This file is indexed.

/usr/lib/python3/dist-packages/cachetools/func.py is in python3-cachetools 1.1.5-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
"""`functools.lru_cache` compatible memoizing function decorators."""

import collections
import functools
import random
import time
import warnings

try:
    from threading import RLock
except ImportError:
    from dummy_threading import RLock

from .keys import hashkey, typedkey

__all__ = ('lfu_cache', 'lru_cache', 'rr_cache', 'ttl_cache')


class _NLock:
    def __enter__(self):
        pass

    def __exit__(self, *exc):
        pass

_CacheInfo = collections.namedtuple('CacheInfo', [
    'hits', 'misses', 'maxsize', 'currsize'
])

_marker = object()


def _deprecated(message, level=2):
    warnings.warn('%s is deprecated' % message, DeprecationWarning, level)


def _cache(cache, typed=False, context=_marker):
    def decorator(func):
        key = typedkey if typed else hashkey
        if context is _marker:
            lock = RLock()
        elif context is None:
            lock = _NLock()
        else:
            lock = context()
        stats = [0, 0]

        def cache_info():
            with lock:
                hits, misses = stats
                maxsize = cache.maxsize
                currsize = cache.currsize
            return _CacheInfo(hits, misses, maxsize, currsize)

        def cache_clear():
            with lock:
                try:
                    cache.clear()
                finally:
                    stats[:] = [0, 0]

        def wrapper(*args, **kwargs):
            k = key(*args, **kwargs)
            with lock:
                try:
                    v = cache[k]
                    stats[0] += 1
                    return v
                except KeyError:
                    stats[1] += 1
            v = func(*args, **kwargs)
            try:
                with lock:
                    cache[k] = v
            except ValueError:
                pass  # value too large
            return v
        functools.update_wrapper(wrapper, func)
        if not hasattr(wrapper, '__wrapped__'):
            wrapper.__wrapped__ = func  # Python < 3.2
        wrapper.cache_info = cache_info
        wrapper.cache_clear = cache_clear
        return wrapper
    return decorator


def lfu_cache(maxsize=128, typed=False, getsizeof=None, lock=_marker):
    """Decorator to wrap a function with a memoizing callable that saves
    up to `maxsize` results based on a Least Frequently Used (LFU)
    algorithm.

    """
    from .lfu import LFUCache
    if lock is not _marker:
        _deprecated("Passing 'lock' to lfu_cache()", 3)
    return _cache(LFUCache(maxsize, getsizeof), typed, lock)


def lru_cache(maxsize=128, typed=False, getsizeof=None, lock=_marker):
    """Decorator to wrap a function with a memoizing callable that saves
    up to `maxsize` results based on a Least Recently Used (LRU)
    algorithm.

    """
    from .lru import LRUCache
    if lock is not _marker:
        _deprecated("Passing 'lock' to lru_cache()", 3)
    return _cache(LRUCache(maxsize, getsizeof), typed, lock)


def rr_cache(maxsize=128, choice=random.choice, typed=False, getsizeof=None,
             lock=_marker):
    """Decorator to wrap a function with a memoizing callable that saves
    up to `maxsize` results based on a Random Replacement (RR)
    algorithm.

    """
    from .rr import RRCache
    if lock is not _marker:
        _deprecated("Passing 'lock' to rr_cache()", 3)
    return _cache(RRCache(maxsize, choice, getsizeof), typed, lock)


def ttl_cache(maxsize=128, ttl=600, timer=time.time, typed=False,
              getsizeof=None, lock=_marker):
    """Decorator to wrap a function with a memoizing callable that saves
    up to `maxsize` results based on a Least Recently Used (LRU)
    algorithm with a per-item time-to-live (TTL) value.
    """
    from .ttl import TTLCache
    if lock is not _marker:
        _deprecated("Passing 'lock' to ttl_cache()", 3)
    return _cache(TTLCache(maxsize, ttl, timer, getsizeof), typed, lock)