This file is indexed.

/usr/lib/python3/dist-packages/Pysolar/rest.py is in python3-pysolar 0.6-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#!/usr/bin/python

#    Copyright Brandon Stafford
#
#    This file is part of Pysolar.
#
#    Pysolar is free software; you can redistribute it and/or modify
#    it under the terms of the GNU General Public License as published by
#    the Free Software Foundation; either version 3 of the License, or
#    (at your option) any later version.
#
#    Pysolar is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#    GNU General Public License for more details.
#
#    You should have received a copy of the GNU General Public License along
#    with Pysolar. If not, see <http://www.gnu.org/licenses/>.

import math

albedo = {} # single-scattering albedo used to calculate aerosol scattering transmittance

albedo["high-frequency"] = 0.92
albedo["low-frequency"] = 0.84

rhogi = 0.150 # mean ground albedo from [Gueymard, 2008], Table 1

E0n = {"high-frequency": 635.4, # extra-atmospheric irradiance, 290-700 nm (UV and visible)
       "low-frequency":  709.7} # extra-atmospheric irradiance, 700-4000 nm (short infrared)

def GetAerosolForwardScatteranceFactor(altitude_deg):
	Z = 90 - altitude_deg
	return 1 - math.e ** (-0.6931 - 1.8326 * math.cos(math.radians(Z)))

def GetAerosolOpticalDepth(turbidity_beta, effective_wavelength, turbidity_alpha):
	# returns tau_a
	print("effective_wavelength: ")
	print(effective_wavelength)
	return turbidity_beta * effective_wavelength ** -turbidity_alpha

def GetAerosolScatteringCorrectionFactor(band, ma, tau_a):
	# returns F
	if band == "high-frequency":
		g0 = (3.715 + 0.368 * ma + 0.036294 * ma ** 2)/(1 + 0.0009391 * ma ** 2)
		g1 = (-0.164 - 0.72567 * ma + 0.20701 * ma ** 2)/(1 + 0.001901 * ma ** 2)
		g2 = (-0.052288 + 0.31902 * ma + 0.17871 * ma ** 2)/(1 + 0.0069592 * ma ** 2)
		return (g0 + g1 * tau_a)/(1 + g2 * tau_a)
	else:
		h0 = (3.4352 +  0.65267 * ma + 0.00034328 * ma ** 2)/(1 + 0.034388 * ma ** 1.5)
		h1 = (1.231 - 1.63853 * ma + 0.20667 * ma ** 2)/(1 + 0.1451 * ma ** 1.5)
		h2 = (0.8889 - 0.55063 * ma + 0.50152 * ma ** 2)/(1 + 0.14865 * ma ** 1.5)
		return (h0 + h1 * tau_a)/(1 + h2 * tau_a)

def GetAerosolTransmittance(band, ma, tau_a):
	# returns Ta
	return math.exp(-ma * tau_a)

def GetAerosolScatteringTransmittance(band, ma, tau_a):
	# returns Tas
	return math.exp(-ma * albedo[band] * tau_a)

def GetBeamBroadbandIrradiance(Ebn, altitude_deg):
	Z = 90 - altitude_deg
	return Ebn * math.cos(math.radians(Z))

def GetDiffuseIrradiance():
	return GetDiffuseIrradianceByBand("high-frequency") + GetDiffuseIrradianceByBand("low-frequency")

def GetDiffuseIrradianceByBand(band, air_mass=1.66, turbidity_alpha=1.3, turbidity_beta=0.6):
	Z = 90 - altitude_deg
	effective_wavelength = GetEffectiveAerosolWavelength(band, turbidity_alpha)
	tau_a = GetAerosolOpticalDepth(turbidity_beta, effective_wavelength, turbidity_alpha)
	rhosi = GetSkyAlbedo(band, turbidity_alpha, turbidity_beta)

	ma = GetOpticalMassAerosol(altitude_deg)
	mo = GetOpticalMassOzone(altitude_deg)
	mR = GetOpticalMassRayleigh(altitude_deg, pressure_millibars)

	To = GetOzoneTransmittance(band, mo)
	Tg = GetGasTransmittance(band, mR)
	Tn = GetNitrogenTransmittance(band, 1.66)
	Tw = GetWaterVaporTransmittance(band, 1.66)
	TR = GetRayleighTransmittance(band, mR)
	Ta = GetAerosolTransmittance(band, ma, tau_a)
	Tas = GetAerosolScatteringTransmittance(band, ma, tau_a)

	BR = GetRayleighExtinctionForwardScatteringFraction(band, air_mass)
	Ba = GetAerosolForwardScatteranceFactor(altitude_deg)
	F = GetAerosolScatteringCorrectionFactor(band, ma, tau_a)

	Edp = To * Tg * Tn * Tw * (BR * (1 - TR) * Ta ** 0.25 + Ba * F * TR * (1 - Tas ** 0.25)) * E0n[band]
	Edd = rhogi * rhosi * (Eb + Edp)/(1 - rhogi * rhosi)
	return Edp + Edd

def GetDirectNormalIrradiance(altitude_deg, pressure_millibars=1013.25, ozone_atm_cm=0.35, nitrogen_atm_cm=0.0002, precipitable_water_cm=5.0, turbidity_alpha=1.3, turbidity_beta=0.6):
	high = GetDirectNormalIrradianceByBand("high-frequency", altitude_deg, pressure_millibars, ozone_atm_cm, nitrogen_atm_cm, precipitable_water_cm, turbidity_alpha, turbidity_beta)
	low = GetDirectNormalIrradianceByBand("low-frequency", altitude_deg, pressure_millibars, ozone_atm_cm, nitrogen_atm_cm, precipitable_water_cm, turbidity_alpha, turbidity_beta)
	return high + low

def GetDirectNormalIrradianceByBand(band, altitude_deg, pressure_millibars=1013.25, ozone_atm_cm=0.35, nitrogen_atm_cm=0.0002, precipitable_water_cm=5.0, turbidity_alpha=1.3, turbidity_beta=0.6):
	ma = GetOpticalMassAerosol(altitude_deg)
	mo = GetOpticalMassOzone(altitude_deg)
	mR = GetOpticalMassRayleigh(altitude_deg, pressure_millibars)
	mRprime = mR * pressure_millibars / 1013.25
	mw = GetOpticalMassWater(altitude_deg)

	effective_wavelength = GetEffectiveAerosolWavelength(band, ma, turbidity_alpha, turbidity_beta)
	tau_a = GetAerosolOpticalDepth(turbidity_beta, effective_wavelength, turbidity_alpha)

	TR = GetRayleighTransmittance(band, mRprime)
	Tg = GetGasTransmittance(band, mRprime)
	To = GetOzoneTransmittance(band, mo, ozone_atm_cm)
	Tn = GetNitrogenTransmittance(band, mw, nitrogen_atm_cm) # is water_optical_mass really used for nitrogen calc?
	Tw = GetWaterVaporTransmittance(band, mw, precipitable_water_cm)
	Ta = GetAerosolTransmittance(band, ma, tau_a)
	return E0n[band] * TR * Tg * To * Tn * Tw * Ta

def GetEffectiveAerosolWavelength(band, ma, turbidity_alpha, turbidity_beta):
	ua = math.log(1 + ma * turbidity_beta)
	if band == "high-frequency":
		a1 = turbidity_alpha # just renaming to keep equations short
		d0 = 0.57664 - 0.024743 * a1
		d1 = (0.093942 - 0.2269 * a1 + 0.12848 * a1 ** 2)/(1 + 0.6418 * a1)
		d2 = (-0.093819 + 0.36668 * a1 - 0.12775 * a1 ** 2)/(1 - 0.11651 * a1)
		d3 = a1 * (0.15232 - 0.087214 * a1 + 0.012664 * a1 ** 2)/(1 - 0.90454 * a1 + 0.26167 * a1 ** 2)
		return (d0 + d1 * ua + d2 * ua ** 2)/(1 + d3 * ua ** 2)
	else:
		a2 = turbidity_alpha
		e0 = (1.183 - 0.022989 * a2 + 0.020829 * a2 ** 2)/(1 + 0.11133 * a2)
		e1 = (-0.50003 - 0.18329 * a2 + 0.23835 * a2 ** 2)/(1 + 1.6756 * a2)
		e2 = (-0.50001 + 1.1414 * a2 + 0.0083589 * a2 ** 2)/(1 + 11.168 * a2)
		e3 = (-0.70003 - 0.73587 * a2 + 0.51509 * a2 ** 2)/(1 + 4.7665 * a2)
		return (e0 + e1 * ua + e2 * ua ** 2)/(1 + e3 * ua ** 2)

def GetGasTransmittance(band, mRprime):
	if band == "high-frequency":
		return (1 + 0.95885 * mRprime + 0.012871 * mRprime ** 2)/(1 + 0.96321 * mRprime + 0.015455 * mRprime ** 2)
	else:
		return (1 + 0.27284 * mRprime - 0.00063699 * mRprime ** 2)/(1 + 0.30306 * mRprime)

def GetBroadbandGlobalIrradiance(Ebn, altitude_deg, Ed):
	return GetBeamBroadbandIrradiance(Ebn, altitude_deg) + Ed

def GetNitrogenTransmittance(band, mw, nitrogen_atm_cm):
	if band == "high-frequency":
		g1 = (0.17499 + 41.654 * un - 2146.4 * un ** 2)/(1 + 22295.0 * un ** 2)
		g2 = un * (-1.2134 + 59.324 * un)/(1 + 8847.8 * un ** 2)
		g3 = (0.17499 + 61.658 * un + 9196.4 * un ** 2)/(1 + 74109.0 * un ** 2)
		return min (1, (1 + g1 * mw + g2 * mw ** 2)/(1 + g3 * mw))
	else:
		return 1.0

def GetOpticalMassRayleigh(altitude_deg, pressure_millibars): # from Appendix B of [Gueymard, 2003]
	Z = 90 - altitude_deg
	Z_rad = math.radians(Z)
	return (pressure_millibars / 1013.25)/((math.cos(Z_rad) + 0.48353 * Z_rad ** 0.095846)/(96.741 - Z_rad) ** 1.754)

def GetOpticalMassOzone(altitude_deg): # from Appendix B of [Gueymard, 2003]
	Z = 90 - altitude_deg
	Z_rad = math.radians(Z)
	return 1/((math.cos(Z_rad) + 1.0651 * Z_rad ** 0.6379)/(101.8 - Z_rad) ** 2.2694)

def GetOpticalMassWater(altitude_deg): # from Appendix B of [Gueymard, 2003]
	Z = 90 - altitude_deg
	Z_rad = math.radians(Z)
	return 1/((math.cos(Z_rad) + 0.10648 * Z_rad ** 0.11423)/(93.781 - Z_rad) ** 1.9203)

def GetOpticalMassAerosol(altitude_deg): # from Appendix B of [Gueymard, 2003]
	Z = 90 - altitude_deg
	Z_rad = math.radians(Z)
	return 1/((math.cos(Z_rad) + 0.16851 * Z_rad ** 0.18198)/(95.318 - Z_rad) ** 1.9542)

def GetOzoneTransmittance(band, mo, uo):
	if band == "high-frequency":
		f1 = uo(10.979 - 8.5421 * uo)/(1 + 2.0115 * uo + 40.189 * uo **2)
		f2 = uo(-0.027589 - 0.005138 * uo)/(1 - 2.4857 * uo + 13.942 * uo **2)
		f3 = uo(10.995 - 5.5001 * uo)/(1 + 1.6784 * uo + 42.406 * uo **2)
		return (1 + f1 * mo + f2 * mo ** 2)/(1 + f3 * mo)
	else:
		return 1.0

def GetRayleighExtinctionForwardScatteringFraction(band, mR):
	# returns BR
	if band == "high-frequency":
		return 0.5 * (0.89013 - 0.049558 * mR + 0.000045721 * mR ** 2)
	else:
		return 0.5

def GetRayleighTransmittance(band, mRprime):
	if band == "high-frequency":
		return (1 + 1.8169 * mRprime + 0.033454 * mRprime ** 2)/(1 + 2.063 * mRprime + 0.31978 * mRprime ** 2)
	else:
		return (1 - 0.010394 * mRprime)/(1 - 0.00011042 * mRprime ** 2)

def GetSkyAlbedo(band, turbidity_alpha, turbidity_beta):
	if band == "high-frequency":
		a1 = turbidity_alpha # just renaming to keep equations short
		b1 = turbidity_beta
		rhos = (0.13363 + 0.00077358 * a1 + b1 * (0.37567
		+ 0.22946 * a1)/(1 - 0.10832 * a1))/(1 + b1 * (0.84057
		+ 0.68683 * a1)/(1 - 0.08158 * a1))
	else:
		a2 = turbidity_alpha # just renaming to keep equations short
		b2 = turbidity_beta
		rhos = (0.010191 + 0.00085547 * a2 + b2 * (0.14618
		+ 0.062758 * a2)/(1 - 0.19402 * a2))/(1 + b2 * (0.58101
		+ 0.17426 * a2)/(1 - 0.17586 * a2))
	return rhos

def GetWaterVaporTransmittance(band, mw, w):
	if band == "high-frequency":
		h = GetWaterVaporTransmittanceCoefficients(band, w)
		return (1 + h[1] * mw)/(1 + h[2] * mw)
	else:
		c = GetWaterVaporTransmittanceCoefficients(band, w)
		return (1 + c[1] * mw + c[2] * mw ** 2)/(1 + c[3] * mw + c[4] * mw ** 2)

def GetWaterVaporTransmittanceCoefficients(band, w):
	if band == "high-frequency":
		h1 = w * (0.065445 + 0.00029901 * w)/(1 + 1.2728 * w)
		h2 = w * (0.065687 + 0.0013218 * w)/(1 + 1.2008 * w)
		return [float('NaN'), h1, h2]
	else:
		c1 = w * (19.566 - 1.6506 * w + 1.0672 * w ** 2)/(1 + 5.4248 * w + 1.6005 * w ** 2)
		c2 = w * (0.50158 - 0.14732 * w + 0.047584 * w ** 2)/(1 + 1.1811 * w + 1.0699 * w ** 2)
		c3 = w * (21.286 - 0.39232 * w + 1.2692 * w ** 2)/(1 + 4.8318 * w + 1.412 * w ** 2)
		c4 = w * (0.70992 - 0.23155 * w + 0.096514 * w ** 2)/(1 + 0.44907 * w + 0.75425 * w ** 2)
		return [float('NaN'), c1, c2, c3, c4]