/usr/lib/python3/dist-packages/hypothesis/strategies.py is in python3-hypothesis 3.0.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 | # coding=utf-8
#
# This file is part of Hypothesis (https://github.com/DRMacIver/hypothesis)
#
# Most of this work is copyright (C) 2013-2015 David R. MacIver
# (david@drmaciver.com), but it contains contributions by others. See
# https://github.com/DRMacIver/hypothesis/blob/master/CONTRIBUTING.rst for a
# full list of people who may hold copyright, and consult the git log if you
# need to determine who owns an individual contribution.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at http://mozilla.org/MPL/2.0/.
#
# END HEADER
from __future__ import division, print_function, absolute_import
import math
from decimal import Decimal
from hypothesis.errors import InvalidArgument
from hypothesis.control import assume
from hypothesis.searchstrategy import SearchStrategy
from hypothesis.internal.compat import ArgSpec, text_type, getargspec, \
integer_types, float_to_decimal
from hypothesis.internal.floats import is_negative, float_to_int, \
int_to_float, count_between_floats
from hypothesis.internal.reflection import proxies
from hypothesis.searchstrategy.reprwrapper import ReprWrapperStrategy
__all__ = [
'just', 'one_of',
'none',
'choices', 'streaming',
'booleans', 'integers', 'floats', 'complex_numbers', 'fractions',
'decimals',
'characters', 'text', 'binary',
'tuples', 'lists', 'sets', 'frozensets',
'dictionaries', 'fixed_dictionaries',
'sampled_from', 'permutations',
'builds',
'randoms', 'random_module',
'recursive', 'composite',
'shared',
'recursive', 'composite',
]
_strategies = set()
class FloatKey(object):
def __init__(self, f):
self.value = float_to_int(f)
def __eq__(self, other):
return isinstance(other, FloatKey) and (
other.value == self.value
)
def __ne__(self, other):
return not self.__eq__(other)
def __hash__(self):
return hash(self.value)
def convert_value(v):
if isinstance(v, float):
return FloatKey(v)
return (type(v), v)
def cacheable(fn):
cache = {}
@proxies(fn)
def cached_strategy(*args, **kwargs):
kwargs_cache_key = set()
try:
for k, v in kwargs.items():
kwargs_cache_key.add((k, convert_value(v)))
except TypeError:
return fn(*args, **kwargs)
cache_key = (
tuple(map(convert_value, args)), frozenset(kwargs_cache_key))
try:
return cache[cache_key]
except TypeError:
return fn(*args, **kwargs)
except KeyError:
result = fn(*args, **kwargs)
cache[cache_key] = result
return result
return cached_strategy
def defines_strategy(strategy_definition):
from hypothesis.searchstrategy.deferred import DeferredStrategy
_strategies.add(strategy_definition.__name__)
@proxies(strategy_definition)
def accept(*args, **kwargs):
return DeferredStrategy(strategy_definition, args, kwargs)
return accept
def just(value):
"""Return a strategy which only generates value.
Note: value is not copied. Be wary of using mutable values.
"""
from hypothesis.searchstrategy.misc import JustStrategy
def calc_repr():
return 'just(%s)' % (repr(value),)
return ReprWrapperStrategy(JustStrategy(value), calc_repr)
@defines_strategy
def none():
"""Return a strategy which only generates None."""
return just(None)
def one_of(arg, *args):
"""Return a strategy which generates values from any of the argument
strategies."""
if not args:
check_strategy(arg)
return arg
from hypothesis.searchstrategy.strategies import OneOfStrategy
args = (arg,) + args
for arg in args:
check_strategy(arg)
return OneOfStrategy(args)
@cacheable
@defines_strategy
def integers(min_value=None, max_value=None):
"""Returns a strategy which generates integers (in Python 2 these may be
ints or longs).
If min_value is not None then all values will be >=
min_value. If max_value is not None then all values will be <= max_value
"""
check_valid_integer(min_value)
check_valid_integer(max_value)
check_valid_interval(min_value, max_value, 'min_value', 'max_value')
from hypothesis.searchstrategy.numbers import IntegersFromStrategy, \
BoundedIntStrategy, WideRangeIntStrategy
if min_value is None:
if max_value is None:
return (
WideRangeIntStrategy()
)
else:
return IntegersFromStrategy(0).map(lambda x: max_value - x)
else:
if max_value is None:
return IntegersFromStrategy(min_value)
else:
assert min_value <= max_value
if min_value == max_value:
return just(min_value)
elif min_value >= 0:
return BoundedIntStrategy(min_value, max_value)
elif max_value <= 0:
return BoundedIntStrategy(-max_value, -min_value).map(
lambda t: -t
)
else:
return integers(min_value=0, max_value=max_value) | \
integers(min_value=min_value, max_value=0)
@cacheable
@defines_strategy
def booleans():
"""Returns a strategy which generates instances of bool."""
from hypothesis.searchstrategy.misc import BoolStrategy
return BoolStrategy()
@cacheable
@defines_strategy
def floats(
min_value=None, max_value=None, allow_nan=None, allow_infinity=None
):
"""Returns a strategy which generates floats.
- If min_value is not None, all values will be >= min_value.
- If max_value is not None, all values will be <= max_value.
- If min_value or max_value is not None, it is an error to enable
allow_nan.
- If both min_value and max_value are not None, it is an error to enable
allow_infinity.
Where not explicitly ruled out by the bounds, all of infinity, -infinity
and NaN are possible values generated by this strategy.
"""
if allow_nan is None:
allow_nan = bool(min_value is None and max_value is None)
elif allow_nan:
if min_value is not None or max_value is not None:
raise InvalidArgument(
'Cannot have allow_nan=%r, with min_value or max_value' % (
allow_nan
))
check_valid_bound(min_value, 'min_value')
check_valid_bound(max_value, 'max_value')
check_valid_interval(min_value, max_value, 'min_value', 'max_value')
if min_value is not None:
min_value = float(min_value)
if max_value is not None:
max_value = float(max_value)
if min_value == float(u'-inf'):
min_value = None
if max_value == float(u'inf'):
max_value = None
if allow_infinity is None:
allow_infinity = bool(min_value is None or max_value is None)
elif allow_infinity:
if min_value is not None and max_value is not None:
raise InvalidArgument(
'Cannot have allow_infinity=%r, with both min_value and '
'max_value' % (
allow_infinity
))
from hypothesis.searchstrategy.numbers import FloatStrategy, \
FixedBoundedFloatStrategy
if min_value is None and max_value is None:
return FloatStrategy(
allow_infinity=allow_infinity, allow_nan=allow_nan,
)
elif min_value is not None and max_value is not None:
if min_value == max_value:
return just(min_value)
elif math.isinf(max_value - min_value):
assert min_value < 0 and max_value > 0
return floats(min_value=0, max_value=max_value) | floats(
min_value=min_value, max_value=0
)
elif count_between_floats(min_value, max_value) > 1000:
return FixedBoundedFloatStrategy(
lower_bound=min_value, upper_bound=max_value
)
elif is_negative(max_value):
assert is_negative(min_value)
ub_int = float_to_int(max_value)
lb_int = float_to_int(min_value)
assert ub_int <= lb_int
return integers(min_value=ub_int, max_value=lb_int).map(
int_to_float
)
elif is_negative(min_value):
return floats(min_value=min_value, max_value=-0.0) | floats(
min_value=0, max_value=max_value
)
else:
ub_int = float_to_int(max_value)
lb_int = float_to_int(min_value)
assert lb_int <= ub_int
return integers(min_value=lb_int, max_value=ub_int).map(
int_to_float
)
elif min_value is not None:
if min_value < 0:
result = floats(
min_value=0.0
) | floats(min_value=min_value, max_value=0.0)
else:
result = (
floats(allow_infinity=allow_infinity, allow_nan=False).map(
lambda x: assume(not math.isnan(x)) and min_value + abs(x)
)
)
if min_value == 0 and not is_negative(min_value):
result = result.filter(lambda x: math.copysign(1.0, x) == 1)
return result
else:
assert max_value is not None
if max_value > 0:
result = floats(
min_value=0.0,
max_value=max_value,
) | floats(max_value=0.0)
else:
result = (
floats(allow_infinity=allow_infinity, allow_nan=False).map(
lambda x: assume(not math.isnan(x)) and max_value - abs(x)
)
)
if max_value == 0 and is_negative(max_value):
result = result.filter(is_negative)
return result
@cacheable
@defines_strategy
def complex_numbers():
"""Returns a strategy that generates complex numbers."""
from hypothesis.searchstrategy.numbers import ComplexStrategy
return ComplexStrategy(
tuples(floats(), floats())
)
@cacheable
@defines_strategy
def tuples(*args):
"""Return a strategy which generates a tuple of the same length as args by
generating the value at index i from args[i].
e.g. tuples(integers(), integers()) would generate a tuple of length
two with both values an integer.
"""
for arg in args:
check_strategy(arg)
from hypothesis.searchstrategy.collections import TupleStrategy
return TupleStrategy(args, tuple)
@defines_strategy
def sampled_from(elements):
"""Returns a strategy which generates any value present in the iterable
elements.
Note that as with just, values will not be copied and thus you
should be careful of using mutable data
"""
from hypothesis.searchstrategy.misc import SampledFromStrategy, \
JustStrategy
elements = tuple(iter(elements))
if not elements:
raise InvalidArgument(
'sampled_from requires at least one value'
)
if len(elements) == 1:
return JustStrategy(elements[0])
else:
return SampledFromStrategy(elements)
@cacheable
@defines_strategy
def lists(
elements=None, min_size=None, average_size=None, max_size=None,
unique_by=None, unique=False,
):
"""Returns a list containing values drawn from elements length in the
interval [min_size, max_size] (no bounds in that direction if these are
None). If max_size is 0 then elements may be None and only the empty list
will be drawn.
average_size may be used as a size hint to roughly control the size
of list but it may not be the actual average of sizes you get, due
to a variety of factors.
If unique is True (or something that evaluates to True), we compare direct
object equality, as if unique_by was `lambda x: x`. This comparison only
works for hashable types.
if unique_by is not None it must be a function returning a hashable type
when given a value drawn from elements. The resulting list will satisfy the
condition that for i != j, unique_by(result[i]) != unique_by(result[j]).
"""
check_valid_sizes(min_size, average_size, max_size)
if elements is None or (max_size is not None and max_size <= 0):
if max_size is None or max_size > 0:
raise InvalidArgument(
u'Cannot create non-empty lists without an element type'
)
else:
return builds(list)
if unique:
if unique_by is not None:
raise InvalidArgument((
'cannot specify both unique and unique_by (you probably only '
'want to set unique_by)'
))
else:
unique_by = lambda x: x
if unique_by is not None:
from hypothesis.searchstrategy.collections import UniqueListStrategy
check_strategy(elements)
min_size = min_size or 0
max_size = max_size or float(u'inf')
if average_size is None:
if max_size < float(u'inf'):
if max_size <= 5:
average_size = min_size + 0.75 * (max_size - min_size)
else:
average_size = (max_size + min_size) / 2
else:
average_size = max(
_AVERAGE_LIST_LENGTH,
min_size * 2
)
check_valid_sizes(min_size, average_size, max_size)
result = UniqueListStrategy(
elements=elements,
average_size=average_size,
max_size=max_size,
min_size=min_size,
key=unique_by
)
return result
check_valid_sizes(min_size, average_size, max_size)
from hypothesis.searchstrategy.collections import ListStrategy
if min_size is None:
min_size = 0
if average_size is None:
if max_size is None:
average_size = _AVERAGE_LIST_LENGTH
else:
average_size = (min_size + max_size) * 0.5
check_strategy(elements)
return ListStrategy(
(elements,), average_length=average_size,
min_size=min_size, max_size=max_size,
)
@cacheable
@defines_strategy
def sets(elements=None, min_size=None, average_size=None, max_size=None):
"""This has the same behaviour as lists, but returns sets instead.
Note that Hypothesis cannot tell if values are drawn from elements
are hashable until running the test, so you can define a strategy
for sets of an unhashable type but it will fail at test time.
"""
return lists(
elements=elements, min_size=min_size, average_size=average_size,
max_size=max_size, unique=True
).map(set)
@cacheable
@defines_strategy
def frozensets(elements=None, min_size=None, average_size=None, max_size=None):
"""This is identical to the sets function but instead returns
frozensets."""
return lists(
elements=elements, min_size=min_size, average_size=average_size,
max_size=max_size, unique=True
).map(frozenset)
@defines_strategy
def fixed_dictionaries(mapping):
"""Generate a dictionary of the same type as mapping with a fixed set of
keys mapping to strategies. mapping must be a dict subclass.
Generated values have all keys present in mapping, with the
corresponding values drawn from mapping[key]. If mapping is an
instance of OrderedDict the keys will also be in the same order,
otherwise the order is arbitrary.
"""
from hypothesis.searchstrategy.collections import FixedKeysDictStrategy
check_type(dict, mapping)
for v in mapping.values():
check_type(SearchStrategy, v)
return FixedKeysDictStrategy(mapping)
@cacheable
@defines_strategy
def dictionaries(
keys, values, dict_class=dict,
min_size=None, average_size=None, max_size=None
):
"""Generates dictionaries of type dict_class with keys drawn from the keys
argument and values drawn from the values argument.
The size parameters have the same interpretation as for lists.
"""
check_valid_sizes(min_size, average_size, max_size)
if max_size == 0:
return fixed_dictionaries(dict_class())
check_strategy(keys)
check_strategy(values)
return lists(
tuples(keys, values),
min_size=min_size, average_size=average_size, max_size=max_size,
unique_by=lambda x: x[0]
).map(dict_class)
@cacheable
@defines_strategy
def streaming(elements):
"""Generates an infinite stream of values where each value is drawn from
elements.
The result is iterable (the iterator will never terminate) and
indexable.
"""
check_strategy(elements)
from hypothesis.searchstrategy.streams import StreamStrategy
return StreamStrategy(elements)
@cacheable
@defines_strategy
def characters(whitelist_categories=None, blacklist_categories=None,
blacklist_characters=None, min_codepoint=None,
max_codepoint=None):
"""Generates unicode text type (unicode on python 2, str on python 3)
characters following specified filtering rules.
This strategy accepts lists of Unicode categories, characters of which
should (`whitelist_categories`) or should not (`blacklist_categories`)
be produced.
Also there could be applied limitation by minimal and maximal produced
code point of the characters.
If you know what exactly characters you don't want to be produced,
pass them with `blacklist_characters` argument.
"""
if (
min_codepoint is not None and max_codepoint is not None and
min_codepoint > max_codepoint
):
raise InvalidArgument(
'Cannot have min_codepoint=%d > max_codepoint=%d ' % (
min_codepoint, max_codepoint
)
)
from hypothesis.searchstrategy.strings import OneCharStringStrategy
return OneCharStringStrategy(whitelist_categories=whitelist_categories,
blacklist_categories=blacklist_categories,
blacklist_characters=blacklist_characters,
min_codepoint=min_codepoint,
max_codepoint=max_codepoint)
@cacheable
@defines_strategy
def text(
alphabet=None,
min_size=None, average_size=None, max_size=None
):
"""Generates values of a unicode text type (unicode on python 2, str on
python 3) with values drawn from alphabet, which should be an iterable of
length one strings or a strategy generating such. If it is None it will
default to generating the full unicode range. If it is an empty collection
this will only generate empty strings.
min_size, max_size and average_size have the usual interpretations.
"""
from hypothesis.searchstrategy.strings import StringStrategy
if alphabet is None:
char_strategy = characters(blacklist_categories=('Cs',))
elif not alphabet:
if (min_size or 0) > 0:
raise InvalidArgument(
'Invalid min_size %r > 0 for empty alphabet' % (
min_size,
)
)
return just(u'')
elif isinstance(alphabet, SearchStrategy):
char_strategy = alphabet
else:
char_strategy = sampled_from(list(map(text_type, alphabet)))
return StringStrategy(lists(
char_strategy, average_size=average_size, min_size=min_size,
max_size=max_size
))
@cacheable
@defines_strategy
def binary(
min_size=None, average_size=None, max_size=None
):
"""Generates the appropriate binary type (str in python 2, bytes in python
3).
min_size, average_size and max_size have the usual interpretations.
"""
from hypothesis.searchstrategy.strings import BinaryStringStrategy, \
FixedSizeBytes
check_valid_sizes(min_size, average_size, max_size)
if min_size == max_size is not None:
return FixedSizeBytes(min_size)
return BinaryStringStrategy(
lists(
integers(min_value=0, max_value=255),
average_size=average_size, min_size=min_size, max_size=max_size
)
)
@cacheable
@defines_strategy
def randoms():
"""Generates instances of Random (actually a Hypothesis specific
RandomWithSeed class which displays what it was initially seeded with)"""
from hypothesis.searchstrategy.misc import RandomStrategy
return RandomStrategy(integers())
class RandomSeeder(object):
def __init__(self, seed):
self.seed = seed
def __repr__(self):
return 'random.seed(%r)' % (self.seed,)
@cacheable
@defines_strategy
def random_module():
"""If your code depends on the global random module then you need to use
this.
It will explicitly seed the random module at the start of your test
so that tests are reproducible. The value it passes you is an opaque
object whose only useful feature is that its repr displays the
random seed. It is not itself a random number generator. If you want
a random number generator you should use the randoms() strategy
which will give you one.
"""
from hypothesis.control import cleanup
import random
def seed_random(seed):
state = random.getstate()
random.seed(seed)
cleanup(lambda: random.setstate(state))
return RandomSeeder(seed)
return shared(
integers().map(seed_random),
'hypothesis.strategies.random_module()',
)
@cacheable
@defines_strategy
def fractions():
"""Generates instances of fractions.Fraction."""
from fractions import Fraction
return tuples(integers(), integers(min_value=1)).map(
lambda t: Fraction(*t)
)
@cacheable
@defines_strategy
def decimals():
"""Generates instances of decimals.Decimal."""
return (
floats().map(float_to_decimal) |
fractions().map(
lambda f: Decimal(f.numerator) / f.denominator
)
)
@cacheable
@defines_strategy
def builds(target, *args, **kwargs):
"""Generates values by drawing from args and kwargs and passing them to
target in the appropriate argument position.
e.g. builds(target,
integers(), flag=booleans()) would draw an integer i and a boolean b and
call target(i, flag=b).
"""
return tuples(tuples(*args), fixed_dictionaries(kwargs)).map(
lambda value: target(*value[0], **value[1])
)
@defines_strategy
def recursive(base, extend, max_leaves=100):
"""
base: A strategy to start from.
extend: A function which takes a strategy and returns a new strategy.
max_leaves: The maximum number of elements to be drawn from base on a given
run.
This returns a strategy S such that S = extend(base | S). That is, values
maybe drawn from base, or from any strategy reachable by mixing
applications of | and extend.
An example may clarify: recursive(booleans(), lists) would return a
strategy that may return arbitrarily nested and mixed lists of booleans.
So e.g. False, [True], [False, []], [[[[True]]]], are all valid values to
be drawn from that strategy.
"""
check_strategy(base)
extended = extend(base)
if not isinstance(extended, SearchStrategy):
raise InvalidArgument(
'Expected extend(%r) to be a SearchStrategy but got %r' % (
base, extended
))
from hypothesis.searchstrategy.recursive import RecursiveStrategy
return RecursiveStrategy(base, extend, max_leaves)
@defines_strategy
def permutations(values):
"""Return a strategy which returns permutations of the collection
"values"."""
values = list(values)
if not values:
return just(()).map(lambda _: [])
def build_permutation(swaps):
initial = list(values)
for i, j in swaps:
initial[i], initial[j] = initial[j], initial[i]
return initial
n = len(values)
index = integers(0, n - 1)
return lists(tuples(index, index), max_size=n ** 2).map(build_permutation)
@cacheable
def composite(f):
"""Defines a strategy that is built out of potentially arbitrarily many
other strategies.
This is intended to be used as a decorator. See the full
documentation for more details about how to use this function.
"""
from hypothesis.internal.reflection import copy_argspec
argspec = getargspec(f)
if (
argspec.defaults is not None and
len(argspec.defaults) == len(argspec.args)
):
raise InvalidArgument(
'A default value for initial argument will never be used')
if len(argspec.args) == 0 and not argspec.varargs:
raise InvalidArgument(
'Functions wrapped with composite must take at least one '
'positional argument.'
)
new_argspec = ArgSpec(
args=argspec.args[1:], varargs=argspec.varargs,
keywords=argspec.keywords, defaults=argspec.defaults
)
@defines_strategy
@copy_argspec(f.__name__, new_argspec)
def accept(*args, **kwargs):
class CompositeStrategy(SearchStrategy):
def do_draw(self, data):
return f(data.draw, *args, **kwargs)
return CompositeStrategy()
return accept
def shared(base, key=None):
"""Returns a strategy that draws a single shared value per run, drawn from
base. Any two shared instances with the same key will share the same
value, otherwise the identity of this strategy will be used. That is:
>>> x = shared(s)
>>> y = shared(s)
In the above x and y may draw different (or potentially the same) values.
In the following they will always draw the same:
>>> x = shared(s, key="hi")
>>> y = shared(s, key="hi")
"""
from hypothesis.searchstrategy.shared import SharedStrategy
return SharedStrategy(base, key)
@cacheable
def choices():
"""Strategy that generates a function that behaves like random.choice.
Will note choices made for reproducibility.
"""
from hypothesis.control import note, current_build_context
from hypothesis.internal.conjecture.utils import choice
class Chooser(object):
def __init__(self, build_context, data):
self.build_context = build_context
self.data = data
self.choice_count = 0
def __call__(self, values):
if not values:
raise IndexError('Cannot choose from empty sequence')
result = choice(self.data, values)
with self.build_context.local():
self.choice_count += 1
note('Choice #%d: %r' % (self.choice_count, result))
return result
def __repr__(self):
return 'choice'
class ChoiceStrategy(SearchStrategy):
supports_find = False
def do_draw(self, data):
return Chooser(current_build_context(), data)
return ReprWrapperStrategy(
shared(
ChoiceStrategy(),
key='hypothesis.strategies.chooser.choice_function'
), 'choices()')
@cacheable
def uuids():
"""Returns a strategy that generates UUIDs.
All returned values from this will be unique, so e.g. if you do
lists(uuids()) the resulting list will never contain duplicates.
"""
from uuid import UUID
return ReprWrapperStrategy(
shared(randoms(), key='hypothesis.strategies.uuids.generator').map(
lambda r: UUID(int=r.getrandbits(128))
), 'uuids()')
@cacheable
def data():
"""This isn't really a normal strategy, but instead gives you an object
which can be used to draw data interactively from other strategies.
It can only be used within @given, not find. This is because the lifetime
of the object cannot outlast the test body.
See the rest of the documentation for more complete information.
"""
from hypothesis.control import note
class DataObject(object):
def __init__(self, data):
self.count = 0
self.data = data
def __repr__(self):
return 'data(...)'
def draw(self, strategy):
result = self.data.draw(strategy)
self.count += 1
note('Draw %d: %r' % (self.count, result))
return result
class DataStrategy(SearchStrategy):
supports_find = False
def do_draw(self, data):
if not hasattr(data, 'hypothesis_shared_data_strategy'):
data.hypothesis_shared_data_strategy = DataObject(data)
return data.hypothesis_shared_data_strategy
def __repr__(self):
return 'data()'
def map(self, f):
self.__not_a_first_class_strategy('map')
def filter(self, f):
self.__not_a_first_class_strategy('filter')
def flatmap(self, f):
self.__not_a_first_class_strategy('flatmap')
def example(self):
self.__not_a_first_class_strategy('example')
def __not_a_first_class_strategy(self, name):
raise InvalidArgument((
'Cannot call %s on a DataStrategy. You should probably be '
"using @composite for whatever it is you're trying to do."
) % (name,))
return DataStrategy()
# Private API below here
def check_type(typ, arg):
if not isinstance(arg, typ):
if isinstance(typ, type):
typ_string = typ.__name__
else:
typ_string = 'one of %s' % (
', '.join(t.__name__ for t in typ))
raise InvalidArgument(
'Expected %s but got %r' % (typ_string, arg,))
def check_strategy(arg):
check_type(SearchStrategy, arg)
def check_valid_integer(value):
"""Checks that value is either unspecified, or a valid integer.
Otherwise raises InvalidArgument.
"""
if value is None:
return
check_type(integer_types, value)
def check_valid_bound(value, name):
"""Checks that value is either unspecified, or a valid interval bound.
Otherwise raises InvalidArgument.
"""
if value is None:
return
if math.isnan(value):
raise InvalidArgument(u'Invalid end point %s %r' % (value, name))
def check_valid_size(value, name):
"""Checks that value is either unspecified, or a valid non-negative size
expressed as an integer/float. Otherwise raises InvalidArgument.
"""
if value is None:
return
check_type(integer_types + (float,), value)
if value < 0:
raise InvalidArgument(u'Invalid size %s %r < 0' % (value, name))
if isinstance(value, float) and math.isnan(value):
raise InvalidArgument(u'Invalid size %s %r' % (value, name))
def check_valid_interval(lower_bound, upper_bound, lower_name, upper_name):
"""Checks that lower_bound and upper_bound are either unspecified, or they
define a valid interval on the number line.
Otherwise raises InvalidArgumet.
"""
if lower_bound is None or upper_bound is None:
return
if upper_bound < lower_bound:
raise InvalidArgument(
'Cannot have %s=%r < %s=%r' % (
upper_name, upper_bound, lower_name, lower_bound
))
def check_valid_sizes(min_size, average_size, max_size):
check_valid_size(min_size, 'min_size')
check_valid_size(max_size, 'max_size')
check_valid_size(average_size, 'average_size')
check_valid_interval(min_size, max_size, 'min_size', 'max_size')
check_valid_interval(average_size, max_size, 'average_size', 'max_size')
check_valid_interval(min_size, average_size, 'min_size', 'average_size')
if average_size is not None:
if (
(max_size is None or max_size > 0) and
average_size is not None and average_size <= 0.0
):
raise InvalidArgument(
'Cannot have average_size=%r < min_size=%r' % (
average_size, min_size
))
_AVERAGE_LIST_LENGTH = 5.0
assert _strategies.issubset(set(__all__)), _strategies - set(__all__)
|