This file is indexed.

/usr/lib/python3/dist-packages/gsw-3.0.3.egg-info/PKG-INFO is in python3-gsw 3.0.3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
Metadata-Version: 1.1
Name: gsw
Version: 3.0.3
Summary: Gibbs SeaWater Oceanographic Package of TEOS-10
Home-page: http://pypi.python.org/pypi/seawater/
Author: Filipe Fernandes
Author-email: ocefpaf@gmail.com
License: Copyright Notice and Statement for the gsw project:

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Download-URL: https://pypi.python.org/pypi/gsw/
Description: This python module is incomplete and should be used with caution.
        =================================================================
        
        python gsw
        ==========
        
        | |Build|
        | |Build|
        | |Downloads|
        
        Python implementation of the Thermodynamic Equation Of Seawater - 2010 (TEOS-10)[http://www.teos-10.org/\ ]
        -----------------------------------------------------------------------------------------------------------
        
        gsw vs. csiro
        -------------
        
        This table shows some function names in the gibbs library and the
        corresponding function names in the csiro library.
        
        +-----------------------------------------------------------+----------------------------------------------------+--------------------------------------------------------------+
        | **Variable**                                              | **SeaWater (EOS 80)**                              | **Gibbs SeaWater (GSW TEOS 10)**                             |
        +===========================================================+====================================================+==============================================================+
        | Absolute Salinity                                         | NA                                                 | gsw.SA\_from\_SP(SP,p,long,lat)                              |
        +-----------------------------------------------------------+----------------------------------------------------+--------------------------------------------------------------+
        | Conservative Temperature                                  | NA                                                 | gsw.CT\_from\_t(SA,t,p)                                      |
        +-----------------------------------------------------------+----------------------------------------------------+--------------------------------------------------------------+
        | density (i.e. in situ density)                            | sw.dens(SP,t,p)                                    | gsw.rho\_CT(SA,CT,p), or gsw.rho(SA,t,p)                     |
        +-----------------------------------------------------------+----------------------------------------------------+--------------------------------------------------------------+
        | potential density                                         | sw.pden(SP,t,p,pr)                                 | gsw.rho\_CT(SA,CT,pr)                                        |
        +-----------------------------------------------------------+----------------------------------------------------+--------------------------------------------------------------+
        | potential temperature                                     | sw.ptmp(SP,t,p,pr)                                 | gsw.pt\_from\_t(SA,t,p,pr)                                   |
        +-----------------------------------------------------------+----------------------------------------------------+--------------------------------------------------------------+
        | $\\sigma\_0$, using $\\theta\_o$ = sw.ptmp(SP,t,p,0)      | sw.dens(SP, $\\theta\_o$, 0) -1000 kg m$^{-3}$     | gsw.sigma0\_CT(SA,CT)                                        |
        +-----------------------------------------------------------+----------------------------------------------------+--------------------------------------------------------------+
        | $\\sigma\_2$, using $\\theta\_2$ = sw.ptmp(SP,t,p,2000)   | sw.dens(SP,$\\theta\_2$, 2000) -1000 kg m$^{-3}$   | gsw.sigma2\_CT(SA,CT)                                        |
        +-----------------------------------------------------------+----------------------------------------------------+--------------------------------------------------------------+
        | $\\sigma\_4$, using $\\theta\_4$ = sw.ptmp(SP,t,p,2000)   | sw.dens(SP,$\\theta\_4$, 4000) -1000 kg m$^{-3}$   | gsw.sigma2\_CT(SA,CT)                                        |
        +-----------------------------------------------------------+----------------------------------------------------+--------------------------------------------------------------+
        | specific volume anomaly                                   | sw.svan(SP,t,p)                                    | gsw.specvol\_anom\_CT(SA,CT,p)                               |
        +-----------------------------------------------------------+----------------------------------------------------+--------------------------------------------------------------+
        | dynamic height anomaly                                    | -sw.gpan(SP,t,p)                                   | gsw.geo\_strf\_dyn\_height(SA,CT,p,delta\_p,interp\_style)   |
        +-----------------------------------------------------------+----------------------------------------------------+--------------------------------------------------------------+
        | geostrophic velocity                                      | sw.gvel(ga,lat,long)                               | gsw.geostrophic\_velocity(geo\_str,long,lat,p)               |
        +-----------------------------------------------------------+----------------------------------------------------+--------------------------------------------------------------+
        | N$^2$                                                     | sw.bfrq(SP,t,p,lat)                                | gsw.Nsquared(SA,CT,p,lat)                                    |
        +-----------------------------------------------------------+----------------------------------------------------+--------------------------------------------------------------+
        | pressure from height (SW uses depth, not height)          | sw.pres(-z,lat)                                    | gsw.p\_from\_z(z,lat)                                        |
        +-----------------------------------------------------------+----------------------------------------------------+--------------------------------------------------------------+
        | height from pressure (SW outputs depth, not height)       | z = -sw.dpth(p,lat)                                | gsw.z\_from\_p(p,lat)                                        |
        +-----------------------------------------------------------+----------------------------------------------------+--------------------------------------------------------------+
        | in situ temperature from pt                               | sw.temp(SP,pt,p,pr)                                | gsw.pt\_from\_t(SA,pt,pr,p)                                  |
        +-----------------------------------------------------------+----------------------------------------------------+--------------------------------------------------------------+
        | sound speed                                               | sw.svel(SP,t,p)                                    | gsw.sound\_speed(SA,t,p)                                     |
        +-----------------------------------------------------------+----------------------------------------------------+--------------------------------------------------------------+
        | isobaric heat capacity                                    | sw.cp(SP,t,p)                                      | gsw.cp(SA,t,p)                                               |
        +-----------------------------------------------------------+----------------------------------------------------+--------------------------------------------------------------+
        | adiabatic lapse rate\*                                    | sw.adtg(SP,t,p)                                    | gsw.adiabatic\_lapse\_rate(SA,t,p)                           |
        +-----------------------------------------------------------+----------------------------------------------------+--------------------------------------------------------------+
        | SP from cndr, (PSS 78)                                    | sw.salt(cndr,t,p)                                  | gsw.SP\_from\_cndr(cndr,t,p)                                 |
        +-----------------------------------------------------------+----------------------------------------------------+--------------------------------------------------------------+
        | cndr from SP, (PSS 78)                                    | sw.cndr(SP,t,p)                                    | gsw.cndr\_from\_SP(SP,t,p)                                   |
        +-----------------------------------------------------------+----------------------------------------------------+--------------------------------------------------------------+
        | distance                                                  | sw.dist(lat,long,units)                            | gsw.distance(long,lat,p)                                     |
        +-----------------------------------------------------------+----------------------------------------------------+--------------------------------------------------------------+
        | gravitational acceleration                                | sw.g(lat,z)                                        | gsw.grav(lat,p)                                              |
        +-----------------------------------------------------------+----------------------------------------------------+--------------------------------------------------------------+
        | Coriolis parameter                                        | sw.f(lat)                                          | gsw.f(lat)                                                   |
        +-----------------------------------------------------------+----------------------------------------------------+--------------------------------------------------------------+
        
        | Note that the SW and GSW functions output the adiabatic lapse rate in
        different units, being K (dbar)$^{-1}$ and K Pa$^{-1}$
        | respectively.
        
        Authors
        -------
        
        -  Bjørn Ådlandsvik
        -  Eric Firing
        -  Filipe Fernandes
        
        Thanks
        ------
        
        -  Bjørn Ådlandsvik - Testing unit and several bug fixes.
        -  Eric Firing - Support for masked arrays, re-write of *delta*\ SA.
        -  Trevor J. McDougall (and all of SCOR/IAPSO WG127) for making
           available the Matlab version of this software.
        
        Acknowledgments
        ---------------
        
        -  SCOR/IAPSO WG127.
        
        Caveats
        -------
        
        -  This python module is incomplete and should be used with caution.
        -  The database used in ``_delta_SA`` comes from the MatlabTM gsw
           version.
        
        .. |Build| image:: https://badge.fury.io/py/gsw.png
           :target: http://badge.fury.io/py/gsw
        .. |Build| image:: https://api.travis-ci.org/ocefpaf/python-gsw.png?branch=master
           :target: https://travis-ci.org/ocefpaf/python-gsw
        .. |Downloads| image:: https://pypip.in/d/gsw/badge.png
           :target: https://crate.io/packages/gsw/
        
        version 3.0.3
        =============
        
        version 3.0
        ===========
        * New repository with TEOS10 code (version 3 only).
        
Keywords: oceanography,seawater,TEOS-10,gibbs
Platform: any
Classifier: Development Status :: 4 - Beta
Classifier: Environment :: Console
Classifier: Intended Audience :: Science/Research
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Education
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python
Classifier: Topic :: Education
Classifier: Topic :: Scientific/Engineering