This file is indexed.

/usr/lib/python3/dist-packages/emcee/ensemble.py is in python3-emcee 2.1.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
An affine invariant Markov chain Monte Carlo (MCMC) sampler.

Goodman & Weare, Ensemble Samplers With Affine Invariance
   Comm. App. Math. Comp. Sci., Vol. 5 (2010), No. 1, 65–80

"""

from __future__ import (division, print_function, absolute_import,
                        unicode_literals)

__all__ = ["EnsembleSampler"]

import numpy as np

from . import autocorr
from .sampler import Sampler
from .interruptible_pool import InterruptiblePool


class EnsembleSampler(Sampler):
    """
    A generalized Ensemble sampler that uses 2 ensembles for parallelization.
    The ``__init__`` function will raise an ``AssertionError`` if
    ``k < 2 * dim`` (and you haven't set the ``live_dangerously`` parameter)
    or if ``k`` is odd.

    **Warning**: The :attr:`chain` member of this object has the shape:
    ``(nwalkers, nlinks, dim)`` where ``nlinks`` is the number of steps
    taken by the chain and ``k`` is the number of walkers.  Use the
    :attr:`flatchain` property to get the chain flattened to
    ``(nlinks, dim)``. For users of pre-1.0 versions, this shape is
    different so be careful!

    :param nwalkers:
        The number of Goodman & Weare "walkers".

    :param dim:
        Number of dimensions in the parameter space.

    :param lnpostfn:
        A function that takes a vector in the parameter space as input and
        returns the natural logarithm of the posterior probability for that
        position.

    :param a: (optional)
        The proposal scale parameter. (default: ``2.0``)

    :param args: (optional)
        A list of extra positional arguments for ``lnpostfn``. ``lnpostfn``
        will be called with the sequence ``lnpostfn(p, *args, **kwargs)``.

    :param kwargs: (optional)
        A list of extra keyword arguments for ``lnpostfn``. ``lnpostfn``
        will be called with the sequence ``lnpostfn(p, *args, **kwargs)``.

    :param postargs: (optional)
        Alias of ``args`` for backwards compatibility.

    :param threads: (optional)
        The number of threads to use for parallelization. If ``threads == 1``,
        then the ``multiprocessing`` module is not used but if
        ``threads > 1``, then a ``Pool`` object is created and calls to
        ``lnpostfn`` are run in parallel.

    :param pool: (optional)
        An alternative method of using the parallelized algorithm. If
        provided, the value of ``threads`` is ignored and the
        object provided by ``pool`` is used for all parallelization. It
        can be any object with a ``map`` method that follows the same
        calling sequence as the built-in ``map`` function.

    :param runtime_sortingfn: (optional)
        A function implementing custom runtime load-balancing. See
        :ref:`loadbalance` for more information.

    """
    def __init__(self, nwalkers, dim, lnpostfn, a=2.0, args=[], kwargs={},
                 postargs=None, threads=1, pool=None, live_dangerously=False,
                 runtime_sortingfn=None):
        self.k = nwalkers
        self.a = a
        self.threads = threads
        self.pool = pool
        self.runtime_sortingfn = runtime_sortingfn

        if postargs is not None:
            args = postargs
        super(EnsembleSampler, self).__init__(dim, lnpostfn, args=args,
                                              kwargs=kwargs)

        # Do a little bit of _magic_ to make the likelihood call with
        # ``args`` and ``kwargs`` pickleable.
        self.lnprobfn = _function_wrapper(self.lnprobfn, self.args,
                                          self.kwargs)

        assert self.k % 2 == 0, "The number of walkers must be even."
        if not live_dangerously:
            assert self.k >= 2 * self.dim, (
                "The number of walkers needs to be more than twice the "
                "dimension of your parameter space... unless you're "
                "crazy!")

        if self.threads > 1 and self.pool is None:
            self.pool = InterruptiblePool(self.threads)

    def clear_blobs(self):
        """
        Clear the ``blobs`` list.

        """
        self._blobs = []

    def reset(self):
        """
        Clear the ``chain`` and ``lnprobability`` array. Also reset the
        bookkeeping parameters.

        """
        super(EnsembleSampler, self).reset()
        self.naccepted = np.zeros(self.k)
        self._chain = np.empty((self.k, 0, self.dim))
        self._lnprob = np.empty((self.k, 0))

        # Initialize list for storing optional metadata blobs.
        self.clear_blobs()

    def sample(self, p0, lnprob0=None, rstate0=None, blobs0=None,
               iterations=1, thin=1, storechain=True, mh_proposal=None):
        """
        Advance the chain ``iterations`` steps as a generator.

        :param p0:
            A list of the initial positions of the walkers in the
            parameter space. It should have the shape ``(nwalkers, dim)``.

        :param lnprob0: (optional)
            The list of log posterior probabilities for the walkers at
            positions given by ``p0``. If ``lnprob is None``, the initial
            values are calculated. It should have the shape ``(k, dim)``.

        :param rstate0: (optional)
            The state of the random number generator.
            See the :attr:`Sampler.random_state` property for details.

        :param iterations: (optional)
            The number of steps to run.

        :param thin: (optional)
            If you only want to store and yield every ``thin`` samples in the
            chain, set thin to an integer greater than 1.

        :param storechain: (optional)
            By default, the sampler stores (in memory) the positions and
            log-probabilities of the samples in the chain. If you are
            using another method to store the samples to a file or if you
            don't need to analyse the samples after the fact (for burn-in
            for example) set ``storechain`` to ``False``.

        :param mh_proposal: (optional)
            A function that returns a list of positions for ``nwalkers``
            walkers given a current list of positions of the same size. See
            :class:`utils.MH_proposal_axisaligned` for an example.

        At each iteration, this generator yields:

        * ``pos`` - A list of the current positions of the walkers in the
          parameter space. The shape of this object will be
          ``(nwalkers, dim)``.

        * ``lnprob`` - The list of log posterior probabilities for the
          walkers at positions given by ``pos`` . The shape of this object
          is ``(nwalkers, dim)``.

        * ``rstate`` - The current state of the random number generator.

        * ``blobs`` - (optional) The metadata "blobs" associated with the
          current position. The value is only returned if ``lnpostfn``
          returns blobs too.

        """
        # Try to set the initial value of the random number generator. This
        # fails silently if it doesn't work but that's what we want because
        # we'll just interpret any garbage as letting the generator stay in
        # it's current state.
        self.random_state = rstate0

        p = np.array(p0)
        halfk = int(self.k / 2)

        # If the initial log-probabilities were not provided, calculate them
        # now.
        lnprob = lnprob0
        blobs = blobs0
        if lnprob is None:
            lnprob, blobs = self._get_lnprob(p)

        # Check to make sure that the probability function didn't return
        # ``np.nan``.
        if np.any(np.isnan(lnprob)):
            raise ValueError("The initial lnprob was NaN.")

        # Store the initial size of the stored chain.
        i0 = self._chain.shape[1]

        # Here, we resize chain in advance for performance. This actually
        # makes a pretty big difference.
        if storechain:
            N = int(iterations / thin)
            self._chain = np.concatenate((self._chain,
                                          np.zeros((self.k, N, self.dim))),
                                         axis=1)
            self._lnprob = np.concatenate((self._lnprob,
                                           np.zeros((self.k, N))), axis=1)

        for i in range(int(iterations)):
            self.iterations += 1

            # If we were passed a Metropolis-Hastings proposal
            # function, use it.
            if mh_proposal is not None:
                # Draw proposed positions & evaluate lnprob there
                q = mh_proposal(p)
                newlnp, blob = self._get_lnprob(q)

                # Accept if newlnp is better; and ...
                acc = (newlnp > lnprob)

                # ... sometimes accept for steps that got worse
                worse = np.flatnonzero(~acc)
                acc[worse] = ((newlnp[worse] - lnprob[worse]) >
                              np.log(self._random.rand(len(worse))))
                del worse

                # Update the accepted walkers.
                lnprob[acc] = newlnp[acc]
                p[acc] = q[acc]
                self.naccepted[acc] += 1

                if blob is not None:
                    assert blobs is not None, (
                        "If you start sampling with a given lnprob, you also "
                        "need to provide the current list of blobs at that "
                        "position.")
                    ind = np.arange(self.k)[acc]
                    for j in ind:
                        blobs[j] = blob[j]

            else:
                # Loop over the two ensembles, calculating the proposed
                # positions.

                # Slices for the first and second halves
                first, second = slice(halfk), slice(halfk, self.k)
                for S0, S1 in [(first, second), (second, first)]:
                    q, newlnp, acc, blob = self._propose_stretch(p[S0], p[S1],
                                                                 lnprob[S0])
                    if np.any(acc):
                        # Update the positions, log probabilities and
                        # acceptance counts.
                        lnprob[S0][acc] = newlnp[acc]
                        p[S0][acc] = q[acc]
                        self.naccepted[S0][acc] += 1

                        if blob is not None:
                            assert blobs is not None, (
                                "If you start sampling with a given lnprob, "
                                "you also need to provide the current list of "
                                "blobs at that position.")
                            ind = np.arange(len(acc))[acc]
                            indfull = np.arange(self.k)[S0][acc]
                            for j in range(len(ind)):
                                blobs[indfull[j]] = blob[ind[j]]

            if storechain and i % thin == 0:
                ind = i0 + int(i / thin)
                self._chain[:, ind, :] = p
                self._lnprob[:, ind] = lnprob
                if blobs is not None:
                    self._blobs.append(list(blobs))

            # Yield the result as an iterator so that the user can do all
            # sorts of fun stuff with the results so far.
            if blobs is not None:
                # This is a bit of a hack to keep things backwards compatible.
                yield p, lnprob, self.random_state, blobs
            else:
                yield p, lnprob, self.random_state

    def _propose_stretch(self, p0, p1, lnprob0):
        """
        Propose a new position for one sub-ensemble given the positions of
        another.

        :param p0:
            The positions from which to jump.

        :param p1:
            The positions of the other ensemble.

        :param lnprob0:
            The log-probabilities at ``p0``.

        This method returns:

        * ``q`` - The new proposed positions for the walkers in ``ensemble``.

        * ``newlnprob`` - The vector of log-probabilities at the positions
          given by ``q``.

        * ``accept`` - A vector of type ``bool`` indicating whether or not
          the proposed position for each walker should be accepted.

        * ``blob`` - The new meta data blobs or ``None`` if nothing was
          returned by ``lnprobfn``.

        """
        s = np.atleast_2d(p0)
        Ns = len(s)
        c = np.atleast_2d(p1)
        Nc = len(c)

        # Generate the vectors of random numbers that will produce the
        # proposal.
        zz = ((self.a - 1.) * self._random.rand(Ns) + 1) ** 2. / self.a
        rint = self._random.randint(Nc, size=(Ns,))

        # Calculate the proposed positions and the log-probability there.
        q = c[rint] - zz[:, np.newaxis] * (c[rint] - s)
        newlnprob, blob = self._get_lnprob(q)

        # Decide whether or not the proposals should be accepted.
        lnpdiff = (self.dim - 1.) * np.log(zz) + newlnprob - lnprob0
        accept = (lnpdiff > np.log(self._random.rand(len(lnpdiff))))

        return q, newlnprob, accept, blob

    def _get_lnprob(self, pos=None):
        """
        Calculate the vector of log-probability for the walkers.

        :param pos: (optional)
            The position vector in parameter space where the probability
            should be calculated. This defaults to the current position
            unless a different one is provided.

        This method returns:

        * ``lnprob`` - A vector of log-probabilities with one entry for each
          walker in this sub-ensemble.

        * ``blob`` - The list of meta data returned by the ``lnpostfn`` at
          this position or ``None`` if nothing was returned.

        """
        if pos is None:
            p = self.pos
        else:
            p = pos

        # Check that the parameters are in physical ranges.
        if np.any(np.isinf(p)):
            raise ValueError("At least one parameter value was infinite.")
        if np.any(np.isnan(p)):
            raise ValueError("At least one parameter value was NaN.")

        # If the `pool` property of the sampler has been set (i.e. we want
        # to use `multiprocessing`), use the `pool`'s map method. Otherwise,
        # just use the built-in `map` function.
        if self.pool is not None:
            M = self.pool.map
        else:
            M = map

        # sort the tasks according to (user-defined) some runtime guess
        if self.runtime_sortingfn is not None:
            p, idx = self.runtime_sortingfn(p)

        # Run the log-probability calculations (optionally in parallel).
        results = list(M(self.lnprobfn, [p[i] for i in range(len(p))]))

        try:
            lnprob = np.array([float(l[0]) for l in results])
            blob = [l[1] for l in results]
        except (IndexError, TypeError):
            lnprob = np.array([float(l) for l in results])
            blob = None

        # sort it back according to the original order - get the same
        # chain irrespective of the runtime sorting fn
        if self.runtime_sortingfn is not None:
            orig_idx = np.argsort(idx)
            lnprob = lnprob[orig_idx]
            p = [p[i] for i in orig_idx]
            if blob is not None:
                blob = [blob[i] for i in orig_idx]

        # Check for lnprob returning NaN.
        if np.any(np.isnan(lnprob)):
            # Print some debugging stuff.
            print("NaN value of lnprob for parameters: ")
            for pars in p[np.isnan(lnprob)]:
                print(pars)

            # Finally raise exception.
            raise ValueError("lnprob returned NaN.")

        return lnprob, blob

    @property
    def blobs(self):
        """
        Get the list of "blobs" produced by sampling. The result is a list
        (of length ``iterations``) of ``list`` s (of length ``nwalkers``) of
        arbitrary objects. **Note**: this will actually be an empty list if
        your ``lnpostfn`` doesn't return any metadata.

        """
        return self._blobs

    @property
    def chain(self):
        """
        A pointer to the Markov chain itself. The shape of this array is
        ``(k, iterations, dim)``.

        """
        return super(EnsembleSampler, self).chain

    @property
    def flatchain(self):
        """
        A shortcut for accessing chain flattened along the zeroth (walker)
        axis.

        """
        s = self.chain.shape
        return self.chain.reshape(s[0] * s[1], s[2])

    @property
    def lnprobability(self):
        """
        A pointer to the matrix of the value of ``lnprobfn`` produced at each
        step for each walker. The shape is ``(k, iterations)``.

        """
        return super(EnsembleSampler, self).lnprobability

    @property
    def flatlnprobability(self):
        """
        A shortcut to return the equivalent of ``lnprobability`` but aligned
        to ``flatchain`` rather than ``chain``.

        """
        return super(EnsembleSampler, self).lnprobability.flatten()

    @property
    def acceptance_fraction(self):
        """
        An array (length: ``k``) of the fraction of steps accepted for each
        walker.

        """
        return super(EnsembleSampler, self).acceptance_fraction

    @property
    def acor(self):
        """
        An estimate of the autocorrelation time for each parameter (length:
        ``dim``).

        """
        return self.get_autocorr_time()

    def get_autocorr_time(self, window=50, fast=False):
        """
        Compute an estimate of the autocorrelation time for each parameter
        (length: ``dim``).

        :param window: (optional)
            The size of the windowing function. This is equivalent to the
            maximum number of lags to use. (default: 50)

        """
        return autocorr.integrated_time(np.mean(self.chain, axis=0), axis=0,
                                        window=window, fast=fast)


class _function_wrapper(object):
    """
    This is a hack to make the likelihood function pickleable when ``args``
    or ``kwargs`` are also included.

    """
    def __init__(self, f, args, kwargs):
        self.f = f
        self.args = args
        self.kwargs = kwargs

    def __call__(self, x):
        try:
            return self.f(x, *self.args, **self.kwargs)
        except:
            import traceback
            print("emcee: Exception while calling your likelihood function:")
            print("  params:", x)
            print("  args:", self.args)
            print("  kwargs:", self.kwargs)
            print("  exception:")
            traceback.print_exc()
            raise