This file is indexed.

/usr/lib/python3/dist-packages/geopandas/geocode.py is in python3-geopandas 0.1.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from collections import defaultdict
import time

from fiona.crs import from_epsg
import numpy as np
import pandas as pd
from shapely.geometry import Point
from six import iteritems

import geopandas as gpd


def _throttle_time(provider):
    """ Amount of time to wait between requests to a geocoding API.

    Currently implemented for Nominatim, as their terms of service
    require a maximum of 1 request per second.
    https://wiki.openstreetmap.org/wiki/Nominatim_usage_policy
    """
    if provider == 'nominatim':
        return 1
    else:
        return 0


def geocode(strings, provider='googlev3', **kwargs):
    """
    Geocode a set of strings and get a GeoDataFrame of the resulting points.

    Parameters
    ----------
    strings : list or Series of addresses to geocode
    provider : geopy geocoder to use, default 'googlev3'
        Some providers require additional arguments such as access keys
        See each geocoder's specific parameters in geopy.geocoders
        * googlev3, default
        * bing
        * google
        * yahoo
        * mapquest
        * openmapquest
    
    Ensure proper use of the results by consulting the Terms of Service for
    your provider.

    Geocoding requires geopy. Install it using 'pip install geopy'. See also
    https://github.com/geopy/geopy

    Example
    -------
    >>> df = geocode(['boston, ma', '1600 pennsylvania ave. washington, dc'])
    address                                               geometry
    0                                    Boston, MA, USA  POINT (-71.0597731999999951 42.3584308000000007)
    1  1600 Pennsylvania Avenue Northwest, President'...  POINT (-77.0365122999999983 38.8978377999999978)

    """
    import geopy
    from geopy.geocoders.base import GeocoderQueryError

    if not isinstance(strings, pd.Series):
        strings = pd.Series(strings)

    # workaround changed name in 0.96
    try:
        Yahoo = geopy.geocoders.YahooPlaceFinder
    except AttributeError:
        Yahoo = geopy.geocoders.Yahoo

    coders = {'googlev3': geopy.geocoders.GoogleV3,
              'bing': geopy.geocoders.Bing,
              'yahoo': Yahoo,
              'mapquest': geopy.geocoders.MapQuest,
              'openmapquest': geopy.geocoders.OpenMapQuest,
              'nominatim' : geopy.geocoders.Nominatim}

    if provider not in coders:
        raise ValueError('Unknown geocoding provider: {0}'.format(provider))

    coder = coders[provider](**kwargs)
    results = {}
    for i, s in iteritems(strings):
        try:
            results[i] = coder.geocode(s)
        except (GeocoderQueryError, ValueError):
            results[i] = (None, None)
        time.sleep(_throttle_time(provider))

    df = _prepare_geocode_result(results)
    return df

def _prepare_geocode_result(results):
    """
    Helper function for the geocode function

    Takes a dict where keys are index entries, values are tuples containing:
    (address, (lat, lon))

    """
    # Prepare the data for the DataFrame as a dict of lists
    d = defaultdict(list)
    index = []

    for i, s in iteritems(results):
        address, loc = s

        # loc is lat, lon and we want lon, lat
        if loc is None:
            p = Point()
        else:
            p = Point(loc[1], loc[0])

        if address is None:
            address = np.nan

        d['geometry'].append(p)
        d['address'].append(address)
        index.append(i)

    df = gpd.GeoDataFrame(d, index=index)
    df.crs = from_epsg(4326)

    return df