/usr/lib/python3/dist-packages/cairocffi/context.py is in python3-cairocffi 0.7.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 | # coding: utf8
"""
cairocffi.context
~~~~~~~~~~~~~~~~~
Bindings for Context objects.
:copyright: Copyright 2013 by Simon Sapin
:license: BSD, see LICENSE for details.
"""
from . import ffi, cairo, _check_status, constants
from .matrix import Matrix
from .patterns import Pattern
from .surfaces import Surface
from .fonts import FontFace, ScaledFont, FontOptions, _encode_string
from .compat import xrange
PATH_POINTS_PER_TYPE = {
constants.PATH_MOVE_TO: 1,
constants.PATH_LINE_TO: 1,
constants.PATH_CURVE_TO: 3,
constants.PATH_CLOSE_PATH: 0
}
def _encode_path(path_items):
"""Take an iterable of ``(path_operation, coordinates)`` tuples
in the same format as from :meth:`Context.copy_path`
and return a ``(path, data)`` tuple of cdata object.
The first cdata object is a ``cairo_path_t *`` pointer
that can be used as long as both objects live.
"""
points_per_type = PATH_POINTS_PER_TYPE
path_items = list(path_items)
length = 0
for path_type, coordinates in path_items:
num_points = points_per_type[path_type]
length += 1 + num_points # 1 header + N points
if len(coordinates) != 2 * num_points:
raise ValueError('Expected %d coordinates, got %d.' % (
2 * num_points, len(coordinates)))
data = ffi.new('cairo_path_data_t[]', length)
position = 0
for path_type, coordinates in path_items:
header = data[position].header
header.type = path_type
header.length = 1 + len(coordinates) // 2
position += 1
for i in xrange(0, len(coordinates), 2):
point = data[position].point
point.x = coordinates[i]
point.y = coordinates[i + 1]
position += 1
path = ffi.new('cairo_path_t *', {'status': constants.STATUS_SUCCESS, 'data': data, 'num_data': length})
return path, data
def _iter_path(pointer):
"""Take a cairo_path_t * pointer
and yield ``(path_operation, coordinates)`` tuples.
See :meth:`Context.copy_path` for the data structure.
"""
_check_status(pointer.status)
data = pointer.data
num_data = pointer.num_data
points_per_type = PATH_POINTS_PER_TYPE
position = 0
while position < num_data:
path_data = data[position]
path_type = path_data.header.type
points = ()
for i in xrange(points_per_type[path_type]):
point = data[position + i + 1].point
points += (point.x, point.y)
yield (path_type, points)
position += path_data.header.length
class Context(object):
"""A :class:`Context` contains the current state of the rendering device,
including coordinates of yet to be drawn shapes.
Cairo contexts are central to cairo
and all drawing with cairo is always done to a :class:`Context` object.
:param target: The target :class:`Surface` object.
Cairo contexts can be used as Python :ref:`context managers <with>`.
See :meth:`save`.
"""
def __init__(self, target):
self._init_pointer(cairo.cairo_create(target._pointer))
def _init_pointer(self, pointer):
self._pointer = ffi.gc(pointer, cairo.cairo_destroy)
self._check_status()
def _check_status(self):
_check_status(cairo.cairo_status(self._pointer))
@classmethod
def _from_pointer(cls, pointer, incref):
"""Wrap an existing :c:type:`cairo_t *` cdata pointer.
:type incref: bool
:param incref:
Whether increase the :ref:`reference count <refcounting>` now.
:return:
A new :class:`Context` instance.
"""
if pointer == ffi.NULL:
raise ValueError('Null pointer')
if incref:
cairo.cairo_reference(pointer)
self = object.__new__(cls)
cls._init_pointer(self, pointer)
return self
def get_target(self):
"""Return this context’s target surface.
:returns:
An instance of :class:`Surface` or one of its sub-classes,
a new Python object referencing the existing cairo surface.
"""
return Surface._from_pointer(
cairo.cairo_get_target(self._pointer), incref=True)
#
# Save / restore
#
def save(self):
"""Makes a copy of the current state of this context
and saves it on an internal stack of saved states.
When :meth:`restore` is called,
the context will be restored to the saved state.
Multiple calls to :meth:`save` and :meth:`restore` can be nested;
each call to :meth:`restore` restores the state
from the matching paired :meth:`save`.
Instead of using :meth:`save` and :meth:`restore` directly,
it is recommended to use a :ref:`with statement <with>`::
with context:
do_something(context)
… which is equivalent to::
context.save()
try:
do_something(context)
finally:
context.restore()
"""
cairo.cairo_save(self._pointer)
self._check_status()
def restore(self):
"""Restores the context to the state saved
by a preceding call to :meth:`save`
and removes that state from the stack of saved states.
"""
cairo.cairo_restore(self._pointer)
self._check_status()
def __enter__(self):
self.save()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.restore()
#
# Groups
#
def push_group(self):
"""Temporarily redirects drawing to an intermediate surface
known as a group.
The redirection lasts until the group is completed
by a call to :meth:`pop_group` or :meth:`pop_group_to_source`.
These calls provide the result of any drawing
to the group as a pattern,
(either as an explicit object, or set as the source pattern).
This group functionality can be convenient
for performing intermediate compositing.
One common use of a group is to render objects
as opaque within the group, (so that they occlude each other),
and then blend the result with translucence onto the destination.
Groups can be nested arbitrarily deep
by making balanced calls to :meth:`push_group` / :meth:`pop_group`.
Each call pushes / pops the new target group onto / from a stack.
The :meth:`group` method calls :meth:`save`
so that any changes to the graphics state
will not be visible outside the group,
(the pop_group methods call :meth:`restore`).
By default the intermediate group will have
a content type of :obj:`COLOR_ALPHA <CONTENT_COLOR_ALPHA>`.
Other content types can be chosen for the group
by using :meth:`push_group_with_content` instead.
As an example,
here is how one might fill and stroke a path with translucence,
but without any portion of the fill being visible under the stroke::
context.push_group()
context.set_source(fill_pattern)
context.fill_preserve()
context.set_source(stroke_pattern)
context.stroke()
context.pop_group_to_source()
context.paint_with_alpha(alpha)
"""
cairo.cairo_push_group(self._pointer)
self._check_status()
def push_group_with_content(self, content):
"""Temporarily redirects drawing to an intermediate surface
known as a group.
The redirection lasts until the group is completed
by a call to :meth:`pop_group` or :meth:`pop_group_to_source`.
These calls provide the result of any drawing
to the group as a pattern,
(either as an explicit object, or set as the source pattern).
The group will have a content type of :obj:`content`.
The ability to control this content type
is the only distinction between this method and :meth:`push_group`
which you should see for a more detailed description
of group rendering.
:param content: A :ref:`CONTENT` string.
"""
cairo.cairo_push_group_with_content(self._pointer, content)
self._check_status()
def pop_group(self):
"""Terminates the redirection begun by a call to :meth:`push_group`
or :meth:`push_group_with_content`
and returns a new pattern containing the results
of all drawing operations performed to the group.
The :meth:`pop_group` method calls :meth:`restore`,
(balancing a call to :meth:`save` by the push_group method),
so that any changes to the graphics state
will not be visible outside the group.
:returns:
A newly created :class:`SurfacePattern`
containing the results of all drawing operations
performed to the group.
"""
return Pattern._from_pointer(
cairo.cairo_pop_group(self._pointer), incref=False)
def pop_group_to_source(self):
"""Terminates the redirection begun by a call to :meth:`push_group`
or :meth:`push_group_with_content`
and installs the resulting pattern
as the source pattern in the given cairo context.
The behavior of this method is equivalent to::
context.set_source(context.pop_group())
"""
cairo.cairo_pop_group_to_source(self._pointer)
self._check_status()
def get_group_target(self):
"""Returns the current destination surface for the context.
This is either the original target surface
as passed to :class:`Context`
or the target surface for the current group as started
by the most recent call to :meth:`push_group`
or :meth:`push_group_with_content`.
"""
return Surface._from_pointer(
cairo.cairo_get_group_target(self._pointer), incref=True)
#
# Sources
#
def set_source_rgba(self, red, green, blue, alpha=1):
"""Sets the source pattern within this context to a solid color.
This color will then be used for any subsequent drawing operation
until a new source pattern is set.
The color and alpha components are
floating point numbers in the range 0 to 1.
If the values passed in are outside that range, they will be clamped.
The default source pattern is opaque black,
(that is, it is equivalent to ``context.set_source_rgba(0, 0, 0)``).
:param red: Red component of the color.
:param green: Green component of the color.
:param blue: Blue component of the color.
:param alpha:
Alpha component of the color.
1 (the default) is opaque, 0 fully transparent.
:type red: float
:type green: float
:type blue: float
:type alpha: float
"""
cairo.cairo_set_source_rgba(self._pointer, red, green, blue, alpha)
self._check_status()
def set_source_rgb(self, red, green, blue):
"""Same as :meth:`set_source_rgba` with alpha always 1.
Exists for compatibility with pycairo.
"""
cairo.cairo_set_source_rgb(self._pointer, red, green, blue)
self._check_status()
def set_source_surface(self, surface, x=0, y=0):
"""This is a convenience method for creating a pattern from surface
and setting it as the source in this context with :meth:`set_source`.
The :obj:`x` and :obj:`y` parameters give the user-space coordinate
at which the surface origin should appear.
(The surface origin is its upper-left corner
before any transformation has been applied.)
The :obj:`x` and :obj:`y` parameters are negated
and then set as translation values in the pattern matrix.
Other than the initial translation pattern matrix, as described above,
all other pattern attributes, (such as its extend mode),
are set to the default values as in :class:`SurfacePattern`.
The resulting pattern can be queried with :meth:`get_source`
so that these attributes can be modified if desired,
(eg. to create a repeating pattern with :meth:`Pattern.set_extend`).
:param surface:
A :class:`Surface` to be used to set the source pattern.
:param x: User-space X coordinate for surface origin.
:param y: User-space Y coordinate for surface origin.
:type x: float
:type y: float
"""
cairo.cairo_set_source_surface(self._pointer, surface._pointer, x, y)
self._check_status()
def set_source(self, source):
"""Sets the source pattern within this context to :obj:`source`.
This pattern will then be used for any subsequent drawing operation
until a new source pattern is set.
.. note::
The pattern's transformation matrix will be locked
to the user space in effect at the time of :meth:`set_source`.
This means that further modifications
of the current transformation matrix
will not affect the source pattern.
See :meth:`Pattern.set_matrix`.
The default source pattern is opaque black,
(that is, it is equivalent to ``context.set_source_rgba(0, 0, 0)``).
:param source:
A :class:`Pattern` to be used
as the source for subsequent drawing operations.
"""
cairo.cairo_set_source(self._pointer, source._pointer)
self._check_status()
def get_source(self):
"""Return this context’s source.
:returns:
An instance of :class:`Pattern` or one of its sub-classes,
a new Python object referencing the existing cairo pattern.
"""
return Pattern._from_pointer(
cairo.cairo_get_source(self._pointer), incref=True)
#
# Context parameters
#
def set_antialias(self, antialias):
"""Set the :ref:`ANTIALIAS` of the rasterizer used for drawing shapes.
This value is a hint,
and a particular backend may or may not support a particular value.
At the current time,
no backend supports :obj:`SUBPIXEL <ANTIALIAS_SUBPIXEL>`
when drawing shapes.
Note that this option does not affect text rendering,
instead see :meth:`FontOptions.set_antialias`.
:param antialias: An :ref:`ANTIALIAS` string.
"""
cairo.cairo_set_antialias(self._pointer, antialias)
self._check_status()
def get_antialias(self):
"""Return the :ref:`ANTIALIAS` string."""
return cairo.cairo_get_antialias(self._pointer)
def set_dash(self, dashes, offset=0):
"""Sets the dash pattern to be used by :meth:`stroke`.
A dash pattern is specified by dashes, a list of positive values.
Each value provides the length of alternate "on" and "off"
portions of the stroke.
:obj:`offset` specifies an offset into the pattern
at which the stroke begins.
Each "on" segment will have caps applied
as if the segment were a separate sub-path.
In particular, it is valid to use an "on" length of 0
with :obj:`LINE_CAP_ROUND` or :obj:`LINE_CAP_SQUARE`
in order to distributed dots or squares along a path.
Note: The length values are in user-space units
as evaluated at the time of stroking.
This is not necessarily the same as the user space
at the time of :meth:`set_dash`.
If :obj:`dashes` is empty dashing is disabled.
If it is of length 1 a symmetric pattern is assumed
with alternating on and off portions of the size specified
by the single value.
:param dashes:
A list of floats specifying alternate lengths
of on and off stroke portions.
:type offset: float
:param offset:
An offset into the dash pattern at which the stroke should start.
:raises:
:exc:`CairoError`
if any value in dashes is negative,
or if all values are 0.
The context will be put into an error state.
"""
cairo.cairo_set_dash(
self._pointer, ffi.new('double[]', dashes), len(dashes), offset)
self._check_status()
def get_dash(self):
"""Return the current dash pattern.
:returns:
A ``(dashes, offset)`` tuple of a list and a float.
:obj:`dashes` is a list of floats,
empty if no dashing is in effect.
"""
dashes = ffi.new('double[]', cairo.cairo_get_dash_count(self._pointer))
offset = ffi.new('double *')
cairo.cairo_get_dash(self._pointer, dashes, offset)
self._check_status()
return list(dashes), offset[0]
def get_dash_count(self):
"""Same as ``len(context.get_dash()[0])``."""
# Not really useful with get_dash() returning a list,
# but retained for compatibility with pycairo.
return cairo.cairo_get_dash_count(self._pointer)
def set_fill_rule(self, fill_rule):
"""Set the current :ref:`FILL_RULE` within the cairo context.
The fill rule is used to determine which regions are inside
or outside a complex (potentially self-intersecting) path.
The current fill rule affects both :meth:`fill` and :meth:`clip`.
The default fill rule is :obj:`WINDING <FILL_RULE_WINDING>`.
:param fill_rule: A :ref:`FILL_RULE` string.
"""
cairo.cairo_set_fill_rule(self._pointer, fill_rule)
self._check_status()
def get_fill_rule(self):
"""Return the current :ref:`FILL_RULE` string."""
return cairo.cairo_get_fill_rule(self._pointer)
def set_line_cap(self, line_cap):
"""Set the current :ref:`LINE_CAP` within the cairo context.
As with the other stroke parameters,
the current line cap style is examined by
:meth:`stroke`, :meth:`stroke_extents`, and :meth:`stroke_to_path`,
but does not have any effect during path construction.
The default line cap is :obj:`BUTT <LINE_CAP_BUTT>`.
:param line_cap: A :ref:`LINE_CAP` string.
"""
cairo.cairo_set_line_cap(self._pointer, line_cap)
self._check_status()
def get_line_cap(self):
"""Return the current :ref:`LINE_CAP` string."""
return cairo.cairo_get_line_cap(self._pointer)
def set_line_join(self, line_join):
"""Set the current :ref:`LINE_JOIN` within the cairo context.
As with the other stroke parameters,
the current line cap style is examined by
:meth:`stroke`, :meth:`stroke_extents`, and :meth:`stroke_to_path`,
but does not have any effect during path construction.
The default line cap is :obj:`MITER <LINE_JOIN_MITER>`.
:param line_join: A :ref:`LINE_JOIN` string.
"""
cairo.cairo_set_line_join(self._pointer, line_join)
self._check_status()
def get_line_join(self):
"""Return the current :ref:`LINE_JOIN` string."""
return cairo.cairo_get_line_join(self._pointer)
def set_line_width(self, width):
"""Sets the current line width within the cairo context.
The line width value specifies the diameter of a pen
that is circular in user space,
(though device-space pen may be an ellipse in general
due to scaling / shear / rotation of the CTM).
.. note::
When the description above refers to user space and CTM
it refers to the user space and CTM in effect
at the time of the stroking operation,
not the user space and CTM in effect
at the time of the call to :meth:`set_line_width`.
The simplest usage makes both of these spaces identical.
That is, if there is no change to the CTM
between a call to :meth:`set_line_width`
and the stroking operation,
then one can just pass user-space values to :meth:`set_line_width`
and ignore this note.
As with the other stroke parameters,
the current line cap style is examined by
:meth:`stroke`, :meth:`stroke_extents`, and :meth:`stroke_to_path`,
but does not have any effect during path construction.
The default line width value is 2.0.
:type width: float
:param width: The new line width.
"""
cairo.cairo_set_line_width(self._pointer, width)
self._check_status()
def get_line_width(self):
"""Return the current line width as a float."""
return cairo.cairo_get_line_width(self._pointer)
def set_miter_limit(self, limit):
"""Sets the current miter limit within the cairo context.
If the current line join style is set to :obj:`MITER <LINE_JOIN_MITER>`
(see :meth:`set_line_join`),
the miter limit is used to determine
whether the lines should be joined with a bevel instead of a miter.
Cairo divides the length of the miter by the line width.
If the result is greater than the miter limit,
the style is converted to a bevel.
As with the other stroke parameters,
the current line cap style is examined by
:meth:`stroke`, :meth:`stroke_extents`, and :meth:`stroke_to_path`,
but does not have any effect during path construction.
The default miter limit value is 10.0,
which will convert joins with interior angles less than 11 degrees
to bevels instead of miters.
For reference,
a miter limit of 2.0 makes the miter cutoff at 60 degrees,
and a miter limit of 1.414 makes the cutoff at 90 degrees.
A miter limit for a desired angle can be computed as:
``miter_limit = 1. / sin(angle / 2.)``
:param limit: The miter limit to set.
:type limit: float
"""
cairo.cairo_set_miter_limit(self._pointer, limit)
self._check_status()
def get_miter_limit(self):
"""Return the current miter limit as a float."""
return cairo.cairo_get_miter_limit(self._pointer)
def set_operator(self, operator):
"""Set the current :ref:`OPERATOR`
to be used for all drawing operations.
The default operator is :obj:`OVER <OPERATOR_OVER>`.
:param operator: A :ref:`OPERATOR` string.
"""
cairo.cairo_set_operator(self._pointer, operator)
self._check_status()
def get_operator(self):
"""Return the current :ref:`OPERATOR` string."""
return cairo.cairo_get_operator(self._pointer)
def set_tolerance(self, tolerance):
"""Sets the tolerance used when converting paths into trapezoids.
Curved segments of the path will be subdivided
until the maximum deviation between the original path
and the polygonal approximation is less than tolerance.
The default value is 0.1.
A larger value will give better performance,
a smaller value, better appearance.
(Reducing the value from the default value of 0.1
is unlikely to improve appearance significantly.)
The accuracy of paths within Cairo is limited
by the precision of its internal arithmetic,
and the prescribed tolerance is restricted
to the smallest representable internal value.
:type tolerance: float
:param tolerance: The tolerance, in device units (typically pixels)
"""
cairo.cairo_set_tolerance(self._pointer, tolerance)
self._check_status()
def get_tolerance(self):
"""Return the current tolerance as a float."""
return cairo.cairo_get_tolerance(self._pointer)
#
# CTM: Current transformation matrix
#
def translate(self, tx, ty):
"""Modifies the current transformation matrix (CTM)
by translating the user-space origin by ``(tx, ty)``.
This offset is interpreted as a user-space coordinate
according to the CTM in place before the new call to :meth:`translate`.
In other words, the translation of the user-space origin takes place
after any existing transformation.
:param tx: Amount to translate in the X direction
:param ty: Amount to translate in the Y direction
:type tx: float
:type ty: float
"""
cairo.cairo_translate(self._pointer, tx, ty)
self._check_status()
def scale(self, sx, sy=None):
"""Modifies the current transformation matrix (CTM)
by scaling the X and Y user-space axes
by :obj:`sx` and :obj:`sy` respectively.
The scaling of the axes takes place after
any existing transformation of user space.
If :obj:`sy` is omitted, it is the same as :obj:`sx`
so that scaling preserves aspect ratios.
:param sx: Scale factor in the X direction.
:param sy: Scale factor in the Y direction.
:type sx: float
:type sy: float
"""
if sy is None:
sy = sx
cairo.cairo_scale(self._pointer, sx, sy)
self._check_status()
def rotate(self, radians):
"""Modifies the current transformation matrix (CTM)
by rotating the user-space axes by angle :obj:`radians`.
The rotation of the axes takes places
after any existing transformation of user space.
:type radians: float
:param radians:
Angle of rotation, in radians.
The direction of rotation is defined such that positive angles
rotate in the direction from the positive X axis
toward the positive Y axis.
With the default axis orientation of cairo,
positive angles rotate in a clockwise direction.
"""
cairo.cairo_rotate(self._pointer, radians)
self._check_status()
def transform(self, matrix):
"""Modifies the current transformation matrix (CTM)
by applying :obj:`matrix` as an additional transformation.
The new transformation of user space takes place
after any existing transformation.
:param matrix:
A transformation :class:`Matrix`
to be applied to the user-space axes.
"""
cairo.cairo_transform(self._pointer, matrix._pointer)
self._check_status()
def set_matrix(self, matrix):
"""Modifies the current transformation matrix (CTM)
by setting it equal to :obj:`matrix`.
:param matrix:
A transformation :class:`Matrix` from user space to device space.
"""
cairo.cairo_set_matrix(self._pointer, matrix._pointer)
self._check_status()
def get_matrix(self):
"""Return a copy of the current transformation matrix (CTM)."""
matrix = Matrix()
cairo.cairo_get_matrix(self._pointer, matrix._pointer)
self._check_status()
return matrix
def identity_matrix(self):
"""Resets the current transformation matrix (CTM)
by setting it equal to the identity matrix.
That is, the user-space and device-space axes will be aligned
and one user-space unit will transform to one device-space unit.
"""
cairo.cairo_identity_matrix(self._pointer)
self._check_status()
def user_to_device(self, x, y):
"""Transform a coordinate from user space to device space
by multiplying the given point
by the current transformation matrix (CTM).
:param x: X position.
:param y: Y position.
:type x: float
:type y: float
:returns: A ``(device_x, device_y)`` tuple of floats.
"""
xy = ffi.new('double[2]', [x, y])
cairo.cairo_user_to_device(self._pointer, xy + 0, xy + 1)
self._check_status()
return tuple(xy)
def user_to_device_distance(self, dx, dy):
"""Transform a distance vector from user space to device space.
This method is similar to :meth:`Context.user_to_device`
except that the translation components of the CTM
will be ignored when transforming ``(dx, dy)``.
:param dx: X component of a distance vector.
:param dy: Y component of a distance vector.
:type x: float
:type y: float
:returns: A ``(device_dx, device_dy)`` tuple of floats.
"""
xy = ffi.new('double[2]', [dx, dy])
cairo.cairo_user_to_device_distance(self._pointer, xy + 0, xy + 1)
self._check_status()
return tuple(xy)
def device_to_user(self, x, y):
"""Transform a coordinate from device space to user space
by multiplying the given point
by the inverse of the current transformation matrix (CTM).
:param x: X position.
:param y: Y position.
:type x: float
:type y: float
:returns: A ``(user_x, user_y)`` tuple of floats.
"""
xy = ffi.new('double[2]', [x, y])
cairo.cairo_device_to_user(self._pointer, xy + 0, xy + 1)
self._check_status()
return tuple(xy)
def device_to_user_distance(self, dx, dy):
"""Transform a distance vector from device space to user space.
This method is similar to :meth:`Context.device_to_user`
except that the translation components of the inverse CTM
will be ignored when transforming ``(dx, dy)``.
:param dx: X component of a distance vector.
:param dy: Y component of a distance vector.
:type x: float
:type y: float
:returns: A ``(user_dx, user_dy)`` tuple of floats.
"""
xy = ffi.new('double[2]', [dx, dy])
cairo.cairo_device_to_user_distance(self._pointer, xy + 0, xy + 1)
self._check_status()
return tuple(xy)
#
# Path
#
def has_current_point(self):
"""Returns whether a current point is defined on the current path.
See :meth:`get_current_point`.
"""
return bool(cairo.cairo_has_current_point(self._pointer))
def get_current_point(self):
"""Return the current point of the current path,
which is conceptually the final point reached by the path so far.
The current point is returned in the user-space coordinate system.
If there is no defined current point
or if the context is in an error status,
``(0, 0)`` is returned.
It is possible to check this in advance with :meth:`has_current_point`.
Most path construction methods alter the current point.
See the following for details on how they affect the current point:
:meth:`new_path`,
:meth:`new_sub_path`,
:meth:`append_path`,
:meth:`close_path`,
:meth:`move_to`,
:meth:`line_to`,
:meth:`curve_to`,
:meth:`rel_move_to`,
:meth:`rel_line_to`,
:meth:`rel_curve_to`,
:meth:`arc`,
:meth:`arc_negative`,
:meth:`rectangle`,
:meth:`text_path`,
:meth:`glyph_path`,
:meth:`stroke_to_path`.
Some methods use and alter the current point
but do not otherwise change current path:
:meth:`show_text`,
:meth:`show_glyphs`,
:meth:`show_text_glyphs`.
Some methods unset the current path and as a result, current point:
:meth:`fill`,
:meth:`stroke`.
:returns:
A ``(x, y)`` tuple of floats, the coordinates of the current point.
"""
# I’d prefer returning None if self.has_current_point() is False
# But keep (0, 0) for compat with pycairo.
xy = ffi.new('double[2]')
cairo.cairo_get_current_point(self._pointer, xy + 0, xy + 1)
self._check_status()
return tuple(xy)
def new_path(self):
""" Clears the current path.
After this call there will be no path and no current point.
"""
cairo.cairo_new_path(self._pointer)
self._check_status()
def new_sub_path(self):
"""Begin a new sub-path.
Note that the existing path is not affected.
After this call there will be no current point.
In many cases, this call is not needed
since new sub-paths are frequently started with :meth:`move_to`.
A call to :meth:`new_sub_path` is particularly useful
when beginning a new sub-path with one of the :meth:`arc` calls.
This makes things easier as it is no longer necessary
to manually compute the arc's initial coordinates
for a call to :meth:`move_to`.
"""
cairo.cairo_new_sub_path(self._pointer)
self._check_status()
def move_to(self, x, y):
"""Begin a new sub-path.
After this call the current point will be ``(x, y)``.
:param x: X position of the new point.
:param y: Y position of the new point.
:type float: x
:type float: y
"""
cairo.cairo_move_to(self._pointer, x, y)
self._check_status()
def rel_move_to(self, dx, dy):
"""Begin a new sub-path.
After this call the current point will be offset by ``(dx, dy)``.
Given a current point of ``(x, y)``,
``context.rel_move_to(dx, dy)`` is logically equivalent to
``context.move_to(x + dx, y + dy)``.
:param dx: The X offset.
:param dy: The Y offset.
:type float: dx
:type float: dy
:raises:
:exc:`CairoError` if there is no current point.
Doing so will cause leave the context in an error state.
"""
cairo.cairo_rel_move_to(self._pointer, dx, dy)
self._check_status()
def line_to(self, x, y):
"""Adds a line to the path from the current point
to position ``(x, y)`` in user-space coordinates.
After this call the current point will be ``(x, y)``.
If there is no current point before the call to :meth:`line_to`
this method will behave as ``context.move_to(x, y)``.
:param x: X coordinate of the end of the new line.
:param y: Y coordinate of the end of the new line.
:type float: x
:type float: y
"""
cairo.cairo_line_to(self._pointer, x, y)
self._check_status()
def rel_line_to(self, dx, dy):
""" Relative-coordinate version of :meth:`line_to`.
Adds a line to the path from the current point
to a point that is offset from the current point
by ``(dx, dy)`` in user space.
After this call the current point will be offset by ``(dx, dy)``.
Given a current point of ``(x, y)``,
``context.rel_line_to(dx, dy)`` is logically equivalent to
``context.line_to(x + dx, y + dy)``.
:param dx: The X offset to the end of the new line.
:param dy: The Y offset to the end of the new line.
:type float: dx
:type float: dy
:raises:
:exc:`CairoError` if there is no current point.
Doing so will cause leave the context in an error state.
"""
cairo.cairo_rel_line_to(self._pointer, dx, dy)
self._check_status()
def rectangle(self, x, y, width, height):
"""Adds a closed sub-path rectangle
of the given size to the current path
at position ``(x, y)`` in user-space coordinates.
This method is logically equivalent to::
context.move_to(x, y)
context.rel_line_to(width, 0)
context.rel_line_to(0, height)
context.rel_line_to(-width, 0)
context.close_path()
:param x: The X coordinate of the top left corner of the rectangle.
:param y: The Y coordinate of the top left corner of the rectangle.
:param width: Width of the rectangle.
:param height: Height of the rectangle.
:type float: x
:type float: y
:type float: width
:type float: heigth
"""
cairo.cairo_rectangle(self._pointer, x, y, width, height)
self._check_status()
def arc(self, xc, yc, radius, angle1, angle2):
"""Adds a circular arc of the given radius to the current path.
The arc is centered at ``(xc, yc)``,
begins at :obj:`angle1`
and proceeds in the direction of increasing angles
to end at :obj:`angle2`.
If :obj:`angle2` is less than :obj:`angle1`
it will be progressively increased by ``2 * pi``
until it is greater than :obj:`angle1`.
If there is a current point,
an initial line segment will be added to the path
to connect the current point to the beginning of the arc.
If this initial line is undesired,
it can be avoided by calling :meth:`new_sub_path`
before calling :meth:`arc`.
Angles are measured in radians.
An angle of 0 is in the direction of the positive X axis
(in user space).
An angle of ``pi / 2`` radians (90 degrees)
is in the direction of the positive Y axis (in user space).
Angles increase in the direction from the positive X axis
toward the positive Y axis.
So with the default transformation matrix,
angles increase in a clockwise direction.
(To convert from degrees to radians, use ``degrees * pi / 180``.)
This method gives the arc in the direction of increasing angles;
see :meth:`arc_negative` to get the arc
in the direction of decreasing angles.
The arc is circular in user space.
To achieve an elliptical arc,
you can scale the current transformation matrix
by different amounts in the X and Y directions.
For example, to draw an ellipse in the box
given by x, y, width, height::
from math import pi
with context:
context.translate(x + width / 2., y + height / 2.)
context.scale(width / 2., height / 2.)
context.arc(0, 0, 1, 0, 2 * pi)
:param xc: X position of the center of the arc.
:param yc: Y position of the center of the arc.
:param radius: The radius of the arc.
:param angle1: The start angle, in radians.
:param angle2: The end angle, in radians.
:type xc: float
:type yc: float
:type radius: float
:type angle1: float
:type angle2: float
"""
cairo.cairo_arc(self._pointer, xc, yc, radius, angle1, angle2)
self._check_status()
def arc_negative(self, xc, yc, radius, angle1, angle2):
"""Adds a circular arc of the given radius to the current path.
The arc is centered at ``(xc, yc)``,
begins at :obj:`angle1`
and proceeds in the direction of decreasing angles
to end at :obj:`angle2`.
If :obj:`angle2` is greater than :obj:`angle1`
it will be progressively decreased by ``2 * pi``
until it is greater than :obj:`angle1`.
See :meth:`arc` for more details.
This method differs only in
the direction of the arc between the two angles.
:param xc: X position of the center of the arc.
:param yc: Y position of the center of the arc.
:param radius: The radius of the arc.
:param angle1: The start angle, in radians.
:param angle2: The end angle, in radians.
:type xc: float
:type yc: float
:type radius: float
:type angle1: float
:type angle2: float
"""
cairo.cairo_arc_negative(self._pointer, xc, yc, radius, angle1, angle2)
self._check_status()
def curve_to(self, x1, y1, x2, y2, x3, y3):
"""Adds a cubic Bézier spline to the path
from the current point
to position ``(x3, y3)`` in user-space coordinates,
using ``(x1, y1)`` and ``(x2, y2)`` as the control points.
After this call the current point will be ``(x3, y3)``.
If there is no current point before the call to :meth:`curve_to`
this method will behave as if preceded by
a call to ``context.move_to(x1, y1)``.
:param x1: The X coordinate of the first control point.
:param y1: The Y coordinate of the first control point.
:param x2: The X coordinate of the second control point.
:param y2: The Y coordinate of the second control point.
:param x3: The X coordinate of the end of the curve.
:param y3: The Y coordinate of the end of the curve.
:type x1: float
:type y1: float
:type x2: float
:type y2: float
:type x3: float
:type y3: float
"""
cairo.cairo_curve_to(self._pointer, x1, y1, x2, y2, x3, y3)
self._check_status()
def rel_curve_to(self, dx1, dy1, dx2, dy2, dx3, dy3):
""" Relative-coordinate version of :meth:`curve_to`.
All offsets are relative to the current point.
Adds a cubic Bézier spline to the path from the current point
to a point offset from the current point by ``(dx3, dy3)``,
using points offset by ``(dx1, dy1)`` and ``(dx2, dy2)``
as the control points.
After this call the current point will be offset by ``(dx3, dy3)``.
Given a current point of ``(x, y)``,
``context.rel_curve_to(dx1, dy1, dx2, dy2, dx3, dy3)``
is logically equivalent to
``context.curve_to(x+dx1, y+dy1, x+dx2, y+dy2, x+dx3, y+dy3)``.
:param dx1: The X offset to the first control point.
:param dy1: The Y offset to the first control point.
:param dx2: The X offset to the second control point.
:param dy2: The Y offset to the second control point.
:param dx3: The X offset to the end of the curve.
:param dy3: The Y offset to the end of the curve.
:type dx1: float
:type dy1: float
:type dx2: float
:type dy2: float
:type dx3: float
:type dy3: float
:raises:
:exc:`CairoError` if there is no current point.
Doing so will cause leave the context in an error state.
"""
cairo.cairo_rel_curve_to(self._pointer, dx1, dy1, dx2, dy2, dx3, dy3)
self._check_status()
def text_path(self, text):
"""Adds closed paths for text to the current path.
The generated path if filled,
achieves an effect similar to that of :meth:`show_text`.
Text conversion and positioning is done similar to :meth:`show_text`.
Like :meth:`show_text`,
after this call the current point is moved to the origin of where
the next glyph would be placed in this same progression.
That is, the current point will be at the origin of the final glyph
offset by its advance values.
This allows for chaining multiple calls to to :meth:`text_path`
without having to set current point in between.
:param text: The text to show, as an Unicode or UTF-8 string.
.. note::
The :meth:`text_path` method is part of
what the cairo designers call the "toy" text API.
It is convenient for short demos and simple programs,
but it is not expected to be adequate
for serious text-using applications.
See :ref:`fonts` for details,
and :meth:`glyph_path` for the "real" text path API in cairo.
"""
cairo.cairo_text_path(self._pointer, _encode_string(text))
self._check_status()
def glyph_path(self, glyphs):
"""Adds closed paths for the glyphs to the current path.
The generated path if filled,
achieves an effect similar to that of :meth:`show_glyphs`.
:param glyphs:
The glyphs to show.
See :meth:`show_text_glyphs` for the data structure.
"""
glyphs = ffi.new('cairo_glyph_t[]', glyphs)
cairo.cairo_glyph_path(self._pointer, glyphs, len(glyphs))
self._check_status()
def close_path(self):
"""Adds a line segment to the path
from the current point
to the beginning of the current sub-path,
(the most recent point passed to cairo_move_to()),
and closes this sub-path.
After this call the current point will be
at the joined endpoint of the sub-path.
The behavior of :meth:`close_path` is distinct
from simply calling :meth:`line_to` with the equivalent coordinate
in the case of stroking.
When a closed sub-path is stroked,
there are no caps on the ends of the sub-path.
Instead, there is a line join
connecting the final and initial segments of the sub-path.
If there is no current point before the call to :meth:`close_path`,
this method will have no effect.
"""
cairo.cairo_close_path(self._pointer)
self._check_status()
def copy_path(self):
"""Return a copy of the current path.
:returns:
A list of ``(path_operation, coordinates)`` tuples
of a :ref:`PATH_OPERATION` string
and a tuple of floats coordinates
whose content depends on the operation type:
* :obj:`MOVE_TO <PATH_MOVE_TO>`: 1 point ``(x, y)``
* :obj:`LINE_TO <PATH_LINE_TO>`: 1 point ``(x, y)``
* :obj:`CURVE_TO <PATH_CURVE_TO>`: 3 points
``(x1, y1, x2, y2, x3, y3)``
* :obj:`CLOSE_PATH <PATH_CLOSE_PATH>` 0 points ``()`` (empty tuple)
"""
path = cairo.cairo_copy_path(self._pointer)
result = list(_iter_path(path))
cairo.cairo_path_destroy(path)
return result
def copy_path_flat(self):
"""Return a flattened copy of the current path
This method is like :meth:`copy_path`
except that any curves in the path will be approximated
with piecewise-linear approximations,
(accurate to within the current tolerance value,
see :meth:`set_tolerance`).
That is,
the result is guaranteed to not have any elements
of type :obj:`CURVE_TO <PATH_CURVE_TO>`
which will instead be replaced by
a series of :obj:`LINE_TO <PATH_LINE_TO>` elements.
:returns:
A list of ``(path_operation, coordinates)`` tuples.
See :meth:`copy_path` for the data structure.
"""
path = cairo.cairo_copy_path_flat(self._pointer)
result = list(_iter_path(path))
cairo.cairo_path_destroy(path)
return result
def append_path(self, path):
"""Append :obj:`path` onto the current path.
The path may be either the return value from one of :meth:`copy_path`
or :meth:`copy_path_flat` or it may be constructed manually.
:param path:
An iterable of tuples
in the same format as returned by :meth:`copy_path`.
"""
# Both objects need to stay alive
# until after cairo.cairo_append_path() is finished, but not after.
path, _ = _encode_path(path)
cairo.cairo_append_path(self._pointer, path)
self._check_status()
def path_extents(self):
"""Computes a bounding box in user-space coordinates
covering the points on the current path.
If the current path is empty,
returns an empty rectangle ``(0, 0, 0, 0)``.
Stroke parameters, fill rule, surface dimensions and clipping
are not taken into account.
Contrast with :meth:`fill_extents` and :meth:`stroke_extents`
which return the extents of only the area that would be "inked"
by the corresponding drawing operations.
The result of :meth:`path_extents`
is defined as equivalent to the limit of :meth:`stroke_extents`
with :obj:`LINE_CAP_ROUND` as the line width approaches 0,
(but never reaching the empty-rectangle
returned by :meth:`stroke_extents` for a line width of 0).
Specifically, this means that zero-area sub-paths
such as :meth:`move_to`; :meth:`line_to()` segments,
(even degenerate cases
where the coordinates to both calls are identical),
will be considered as contributing to the extents.
However, a lone :meth:`move_to` will not contribute
to the results of :meth:`path_extents`.
:return:
A ``(x1, y1, x2, y2)`` tuple of floats:
the left, top, right and bottom of the resulting extents,
respectively.
"""
extents = ffi.new('double[4]')
cairo.cairo_path_extents(
self._pointer, extents + 0, extents + 1, extents + 2, extents + 3)
self._check_status()
return tuple(extents)
#
# Drawing operators
#
def paint(self):
"""A drawing operator that paints the current source everywhere
within the current clip region.
"""
cairo.cairo_paint(self._pointer)
self._check_status()
def paint_with_alpha(self, alpha):
"""A drawing operator that paints the current source everywhere
within the current clip region
using a mask of constant alpha value alpha.
The effect is similar to :meth:`paint`,
but the drawing is faded out using the :obj:`alpha` value.
:type alpha: float
:param alpha: Alpha value, between 0 (transparent) and 1 (opaque).
"""
cairo.cairo_paint_with_alpha(self._pointer, alpha)
self._check_status()
def mask(self, pattern):
"""A drawing operator that paints the current source
using the alpha channel of :obj:`pattern` as a mask.
(Opaque areas of :obj:`pattern` are painted with the source,
transparent areas are not painted.)
:param pattern: A :class:`Pattern` object.
"""
cairo.cairo_mask(self._pointer, pattern._pointer)
self._check_status()
def mask_surface(self, surface, surface_x=0, surface_y=0):
"""A drawing operator that paints the current source
using the alpha channel of :obj:`surface` as a mask.
(Opaque areas of :obj:`surface` are painted with the source,
transparent areas are not painted.)
:param pattern: A :class:`Surface` object.
:param surface_x: X coordinate at which to place the origin of surface.
:param surface_y: Y coordinate at which to place the origin of surface.
:type surface_x: float
:type surface_y: float
"""
cairo.cairo_mask_surface(
self._pointer, surface._pointer, surface_x, surface_y)
self._check_status()
def fill(self):
"""A drawing operator that fills the current path
according to the current fill rule,
(each sub-path is implicitly closed before being filled).
After :meth:`fill`,
the current path will be cleared from the cairo context.
See :meth:`set_fill_rule` and :meth:`fill_preserve`.
"""
cairo.cairo_fill(self._pointer)
self._check_status()
def fill_preserve(self):
"""A drawing operator that fills the current path
according to the current fill rule,
(each sub-path is implicitly closed before being filled).
Unlike :meth:`fill`,
:meth:`fill_preserve` preserves the path within the cairo context.
See :meth:`set_fill_rule` and :meth:`fill`.
"""
cairo.cairo_fill_preserve(self._pointer)
self._check_status()
def fill_extents(self):
"""Computes a bounding box in user-space coordinates
covering the area that would be affected, (the "inked" area),
by a :meth:`fill` operation given the current path and fill parameters.
If the current path is empty,
returns an empty rectangle ``(0, 0, 0, 0)``.
Surface dimensions and clipping are not taken into account.
Contrast with :meth:`path_extents` which is similar,
but returns non-zero extents for some paths with no inked area,
(such as a simple line segment).
Note that :meth:`fill_extents` must necessarily do more work
to compute the precise inked areas in light of the fill rule,
so :meth:`path_extents` may be more desirable for sake of performance
if the non-inked path extents are desired.
See :meth:`fill`, :meth:`set_fill_rule` and :meth:`fill_preserve`.
:return:
A ``(x1, y1, x2, y2)`` tuple of floats:
the left, top, right and bottom of the resulting extents,
respectively.
"""
extents = ffi.new('double[4]')
cairo.cairo_fill_extents(
self._pointer, extents + 0, extents + 1, extents + 2, extents + 3)
self._check_status()
return tuple(extents)
def in_fill(self, x, y):
"""Tests whether the given point is inside the area
that would be affected by a :meth:`fill` operation
given the current path and filling parameters.
Surface dimensions and clipping are not taken into account.
See :meth:`fill`, :meth:`set_fill_rule` and :meth:`fill_preserve`.
:param x: X coordinate of the point to test
:param y: Y coordinate of the point to test
:type x: float
:type y: float
:returns: A boolean.
"""
return bool(cairo.cairo_in_fill(self._pointer, x, y))
def stroke(self):
"""A drawing operator that strokes the current path
according to the current line width, line join, line cap,
and dash settings.
After :meth:`stroke`,
the current path will be cleared from the cairo context.
See :meth:`set_line_width`, :meth:`set_line_join`,
:meth:`set_line_cap`, :meth:`set_dash`, and :meth:`stroke_preserve`.
Note: Degenerate segments and sub-paths are treated specially
and provide a useful result.
These can result in two different situations:
1. Zero-length "on" segments set in :meth:`set_dash`.
If the cap style is :obj:`ROUND <LINE_CAP_ROUND>`
or :obj:`SQUARE <LINE_CAP_SQUARE>`
then these segments will be drawn
as circular dots or squares respectively.
In the case of :obj:`SQUARE <LINE_CAP_SQUARE>`,
the orientation of the squares is determined
by the direction of the underlying path.
2. A sub-path created by :meth:`move_to` followed
by either a :meth:`close_path`
or one or more calls to :meth:`line_to`
to the same coordinate as the :meth:`move_to`.
If the cap style is :obj:`ROUND <LINE_CAP_ROUND>`
then these sub-paths will be drawn as circular dots.
Note that in the case of :obj:`SQUARE <LINE_CAP_SQUARE>`
a degenerate sub-path will not be drawn at all,
(since the correct orientation is indeterminate).
In no case will a cap style of :obj:`BUTT <LINE_CAP_BUTT>`
cause anything to be drawn
in the case of either degenerate segments or sub-paths.
"""
cairo.cairo_stroke(self._pointer)
self._check_status()
def stroke_preserve(self):
"""A drawing operator that strokes the current path
according to the current line width, line join, line cap,
and dash settings.
Unlike :meth:`stroke`,
:meth:`stroke_preserve` preserves the path within the cairo context.
See :meth:`set_line_width`, :meth:`set_line_join`,
:meth:`set_line_cap`, :meth:`set_dash`, and :meth:`stroke`.
"""
cairo.cairo_stroke_preserve(self._pointer)
self._check_status()
def stroke_extents(self):
"""Computes a bounding box in user-space coordinates
covering the area that would be affected, (the "inked" area),
by a :meth:`stroke` operation given the current path
and stroke parameters.
If the current path is empty,
returns an empty rectangle ``(0, 0, 0, 0)``.
Surface dimensions and clipping are not taken into account.
Note that if the line width is set to exactly zero,
then :meth:`stroke_extents` will return an empty rectangle.
Contrast with :meth:`path_extents`
which can be used to compute the non-empty bounds
as the line width approaches zero.
Note that :meth:`stroke_extents` must necessarily do more work
to compute the precise inked areas in light of the stroke parameters,
so :meth:`path_extents` may be more desirable for sake of performance
if the non-inked path extents are desired.
See :meth:`stroke`, :meth:`set_line_width`, :meth:`set_line_join`,
:meth:`set_line_cap`, :meth:`set_dash`, and :meth:`stroke_preserve`.
:return:
A ``(x1, y1, x2, y2)`` tuple of floats:
the left, top, right and bottom of the resulting extents,
respectively.
"""
extents = ffi.new('double[4]')
cairo.cairo_stroke_extents(
self._pointer, extents + 0, extents + 1, extents + 2, extents + 3)
self._check_status()
return tuple(extents)
def in_stroke(self, x, y):
"""Tests whether the given point is inside the area
that would be affected by a :meth:`stroke` operation
given the current path and stroking parameters.
Surface dimensions and clipping are not taken into account.
See :meth:`stroke`, :meth:`set_line_width`, :meth:`set_line_join`,
:meth:`set_line_cap`, :meth:`set_dash`, and :meth:`stroke_preserve`.
:param x: X coordinate of the point to test
:param y: Y coordinate of the point to test
:type x: float
:type y: float
:returns: A boolean.
"""
return bool(cairo.cairo_in_stroke(self._pointer, x, y))
def clip(self):
"""Establishes a new clip region
by intersecting the current clip region
with the current path as it would be filled by :meth:`fill`
and according to the current fill rule (see :meth:`set_fill_rule`).
After :meth:`clip`,
the current path will be cleared from the cairo context.
The current clip region affects all drawing operations
by effectively masking out any changes to the surface
that are outside the current clip region.
Calling :meth:`clip` can only make the clip region smaller,
never larger.
But the current clip is part of the graphics state,
so a temporary restriction of the clip region can be achieved
by calling :meth:`clip` within a :meth:`save` / :meth:`restore` pair.
The only other means of increasing the size of the clip region
is :meth:`reset_clip`.
"""
cairo.cairo_clip(self._pointer)
self._check_status()
def clip_preserve(self):
"""Establishes a new clip region
by intersecting the current clip region
with the current path as it would be filled by :meth:`fill`
and according to the current fill rule (see :meth:`set_fill_rule`).
Unlike :meth:`clip`,
:meth:`clip_preserve` preserves the path within the cairo context.
The current clip region affects all drawing operations
by effectively masking out any changes to the surface
that are outside the current clip region.
Calling :meth:`clip_preserve` can only make the clip region smaller,
never larger.
But the current clip is part of the graphics state,
so a temporary restriction of the clip region can be achieved
by calling :meth:`clip_preserve`
within a :meth:`save` / :meth:`restore` pair.
The only other means of increasing the size of the clip region
is :meth:`reset_clip`.
"""
cairo.cairo_clip_preserve(self._pointer)
self._check_status()
def clip_extents(self):
"""Computes a bounding box in user coordinates
covering the area inside the current clip.
:return:
A ``(x1, y1, x2, y2)`` tuple of floats:
the left, top, right and bottom of the resulting extents,
respectively.
"""
extents = ffi.new('double[4]')
cairo.cairo_clip_extents(
self._pointer, extents + 0, extents + 1, extents + 2, extents + 3)
self._check_status()
return tuple(extents)
def copy_clip_rectangle_list(self):
"""Return the current clip region as a list of rectangles
in user coordinates.
:return:
A list of rectangles,
as ``(x, y, width, height)`` tuples of floats.
:raises:
:exc:`CairoError`
if the clip region cannot be represented as a list
of user-space rectangles.
"""
rectangle_list = cairo.cairo_copy_clip_rectangle_list(self._pointer)
_check_status(rectangle_list.status)
rectangles = rectangle_list.rectangles
result = []
for i in xrange(rectangle_list.num_rectangles):
rect = rectangles[i]
result.append((rect.x, rect.y, rect.width, rect.height))
cairo.cairo_rectangle_list_destroy(rectangle_list)
return result
def in_clip(self, x, y):
"""Tests whether the given point is inside the area
that would be visible through the current clip,
i.e. the area that would be filled by a :meth:`paint` operation.
See :meth:`clip`, and :meth:`clip_preserve`.
:param x: X coordinate of the point to test
:param y: Y coordinate of the point to test
:type x: float
:type y: float
:returns: A boolean.
*New in cairo 1.10.*
"""
return bool(cairo.cairo_in_clip(self._pointer, x, y))
def reset_clip(self):
"""Reset the current clip region to its original, unrestricted state.
That is, set the clip region to an infinitely large shape
containing the target surface.
Equivalently, if infinity is too hard to grasp,
one can imagine the clip region being reset
to the exact bounds of the target surface.
Note that code meant to be reusable
should not call :meth:`reset_clip`
as it will cause results unexpected by higher-level code
which calls :meth:`clip`.
Consider using :meth:`cairo` and :meth:`restore` around :meth:`clip`
as a more robust means of temporarily restricting the clip region.
"""
cairo.cairo_reset_clip(self._pointer)
self._check_status()
#
# Fonts
#
def select_font_face(self, family='', slant=constants.FONT_SLANT_NORMAL,
weight=constants.FONT_WEIGHT_NORMAL):
"""Selects a family and style of font from a simplified description
as a family name, slant and weight.
.. note::
The :meth:`select_font_face` method is part of
what the cairo designers call the "toy" text API.
It is convenient for short demos and simple programs,
but it is not expected to be adequate
for serious text-using applications.
See :ref:`fonts` for details.
Cairo provides no operation to list available family names
on the system (this is a "toy", remember),
but the standard CSS2 generic family names,
(``"serif"``, ``"sans-serif"``, ``"cursive"``, ``"fantasy"``,
``"monospace"``),
are likely to work as expected.
If family starts with the string ``"cairo:"``,
or if no native font backends are compiled in,
cairo will use an internal font family.
The internal font family recognizes many modifiers
in the family string,
most notably, it recognizes the string ``"monospace"``.
That is, the family name ``"cairo:monospace"``
will use the monospace version of the internal font family.
If text is drawn without a call to :meth:`select_font_face`,
(nor :meth:`set_font_face` nor :meth:`set_scaled_font`),
the default family is platform-specific,
but is essentially ``"sans-serif"``.
Default slant is :obj:`NORMAL <FONT_SLANT_NORMAL>`,
and default weight is :obj:`NORMAL <FONT_WEIGHT_NORMAL>`.
This method is equivalent to a call to :class:`ToyFontFace`
followed by :meth:`set_font_face`.
"""
cairo.cairo_select_font_face(
self._pointer, _encode_string(family), slant, weight)
self._check_status()
def set_font_face(self, font_face):
"""Replaces the current font face with :obj:`font_face`.
:param font_face:
A :class:`FontFace` object,
or :obj:`None` to restore the default font.
"""
font_face = font_face._pointer if font_face is not None else ffi.NULL
cairo.cairo_set_font_face(self._pointer, font_face)
self._check_status()
def get_font_face(self):
"""Return the current font face.
:param font_face:
A new :class:`FontFace` object
wrapping an existing cairo object.
"""
return FontFace._from_pointer(
cairo.cairo_get_font_face(self._pointer), incref=True)
def set_font_size(self, size):
"""Sets the current font matrix to a scale by a factor of :obj:`size`,
replacing any font matrix previously set with :meth:`set_font_size`
or :meth:`set_font_matrix`.
This results in a font size of size user space units.
(More precisely, this matrix will result in the font's
em-square being a size by size square in user space.)
If text is drawn without a call to :meth:`set_font_size`,
(nor :meth:`set_font_matrix` nor :meth:`set_scaled_font`),
the default font size is 10.0.
:param size: The new font size, in user space units
:type size: float
"""
cairo.cairo_set_font_size(self._pointer, size)
self._check_status()
def set_font_matrix(self, matrix):
"""Sets the current font matrix to :obj:`matrix`.
The font matrix gives a transformation
from the design space of the font
(in this space, the em-square is 1 unit by 1 unit)
to user space.
Normally, a simple scale is used (see :meth:`set_font_size`),
but a more complex font matrix can be used
to shear the font or stretch it unequally along the two axes
:param matrix:
A :class:`Matrix`
describing a transform to be applied to the current font.
"""
cairo.cairo_set_font_matrix(self._pointer, matrix._pointer)
self._check_status()
def get_font_matrix(self):
"""Copies the current font matrix. See :meth:`set_font_matrix`.
:returns: A new :class:`Matrix`.
"""
matrix = Matrix()
cairo.cairo_get_font_matrix(self._pointer, matrix._pointer)
self._check_status()
return matrix
def set_font_options(self, font_options):
"""Sets a set of custom font rendering options.
Rendering options are derived by merging these options
with the options derived from underlying surface;
if the value in options has a default value
(like :obj:`ANTIALIAS_DEFAULT`),
then the value from the surface is used.
:param font_options: A :class:`FontOptions` object.
"""
cairo.cairo_set_font_options(self._pointer, font_options._pointer)
self._check_status()
def get_font_options(self):
"""Retrieves font rendering options set via :meth:`set_font_options`.
Note that the returned options do not include any options
derived from the underlying surface;
they are literally the options passed to :meth:`set_font_options`.
:return: A new :class:`FontOptions` object.
"""
font_options = FontOptions()
cairo.cairo_get_font_options(self._pointer, font_options._pointer)
return font_options
def set_scaled_font(self, scaled_font):
"""Replaces the current font face, font matrix, and font options
with those of :obj:`scaled_font`.
Except for some translation, the current CTM of the context
should be the same as that of the :obj:`scaled_font`,
which can be accessed using :meth:`ScaledFont.get_ctm`.
:param scaled_font: A :class:`ScaledFont` object.
"""
cairo.cairo_set_scaled_font(self._pointer, scaled_font._pointer)
self._check_status()
def get_scaled_font(self):
"""Return the current scaled font.
:return:
A new :class:`ScaledFont` object,
wrapping an existing cairo object.
"""
return ScaledFont._from_pointer(
cairo.cairo_get_scaled_font(self._pointer), incref=True)
def font_extents(self):
"""Return the extents of the currently selected font.
Values are given in the current user-space coordinate system.
Because font metrics are in user-space coordinates, they are mostly,
but not entirely, independent of the current transformation matrix.
If you call :meth:`context.scale(2) <scale>`,
text will be drawn twice as big,
but the reported text extents will not be doubled.
They will change slightly due to hinting
(so you can't assume that metrics are independent
of the transformation matrix),
but otherwise will remain unchanged.
:returns:
A ``(ascent, descent, height, max_x_advance, max_y_advance)``
tuple of floats.
:obj:`ascent`
The distance that the font extends above the baseline.
Note that this is not always exactly equal to
the maximum of the extents of all the glyphs in the font,
but rather is picked to express the font designer's intent
as to how the font should align with elements above it.
:obj:`descent`
The distance that the font extends below the baseline.
This value is positive for typical fonts
that include portions below the baseline.
Note that this is not always exactly equal
to the maximum of the extents of all the glyphs in the font,
but rather is picked to express the font designer's intent
as to how the font should align with elements below it.
:obj:`height`
The recommended vertical distance between baselines
when setting consecutive lines of text with the font.
This is greater than ``ascent + descent``
by a quantity known as the line spacing or external leading.
When space is at a premium, most fonts can be set
with only a distance of ``ascent + descent`` between lines.
:obj:`max_x_advance`
The maximum distance in the X direction
that the origin is advanced for any glyph in the font.
:obj:`max_y_advance`
The maximum distance in the Y direction
that the origin is advanced for any glyph in the font.
This will be zero for normal fonts used for horizontal writing.
(The scripts of East Asia are sometimes written vertically.)
"""
extents = ffi.new('cairo_font_extents_t *')
cairo.cairo_font_extents(self._pointer, extents)
self._check_status()
# returning extents as is would be a nice API,
# but return a tuple for compat with pycairo.
return (
extents.ascent, extents.descent, extents.height,
extents.max_x_advance, extents.max_y_advance)
#
# Text
#
def text_extents(self, text):
"""Returns the extents for a string of text.
The extents describe a user-space rectangle
that encloses the "inked" portion of the text,
(as it would be drawn by :meth:`show_text`).
Additionally, the :obj:`x_advance` and :obj:`y_advance` values
indicate the amount by which the current point would be advanced
by :meth:`show_text`.
Note that whitespace characters do not directly contribute
to the size of the rectangle (:obj:`width` and :obj:`height`).
They do contribute indirectly by changing the position
of non-whitespace characters.
In particular, trailing whitespace characters are likely
to not affect the size of the rectangle,
though they will affect the x_advance and y_advance values.
Because text extents are in user-space coordinates,
they are mostly, but not entirely,
independent of the current transformation matrix.
If you call :meth:`context.scale(2) <scale>`,
text will be drawn twice as big,
but the reported text extents will not be doubled.
They will change slightly due to hinting
(so you can't assume that metrics are independent
of the transformation matrix),
but otherwise will remain unchanged.
:param text: The text to measure, as an Unicode or UTF-8 string.
:returns:
A ``(x_bearing, y_bearing, width, height, x_advance, y_advance)``
tuple of floats.
:obj:`x_bearing`
The horizontal distance
from the origin to the leftmost part of the glyphs as drawn.
Positive if the glyphs lie entirely to the right of the origin.
:obj:`y_bearing`
The vertical distance
from the origin to the topmost part of the glyphs as drawn.
Positive only if the glyphs lie completely below the origin;
will usually be negative.
:obj:`width`
Width of the glyphs as drawn.
:obj:`height`
Height of the glyphs as drawn.
:obj:`x_advance`
Distance to advance in the X direction
after drawing these glyphs.
:obj:`y_advance`
Distance to advance in the Y direction
after drawing these glyphs.
Will typically be zero except for vertical text layout
as found in East-Asian languages.
"""
extents = ffi.new('cairo_text_extents_t *')
cairo.cairo_text_extents(self._pointer, _encode_string(text), extents)
self._check_status()
# returning extents as is would be a nice API,
# but return a tuple for compat with pycairo.
return (
extents.x_bearing, extents.y_bearing,
extents.width, extents.height,
extents.x_advance, extents.y_advance)
def glyph_extents(self, glyphs):
"""Returns the extents for a list of glyphs.
The extents describe a user-space rectangle
that encloses the "inked" portion of the glyphs,
(as it would be drawn by :meth:`show_glyphs`).
Additionally, the :obj:`x_advance` and :obj:`y_advance` values
indicate the amount by which the current point would be advanced
by :meth:`show_glyphs`.
:param glyphs:
A list of glyphs.
See :meth:`show_text_glyphs` for the data structure.
:returns:
A ``(x_bearing, y_bearing, width, height, x_advance, y_advance)``
tuple of floats.
See :meth:`text_extents` for details.
"""
glyphs = ffi.new('cairo_glyph_t[]', glyphs)
extents = ffi.new('cairo_text_extents_t *')
cairo.cairo_glyph_extents(
self._pointer, glyphs, len(glyphs), extents)
self._check_status()
return (
extents.x_bearing, extents.y_bearing,
extents.width, extents.height,
extents.x_advance, extents.y_advance)
def show_text(self, text):
"""A drawing operator that generates the shape from a string text,
rendered according to the current
font :meth:`face <set_font_face>`,
font :meth:`size <set_font_size>`
(font :meth:`matrix <set_font_matrix>`),
and font :meth:`options <set_font_options>`.
This method first computes a set of glyphs for the string of text.
The first glyph is placed so that its origin is at the current point.
The origin of each subsequent glyph
is offset from that of the previous glyph
by the advance values of the previous glyph.
After this call the current point is moved
to the origin of where the next glyph would be placed
in this same progression.
That is, the current point will be at
the origin of the final glyph offset by its advance values.
This allows for easy display of a single logical string
with multiple calls to :meth:`show_text`.
:param text: The text to show, as an Unicode or UTF-8 string.
.. note::
This method is part of
what the cairo designers call the "toy" text API.
It is convenient for short demos and simple programs,
but it is not expected to be adequate
for serious text-using applications.
See :ref:`fonts` for details
and :meth:`show_glyphs` for the "real" text display API in cairo.
"""
cairo.cairo_show_text(self._pointer, _encode_string(text))
self._check_status()
def show_glyphs(self, glyphs):
"""A drawing operator that generates the shape from a list of glyphs,
rendered according to the current
font :meth:`face <set_font_face>`,
font :meth:`size <set_font_size>`
(font :meth:`matrix <set_font_matrix>`),
and font :meth:`options <set_font_options>`.
:param glyphs:
The glyphs to show.
See :meth:`show_text_glyphs` for the data structure.
"""
glyphs = ffi.new('cairo_glyph_t[]', glyphs)
cairo.cairo_show_glyphs(self._pointer, glyphs, len(glyphs))
self._check_status()
def show_text_glyphs(self, text, glyphs, clusters, cluster_flags=0):
"""This operation has rendering effects similar to :meth:`show_glyphs`
but, if the target surface supports it
(see :meth:`Surface.has_show_text_glyphs`),
uses the provided text and cluster mapping
to embed the text for the glyphs shown in the output.
If the target does not support the extended attributes,
this method acts like the basic :meth:`show_glyphs`
as if it had been passed :obj:`glyphs`.
The mapping between :obj:`text` and :obj:`glyphs`
is provided by an list of clusters.
Each cluster covers a number of UTF-8 text bytes and glyphs,
and neighboring clusters cover neighboring areas
of :obj:`text` and :obj:`glyphs`.
The clusters should collectively cover :obj:`text` and :obj:`glyphs`
in entirety.
:param text:
The text to show, as an Unicode or UTF-8 string.
Because of how :obj:`clusters` work,
using UTF-8 bytes might be more convenient.
:param glyphs:
A list of glyphs.
Each glyph is a ``(glyph_id, x, y)`` tuple.
:obj:`glyph_id` is an opaque integer.
Its exact interpretation depends on the font technology being used.
:obj:`x` and :obj:`y` are the float offsets
in the X and Y direction
between the origin used for drawing or measuring the string
and the origin of this glyph.
Note that the offsets are not cumulative.
When drawing or measuring text,
each glyph is individually positioned
with respect to the overall origin.
:param clusters:
A list of clusters.
A text cluster is a minimal mapping of some glyphs
corresponding to some UTF-8 text,
represented as a ``(num_bytes, num_glyphs)`` tuple of integers,
the number of UTF-8 bytes and glyphs covered by the cluster.
For a cluster to be valid,
both :obj:`num_bytes` and :obj:`num_glyphs` should be non-negative,
and at least one should be non-zero.
Note that clusters with zero glyphs
are not as well supported as normal clusters.
For example, PDF rendering applications
typically ignore those clusters when PDF text is being selected.
:type cluster_flags: int
:param cluster_flags:
Flags (as a bit field) for the cluster mapping.
The first cluster always covers bytes
from the beginning of :obj:`text`.
If :obj:`cluster_flags` does not have
the :obj:`TEXT_CLUSTER_FLAG_BACKWARD` flag set,
the first cluster also covers the beginning of :obj:`glyphs`,
otherwise it covers the end of the :obj:`glyphs` list
and following clusters move backward.
"""
glyphs = ffi.new('cairo_glyph_t[]', glyphs)
clusters = ffi.new('cairo_text_cluster_t[]', clusters)
cairo.cairo_show_text_glyphs(
self._pointer, _encode_string(text), -1,
glyphs, len(glyphs), clusters, len(clusters), cluster_flags)
self._check_status()
#
# Pages
#
def show_page(self):
"""Emits and clears the current page
for backends that support multiple pages.
Use :meth:`copy_page` if you don't want to clear the page.
This is a convenience method
that simply calls :meth:`Surface.show_page`
on the context’s target.
"""
cairo.cairo_show_page(self._pointer)
self._check_status()
def copy_page(self):
"""Emits the current page for backends that support multiple pages,
but doesn't clear it,
so the contents of the current page will be retained
for the next page too.
Use :meth:`show_page` if you want to clear the page.
This is a convenience method
that simply calls :meth:`Surface.copy_page`
on the context’s target.
"""
cairo.cairo_copy_page(self._pointer)
self._check_status()
|