/usr/lib/python3/dist-packages/mpmath/rational.py is in python3-mpmath 0.19-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 | import operator
import sys
from .libmp import int_types, mpf_hash, bitcount, from_man_exp, HASH_MODULUS
new = object.__new__
def create_reduced(p, q, _cache={}):
key = p, q
if key in _cache:
return _cache[key]
x, y = p, q
while y:
x, y = y, x % y
if x != 1:
p //= x
q //= x
v = new(mpq)
v._mpq_ = p, q
# Speedup integers, half-integers and other small fractions
if q <= 4 and abs(key[0]) < 100:
_cache[key] = v
return v
class mpq(object):
"""
Exact rational type, currently only intended for internal use.
"""
__slots__ = ["_mpq_"]
def __new__(cls, p, q=1):
if type(p) is tuple:
p, q = p
elif hasattr(p, '_mpq_'):
p, q = p._mpq_
return create_reduced(p, q)
def __repr__(s):
return "mpq(%s,%s)" % s._mpq_
def __str__(s):
return "(%s/%s)" % s._mpq_
def __int__(s):
a, b = s._mpq_
return a // b
def __nonzero__(s):
return bool(s._mpq_[0])
__bool__ = __nonzero__
def __hash__(s):
a, b = s._mpq_
if sys.version >= "3.2":
inverse = pow(b, HASH_MODULUS-2, HASH_MODULUS)
if not inverse:
h = sys.hash_info.inf
else:
h = (abs(a) * inverse) % HASH_MODULUS
if a < 0: h = -h
if h == -1: h = -2
return h
else:
if b == 1:
return hash(a)
# Power of two: mpf compatible hash
if not (b & (b-1)):
return mpf_hash(from_man_exp(a, 1-bitcount(b)))
return hash((a,b))
def __eq__(s, t):
ttype = type(t)
if ttype is mpq:
return s._mpq_ == t._mpq_
if ttype in int_types:
a, b = s._mpq_
if b != 1:
return False
return a == t
return NotImplemented
def __ne__(s, t):
ttype = type(t)
if ttype is mpq:
return s._mpq_ != t._mpq_
if ttype in int_types:
a, b = s._mpq_
if b != 1:
return True
return a != t
return NotImplemented
def _cmp(s, t, op):
ttype = type(t)
if ttype in int_types:
a, b = s._mpq_
return op(a, t*b)
if ttype is mpq:
a, b = s._mpq_
c, d = t._mpq_
return op(a*d, b*c)
return NotImplementedError
def __lt__(s, t): return s._cmp(t, operator.lt)
def __le__(s, t): return s._cmp(t, operator.le)
def __gt__(s, t): return s._cmp(t, operator.gt)
def __ge__(s, t): return s._cmp(t, operator.ge)
def __abs__(s):
a, b = s._mpq_
if a >= 0:
return s
v = new(mpq)
v._mpq_ = -a, b
return v
def __neg__(s):
a, b = s._mpq_
v = new(mpq)
v._mpq_ = -a, b
return v
def __pos__(s):
return s
def __add__(s, t):
ttype = type(t)
if ttype is mpq:
a, b = s._mpq_
c, d = t._mpq_
return create_reduced(a*d+b*c, b*d)
if ttype in int_types:
a, b = s._mpq_
v = new(mpq)
v._mpq_ = a+b*t, b
return v
return NotImplemented
__radd__ = __add__
def __sub__(s, t):
ttype = type(t)
if ttype is mpq:
a, b = s._mpq_
c, d = t._mpq_
return create_reduced(a*d-b*c, b*d)
if ttype in int_types:
a, b = s._mpq_
v = new(mpq)
v._mpq_ = a-b*t, b
return v
return NotImplemented
def __rsub__(s, t):
ttype = type(t)
if ttype is mpq:
a, b = s._mpq_
c, d = t._mpq_
return create_reduced(b*c-a*d, b*d)
if ttype in int_types:
a, b = s._mpq_
v = new(mpq)
v._mpq_ = b*t-a, b
return v
return NotImplemented
def __mul__(s, t):
ttype = type(t)
if ttype is mpq:
a, b = s._mpq_
c, d = t._mpq_
return create_reduced(a*c, b*d)
if ttype in int_types:
a, b = s._mpq_
return create_reduced(a*t, b)
return NotImplemented
__rmul__ = __mul__
def __div__(s, t):
ttype = type(t)
if ttype is mpq:
a, b = s._mpq_
c, d = t._mpq_
return create_reduced(a*d, b*c)
if ttype in int_types:
a, b = s._mpq_
return create_reduced(a, b*t)
return NotImplemented
def __rdiv__(s, t):
ttype = type(t)
if ttype is mpq:
a, b = s._mpq_
c, d = t._mpq_
return create_reduced(b*c, a*d)
if ttype in int_types:
a, b = s._mpq_
return create_reduced(b*t, a)
return NotImplemented
def __pow__(s, t):
ttype = type(t)
if ttype in int_types:
a, b = s._mpq_
if t:
if t < 0:
a, b, t = b, a, -t
v = new(mpq)
v._mpq_ = a**t, b**t
return v
raise ZeroDivisionError
return NotImplemented
mpq_1 = mpq((1,1))
mpq_0 = mpq((0,1))
mpq_1_2 = mpq((1,2))
mpq_3_2 = mpq((3,2))
mpq_1_4 = mpq((1,4))
mpq_1_16 = mpq((1,16))
mpq_3_16 = mpq((3,16))
mpq_5_2 = mpq((5,2))
mpq_3_4 = mpq((3,4))
mpq_7_4 = mpq((7,4))
mpq_5_4 = mpq((5,4))
# Register with "numbers" ABC
# We do not subclass, hence we do not use the @abstractmethod checks. While
# this is less invasive it may turn out that we do not actually support
# parts of the expected interfaces. See
# http://docs.python.org/2/library/numbers.html for list of abstract
# methods.
try:
import numbers
numbers.Rational.register(mpq)
except ImportError:
pass
|