This file is indexed.

/usr/lib/python3/dist-packages/deap/cma.py is in python3-deap 1.0.1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
#    This file is part of DEAP.
#
#    DEAP is free software: you can redistribute it and/or modify
#    it under the terms of the GNU Lesser General Public License as
#    published by the Free Software Foundation, either version 3 of
#    the License, or (at your option) any later version.
#
#    DEAP is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#    GNU Lesser General Public License for more details.
#
#    You should have received a copy of the GNU Lesser General Public
#    License along with DEAP. If not, see <http://www.gnu.org/licenses/>.

#    Special thanks to Nikolaus Hansen for providing major part of 
#    this code. The CMA-ES algorithm is provided in many other languages
#    and advanced versions at http://www.lri.fr/~hansen/cmaesintro.html.

"""A module that provides support for the Covariance Matrix Adaptation 
Evolution Strategy.
"""
import numpy
import copy
from math import sqrt, log, exp

class Strategy(object):
    """
    A strategy that will keep track of the basic parameters of the CMA-ES
    algorithm.
    
    :param centroid: An iterable object that indicates where to start the
                     evolution.
    :param sigma: The initial standard deviation of the distribution.
    :param parameter: One or more parameter to pass to the strategy as
                      described in the following table, optional.
    
    +----------------+---------------------------+----------------------------+
    | Parameter      | Default                   | Details                    |
    +================+===========================+============================+
    | ``lambda_``    | ``int(4 + 3 * log(N))``   | Number of children to      |
    |                |                           | produce at each generation,|
    |                |                           | ``N`` is the individual's  |
    |                |                           | size (integer).            |
    +----------------+---------------------------+----------------------------+
    | ``mu``         | ``int(lambda_ / 2)``      | The number of parents to   | 
    |                |                           | keep from the              |
    |                |                           | lambda children (integer). |
    +----------------+---------------------------+----------------------------+
    | ``cmatrix``    | ``identity(N)``           | The initial covariance     |
    |                |                           | matrix of the distribution |
    |                |                           | that will be sampled.      |
    +----------------+---------------------------+----------------------------+
    | ``weights``    | ``"superlinear"``         | Decrease speed, can be     |
    |                |                           | ``"superlinear"``,         |
    |                |                           | ``"linear"`` or            |
    |                |                           | ``"equal"``.               |
    +----------------+---------------------------+----------------------------+
    | ``cs``         | ``(mueff + 2) /           | Cumulation constant for    |
    |                | (N + mueff + 3)``         | step-size.                 |
    +----------------+---------------------------+----------------------------+
    | ``damps``      | ``1 + 2 * max(0, sqrt((   | Damping for step-size.     |
    |                | mueff - 1) / (N + 1)) - 1)|                            |
    |                | + cs``                    |                            |
    +----------------+---------------------------+----------------------------+
    | ``ccum``       | ``4 / (N + 4)``           | Cumulation constant for    |
    |                |                           | covariance matrix.         |
    +----------------+---------------------------+----------------------------+
    | ``ccov1``      | ``2 / ((N + 1.3)^2 +      | Learning rate for rank-one |
    |                | mueff)``                  | update.                    |
    +----------------+---------------------------+----------------------------+
    | ``ccovmu``     | ``2 * (mueff - 2 + 1 /    | Learning rate for rank-mu  |
    |                | mueff) / ((N + 2)^2 +     | update.                    |
    |                | mueff)``                  |                            |
    +----------------+---------------------------+----------------------------+

    """
    def __init__(self, centroid, sigma, **kargs):
        self.params = kargs
        
        # Create a centroid as a numpy array
        self.centroid = numpy.array(centroid)
        
        self.dim = len(self.centroid)
        self.sigma = sigma
        self.pc = numpy.zeros(self.dim)
        self.ps = numpy.zeros(self.dim)
        self.chiN = sqrt(self.dim) * (1 - 1. / (4. * self.dim) + \
                                      1. / (21. * self.dim**2))
        
        self.C = self.params.get("cmatrix", numpy.identity(self.dim))
        self.diagD, self.B = numpy.linalg.eigh(self.C)

        indx = numpy.argsort(self.diagD)
        self.diagD = self.diagD[indx]**0.5
        self.B = self.B[:, indx]
        self.BD = self.B * self.diagD
        
        self.cond = self.diagD[indx[-1]]/self.diagD[indx[0]]
        
        self.lambda_ = self.params.get("lambda_", int(4 + 3 * log(self.dim)))
        self.update_count = 0
        self.computeParams(self.params)
        
    def generate(self, ind_init):
        """Generate a population of :math:`\lambda` individuals of type
        *ind_init* from the current strategy.
        
        :param ind_init: A function object that is able to initialize an
                         individual from a list.
        :returns: A list of individuals.
        """
        arz = numpy.random.standard_normal((self.lambda_, self.dim))
        arz = self.centroid + self.sigma * numpy.dot(arz, self.BD.T)
        return list(map(ind_init, arz))
        
    def update(self, population):
        """Update the current covariance matrix strategy from the
        *population*.
        
        :param population: A list of individuals from which to update the
                           parameters.
        """
        population.sort(key=lambda ind: ind.fitness, reverse=True)
        
        old_centroid = self.centroid
        self.centroid = numpy.dot(self.weights, population[0:self.mu])
        
        c_diff = self.centroid - old_centroid
        
        # Cumulation : update evolution path
        self.ps = (1 - self.cs) * self.ps \
             + sqrt(self.cs * (2 - self.cs) * self.mueff) / self.sigma \
             * numpy.dot(self.B, (1. / self.diagD) \
                          * numpy.dot(self.B.T, c_diff))
        
        hsig = float((numpy.linalg.norm(self.ps) / 
                sqrt(1. - (1. - self.cs)**(2. * (self.update_count + 1.))) / self.chiN
                < (1.4 + 2. / (self.dim + 1.))))
        
        self.update_count += 1
        
        self.pc = (1 - self.cc) * self.pc + hsig \
                  * sqrt(self.cc * (2 - self.cc) * self.mueff) / self.sigma \
                  * c_diff
        
        # Update covariance matrix
        artmp = population[0:self.mu] - old_centroid
        self.C = (1 - self.ccov1 - self.ccovmu + (1 - hsig) \
                   * self.ccov1 * self.cc * (2 - self.cc)) * self.C \
                + self.ccov1 * numpy.outer(self.pc, self.pc) \
                + self.ccovmu * numpy.dot((self.weights * artmp.T), artmp) \
                / self.sigma**2
        
        
        self.sigma *= numpy.exp((numpy.linalg.norm(self.ps) / self.chiN - 1.) \
                                * self.cs / self.damps)
        
        self.diagD, self.B = numpy.linalg.eigh(self.C)
        indx = numpy.argsort(self.diagD)
        
        self.cond = self.diagD[indx[-1]]/self.diagD[indx[0]]
        
        self.diagD = self.diagD[indx]**0.5
        self.B = self.B[:, indx]
        self.BD = self.B * self.diagD

    def computeParams(self, params):
        """Computes the parameters depending on :math:`\lambda`. It needs to
        be called again if :math:`\lambda` changes during evolution.
        
        :param params: A dictionary of the manually set parameters.
        """
        self.mu = params.get("mu", int(self.lambda_ / 2))
        rweights = params.get("weights", "superlinear")
        if rweights == "superlinear":
            self.weights = log(self.mu + 0.5) - \
                        numpy.log(numpy.arange(1, self.mu + 1))
        elif rweights == "linear":
            self.weights = self.mu + 0.5 - numpy.arange(1, self.mu + 1)
        elif rweights == "equal":
            self.weights = numpy.ones(self.mu)
        else:
            raise RuntimeError("Unknown weights : %s" % rweights)
        
        self.weights /= sum(self.weights)
        self.mueff = 1. / sum(self.weights**2)
        
        self.cc = params.get("ccum", 4. / (self.dim + 4.))
        self.cs = params.get("cs", (self.mueff + 2.) / 
                                   (self.dim + self.mueff + 3.))
        self.ccov1 = params.get("ccov1", 2. / ((self.dim + 1.3)**2 + \
                                         self.mueff))
        self.ccovmu = params.get("ccovmu", 2. * (self.mueff - 2. +  \
                                                 1. / self.mueff) / \
                                           ((self.dim + 2.)**2 + self.mueff))
        self.ccovmu = min(1 - self.ccov1, self.ccovmu)
        self.damps = 1. + 2. * max(0, sqrt((self.mueff - 1.) / \
                                            (self.dim + 1.)) - 1.) + self.cs
        self.damps = params.get("damps", self.damps)
        
class StrategyOnePlusLambda(object):
    """
    A CMA-ES strategy that uses the :math:`1 + \lambda` paradigme.
    
    :param parent: An iterable object that indicates where to start the
                   evolution. The parent requires a fitness attribute.
    :param sigma: The initial standard deviation of the distribution.
    :param parameter: One or more parameter to pass to the strategy as
                      described in the following table, optional.
    """
    def __init__(self, parent, sigma, **kargs):
        self.parent = parent
        self.sigma = sigma
        self.dim = len(self.parent)

        self.C = numpy.identity(self.dim)
        self.A = numpy.identity(self.dim)
        
        self.pc = numpy.zeros(self.dim)
        
        self.computeParams(kargs)
        self.psucc = self.ptarg
        
    def computeParams(self, params):
        """Computes the parameters depending on :math:`\lambda`. It needs to
        be called again if :math:`\lambda` changes during evolution.
        
        :param params: A dictionary of the manually set parameters.
        """
        # Selection :
        self.lambda_ = params.get("lambda_", 1)
        
        # Step size control :
        self.d = params.get("d", 1.0 + self.dim/(2.0*self.lambda_))
        self.ptarg = params.get("ptarg", 1.0/(5+sqrt(self.lambda_)/2.0))
        self.cp = params.get("cp", self.ptarg*self.lambda_/(2+self.ptarg*self.lambda_))
        
        # Covariance matrix adaptation
        self.cc = params.get("cc", 2.0/(self.dim+2.0))
        self.ccov = params.get("ccov", 2.0/(self.dim**2 + 6.0))
        self.pthresh = params.get("pthresh", 0.44)
    
    def generate(self, ind_init):
        """Generate a population of :math:`\lambda` individuals of type
        *ind_init* from the current strategy.
        
        :param ind_init: A function object that is able to initialize an
                         individual from a list.
        :returns: A list of individuals.
        """
        # self.y = numpy.dot(self.A, numpy.random.standard_normal(self.dim))
        arz = numpy.random.standard_normal((self.lambda_, self.dim))
        arz = self.parent + self.sigma * numpy.dot(arz, self.A.T)        
        return list(map(ind_init, arz))
    
    def update(self, population):
        """Update the current covariance matrix strategy from the
        *population*.
        
        :param population: A list of individuals from which to update the
                           parameters.
        """
        population.sort(key=lambda ind: ind.fitness, reverse=True)
        lambda_succ = sum(self.parent.fitness <= ind.fitness for ind in population)
        p_succ = float(lambda_succ) / self.lambda_
        self.psucc = (1-self.cp)*self.psucc + self.cp*p_succ
        
        if self.parent.fitness <= population[0].fitness:
            x_step = (population[0] - numpy.array(self.parent)) / self.sigma
            self.parent = copy.deepcopy(population[0])
            if self.psucc < self.pthresh:
                self.pc = (1 - self.cc)*self.pc + sqrt(self.cc * (2 - self.cc)) * x_step
                self.C = (1-self.ccov)*self.C + self.ccov * numpy.dot(self.pc, self.pc.T)
            else:
                self.pc = (1 - self.cc)*self.pc
                self.C = (1-self.ccov)*self.C + self.ccov * (numpy.dot(self.pc, self.pc.T) + self.cc*(2-self.cc)*self.C)

        self.sigma = self.sigma * exp(1.0/self.d * (self.psucc - self.ptarg)/(1.0-self.ptarg))
        
        # We use Cholesky since for now we have no use of eigen decomposition
        # Basically, Cholesky returns a matrix A as C = A*A.T
        # Eigen decomposition returns two matrix B and D^2 as C = B*D^2*B.T = B*D*D*B.T
        # So A == B*D
        # To compute the new individual we need to multiply each vector z by A
        # as y = centroid + sigma * A*z
        # So the Cholesky is more straightforward as we don't need to compute 
        # the squareroot of D^2, and multiply B and D in order to get A, we directly get A.
        # This can't be done (without cost) with the standard CMA-ES as the eigen decomposition is used
        # to compute covariance matrix inverse in the step-size evolutionary path computation.
        self.A = numpy.linalg.cholesky(self.C)