(color)
        for line in self._ax2.xaxis.get_minorticklines():
            line.set_color(color)
        for line in self._ax2.yaxis.get_minorticklines():
            line.set_color(color)

    @auto_refresh
    def set_length(self, length, minor_factor=0.5):
        '''
        Set the length of the ticks (in points)
        '''

        # Major ticks
        for line in self._ax1.xaxis.get_ticklines():
            line.set_markersize(length)
        for line in self._ax1.yaxis.get_ticklines():
            line.set_markersize(length)
        for line in self._ax2.xaxis.get_ticklines():
            line.set_markersize(length)
        for line in self._ax2.yaxis.get_ticklines():
            line.set_markersize(length)

        # Minor ticks
        for line in self._ax1.xaxis.get_minorticklines():
            line.set_markersize(length * minor_factor)
        for line in self._ax1.yaxis.get_minorticklines():
            line.set_markersize(length * minor_factor)
        for line in self._ax2.xaxis.get_minorticklines():
            line.set_markersize(length * minor_factor)
        for line in self._ax2.yaxis.get_minorticklines():
            line.set_markersize(length * minor_factor)

    @auto_refresh
    def set_linewidth(self, linewidth):
        '''
        Set the linewidth of the ticks (in points)
        '''

        # Major ticks
        for line in self._ax1.xaxis.get_ticklines():
            line.set_mew(linewidth)
        for line in self._ax1.yaxis.get_ticklines():
            line.set_mew(linewidth)
        for line in self._ax2.xaxis.get_ticklines():
            line.set_mew(linewidth)
        for line in self._ax2.yaxis.get_ticklines():
            line.set_mew(linewidth)

        # Minor ticks
        for line in self._ax1.xaxis.get_minorticklines():
            line.set_mew(linewidth)
        for line in self._ax1.yaxis.get_minorticklines():
            line.set_mew(linewidth)
        for line in self._ax2.xaxis.get_minorticklines():
            line.set_mew(linewidth)
        for line in self._ax2.yaxis.get_minorticklines():
            line.set_mew(linewidth)

    @auto_refresh
    def set_minor_frequency(self, frequency):
        '''
        Set the number of subticks per major tick. Set to one to hide minor
        ticks.
        '''
        self._ax1.xaxis.get_minor_locator().subticks = frequency
        self._ax1.yaxis.get_minor_locator().subticks = frequency
        self._ax2.xaxis.get_minor_locator().subticks = frequency
        self._ax2.yaxis.get_minor_locator().subticks = frequency

    @auto_refresh
    def show(self):
        """
        Show the x- and y-axis ticks
        """
        self.show_x()
        self.show_y()

    @auto_refresh
    def hide(self):
        """
        Hide the x- and y-axis ticks
        """
        self.hide_x()
        self.hide_y()

    @auto_refresh
    def show_x(self):
        """
        Show the x-axis ticks
        """
        for line in self._ax1.xaxis.get_ticklines():
            line.set_visible(True)
        for line in self._ax2.xaxis.get_ticklines():
            line.set_visible(True)
        for line in self._ax1.xaxis.get_minorticklines():
            line.set_visible(True)
        for line in self._ax2.xaxis.get_minorticklines():
            line.set_visible(True)

    @auto_refresh
    def hide_x(self):
        """
        Hide the x-axis ticks
        """
        for line in self._ax1.xaxis.get_ticklines():
            line.set_visible(False)
        for line in self._ax2.xaxis.get_ticklines():
            line.set_visible(False)
        for line in self._ax1.xaxis.get_minorticklines():
            line.set_visible(False)
        for line in self._ax2.xaxis.get_minorticklines():
            line.set_visible(False)

    @auto_refresh
    def show_y(self):
        """
        Show the y-axis ticks
        """
        for line in self._ax1.yaxis.get_ticklines():
            line.set_visible(True)
        for line in self._ax2.yaxis.get_ticklines():
            line.set_visible(True)
        for line in self._ax1.yaxis.get_minorticklines():
            line.set_visible(True)
        for line in self._ax2.yaxis.get_minorticklines():
            line.set_visible(True)

    @auto_refresh
    def hide_y(self):
        """
        Hide the y-axis ticks
        """
        for line in self._ax1.yaxis.get_ticklines():
            line.set_visible(False)
        for line in self._ax2.yaxis.get_ticklines():
            line.set_visible(False)
        for line in self._ax1.yaxis.get_minorticklines():
            line.set_visible(False)
        for line in self._ax2.yaxis.get_minorticklines():
            line.set_visible(False)


class WCSLocator(Locator):

    def __init__(self, presets=None, wcs=False, coord='x', farside=False, minor=False, subticks=5):
        if presets is None:
            self.presets = {}
        else:
            self.presets = presets
        self._wcs = wcs
        self.coord = coord
        self.farside = farside
        self.minor = minor
        self.subticks = subticks

    def __call__(self):

        self.coord_type = self._wcs.xaxis_coord_type if self.coord == 'x' else self._wcs.yaxis_coord_type

        ymin, ymax = self.axis.get_axes().yaxis.get_view_interval()
        xmin, xmax = self.axis.get_axes().xaxis.get_view_interval()

        if self.axis.apl_auto_tick_spacing:
            self.axis.apl_tick_spacing = default_spacing(self.axis.get_axes(), self.coord, self.axis.apl_label_form)
            if self.axis.apl_tick_spacing is None:
                self.axis.apl_tick_positions_pix = []
                self.axis.apl_tick_positions_world = []
                return []

        if self.coord_type in ['longitude', 'latitude']:
            tick_spacing = self.axis.apl_tick_spacing.todegrees()
        else:
            tick_spacing = self.axis.apl_tick_spacing

        if self.minor:
            tick_spacing /= float(self.subticks)

        px, py, wx = tick_positions(self._wcs, tick_spacing, self.coord, self.coord, farside=self.farside, xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, mode='xscaled')
        px, py, wx = np.array(px, float), np.array(py, float), np.array(wx, int)

        if self.minor:
            keep = np.mod(wx, self.subticks) > 0
            px, py, wx = px[keep], py[keep], wx[keep] / float(self.subticks)

        self.axis.apl_tick_positions_world = np.array(wx, int)

        if self.coord == 'x':
            self.axis.apl_tick_positions_pix = px
        else:
            self.axis.apl_tick_positions_pix = py

        return self.axis.apl_tick_positions_pix


def default_spacing(ax, coord, format):

    wcs = ax._wcs

    xmin, xmax = ax.xaxis.get_view_interval()
    ymin, ymax = ax.yaxis.get_view_interval()

    px, py, wx, wy = axis_positions(wcs, coord, False, xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax)

    # Keep only pixels that fall inside the sky. This will only really work
    # for PyWCS 0.11 or more recent
    keep = ~np.isnan(wx) & ~np.isnan(wy)

    if np.sum(keep) == 0:
        return None
    else:
        px = px[keep]
        py = py[keep]
        wx = wx[keep]
        wy = wy[keep]

    coord_type = wcs.xaxis_coord_type if coord == 'x' else wcs.yaxis_coord_type

    if coord == 'x':

        # The following is required because PyWCS 0.10 and earlier did not return
        # NaNs for positions outside the sky, but instead returned an array with
        # all the same world coordinates regardless of input pixel coordinates.
        if len(wx) > 1 and len(np.unique(wx)) == 1:
            return None

        if coord_type in ['longitude', 'latitude']:
            if coord_type == 'longitude':
                wxmin, wxmax = math_util.smart_range(wx)
            else:
                wxmin, wxmax = min(wx), max(wx)
            if 'd.' in format:
                spacing = au.smart_round_angle_decimal((wxmax - wxmin) / 5., latitude=coord_type == 'latitude')
            else:
                spacing = au.smart_round_angle_sexagesimal((wxmax - wxmin) / 5., latitude=coord_type == 'latitude', hours='hh' in format)
        else:
            wxmin, wxmax = np.min(wx), np.max(wx)
            spacing = su.smart_round_angle_decimal((wxmax - wxmin) / 5.)
    else:

        # The following is required because PyWCS 0.10 and earlier did not return
        # NaNs for positions outside the sky, but instead returned an array with
        # all the same world coordinates regardless of input pixel coordinates.
        if len(wy) > 1 and len(np.unique(wy)) == 1:
            return None

        if coord_type in ['longitude', 'latitude']:
            if coord_type == 'longitude':
                wymin, wymax = math_util.smart_range(wy)
            else:
                wymin, wymax = min(wy), max(wy)
            if 'd.' in format:
                spacing = au.smart_round_angle_decimal((wymax - wymin) / 5., latitude=coord_type == 'latitude')
            else:
                spacing = au.smart_round_angle_sexagesimal((wymax - wymin) / 5., latitude=coord_type == 'latitude', hours='hh' in format)
        else:
            wymin, wymax = np.min(wy), np.max(wy)
            spacing = su.smart_round_angle_decimal((wymax - wymin) / 5.)

    # Find minimum spacing allowed by labels
    if coord_type in ['longitude', 'latitude']:
        min_spacing = au._get_label_precision(format, latitude=coord_type == 'latitude')
        if min_spacing.todegrees() > spacing.todegrees():
            return min_spacing
        else:
            return spacing
    else:
        min_spacing = su._get_label_precision(format)
        if min_spacing is not None and min_spacing > spacing:
            return min_spacing
        else:
            return spacing


def tick_positions(wcs, spacing, axis, coord, farside=False,
                   xmin=False, xmax=False, ymin=False, ymax=False,
                   mode='xscaled'):
    '''
    Find positions of ticks along a given axis.

    Parameters
    ----------

    wcs : ~aplpy.wcs_util.WCS
       The WCS instance for the image.

    spacing : float
       The spacing along the axis.

    axis : { 'x', 'y' }
       The axis along which we are looking for ticks.

    coord : { 'x', 'y' }
       The coordinate for which we are looking for ticks.

    farside : bool, optional
       Whether we are looking on the left or bottom axes (False) or the
       right or top axes (True).

    xmin, xmax, ymin, ymax : float, optional
       The range of pixel values covered by the image.

    mode : { 'xy', 'xscaled' }, optional
       If set to 'xy' the function returns the world coordinates of the
       ticks. If 'xscaled', then only the coordinate requested is
       returned, in units of the tick spacing.
    '''

    (px, py, wx, wy) = axis_positions(wcs, axis, farside, xmin, xmax, ymin, ymax)

    if coord == 'x':
        warr, walt = wx, wy
    else:
        warr, walt = wy, wx

    # Check for 360 degree transition, and if encountered,
    # change the values so that there is continuity

    if (coord == 'x' and wcs.xaxis_coord_type == 'longitude') or \
       (coord == 'y' and wcs.yaxis_coord_type == 'longitude'):
        for i in range(0, len(warr) - 1):
            if(abs(warr[i] - warr[i + 1]) > 180.):
                if(warr[i] > warr[i + 1]):
                    warr[i + 1:] = warr[i + 1:] + 360.
                else:
                    warr[i + 1:] = warr[i + 1:] - 360.

    # Convert warr to units of the spacing, then ticks are at integer values
    warr = warr / spacing

    # Create empty arrays for tick positions
    iall = []
    wall = []

    # Loop over ticks which lie in the range covered by the axis
    for w in np.arange(np.floor(min(warr)), np.ceil(max(warr)), 1.):

        # Find all the positions at which to interpolate
        inter = np.where(((warr[:-1] <= w) & (warr[1:] > w)) | ((warr[:-1] > w) & (warr[1:] <= w)))[0]

        # If there are any intersections, keep the indices, and the position
        # of the interpolation
        if len(inter) > 0:
            iall.append(inter.astype(int))
            wall.append(np.repeat(w, len(inter)).astype(float))

    if len(iall) > 0:
        iall = np.hstack(iall)
        wall = np.hstack(wall)
    else:
        if mode == 'xscaled':
            return [], [], []
        else:
            return [], [], [], []

    # Now we can interpolate as needed
    dwarr = warr[1:] - warr[:-1]
    px_out = px[:-1][iall] + (px[1:][iall] - px[:-1][iall]) * (wall - warr[:-1][iall]) / dwarr[iall]
    py_out = py[:-1][iall] + (py[1:][iall] - py[:-1][iall]) * (wall - warr[:-1][iall]) / dwarr[iall]

    if mode == 'xscaled':
        warr_out = wall
        return px_out, py_out, warr_out
    elif mode == 'xy':
        warr_out = wall * spacing
        walt_out = walt[:-1][iall] + (walt[1:][iall] - walt[:-1][iall]) * (wall - warr[:-1][iall]) / dwarr[iall]
        if coord == 'x':
            return px_out, py_out, warr_out, walt_out
        else:
            return px_out, py_out, walt_out, warr_out


def axis_positions(wcs, axis, farside, xmin=False, xmax=False,
                                       ymin=False, ymax=False):
    '''
    Find the world coordinates of all pixels along an axis.

    Parameters
    ----------

    wcs : ~aplpy.wcs_util.WCS
       The WCS instance for the image.

    axis : { 'x', 'y' }
       The axis along which we are computing world coordinates.

    farside : bool
       Whether we are looking on the left or bottom axes (False) or the
       right or top axes (True).

    xmin, xmax, ymin, ymax : float, optional
       The range of pixel values covered by the image
    '''

    if not xmin:
        xmin = 0.5
    if not xmax:
        xmax = 0.5 + wcs.nx
    if not ymin:
        ymin = 0.5
    if not ymax:
        ymax = 0.5 + wcs.ny

    # Check options
    assert axis == 'x' or axis == 'y', "The axis= argument should be set to x or y"

    # Generate an array of pixel values for the x-axis
    if axis == 'x':
        x_pix = np.linspace(xmin, xmax, 512)
        y_pix = np.ones(np.shape(x_pix))
        if(farside):
            y_pix = y_pix * ymax
        else:
            y_pix = y_pix * ymin
    else:
        y_pix = np.linspace(ymin, ymax, 512)
        x_pix = np.ones(np.shape(y_pix))
        if(farside):
            x_pix = x_pix * xmax
        else:
            x_pix = x_pix * xmin

    # Convert these to world coordinates
    x_world, y_world = wcs_util.pix2world(wcs, x_pix, y_pix)

    return x_pix, y_pix, x_world, y_world


def coord_range(wcs):
    '''
    Find the range of coordinates that intersect the axes.

    Parameters
    ----------

    wcs : ~aplpy.wcs_util.WCS
        The WCS instance for the image.
    '''

    x_pix, y_pix, x_world_1, y_world_1 = axis_positions(wcs, 'x', farside=False)
    x_pix, y_pix, x_world_2, y_world_2 = axis_positions(wcs, 'x', farside=True)
    x_pix, y_pix, x_world_3, y_world_3 = axis_positions(wcs, 'y', farside=False)
    x_pix, y_pix, x_world_4, y_world_4 = axis_positions(wcs, 'y', farside=True)

    x_world = np.hstack([x_world_1, x_world_2, x_world_3, x_world_4])
    y_world = np.hstack([y_world_1, y_world_2, y_world_3, y_world_4])

    x_min = min(x_world)
    x_max = max(x_world)
    y_min = min(y_world)
    y_max = max(y_world)

    return x_min, x_max, y_min, y_max