/usr/lib/python3/dist-packages/Pysolar/solar.py is in python3-pysolar 0.6-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 | #!/usr/bin/python
# Copyright Brandon Stafford
#
# This file is part of Pysolar.
#
# Pysolar is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# Pysolar is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with Pysolar. If not, see <http://www.gnu.org/licenses/>.
"""Solar geometry functions
This module contains the most important functions for calculation of the position of the sun.
"""
import math
import datetime
from . import constants
from . import julian
from . import radiation
#if __name__ == "__main__":
def SolarTest():
latitude_deg = 42.364908
longitude_deg = -71.112828
d = datetime.datetime.utcnow()
thirty_minutes = datetime.timedelta(hours = 0.5)
for i in range(48):
timestamp = d.ctime()
altitude_deg = GetAltitude(latitude_deg, longitude_deg, d)
azimuth_deg = GetAzimuth(latitude_deg, longitude_deg, d)
power = radiation.GetRadiationDirect(d, altitude_deg)
if (altitude_deg > 0):
print(timestamp, "UTC", altitude_deg, azimuth_deg, power)
d = d + thirty_minutes
def EquationOfTime(day):
b = (2 * math.pi / 364.0) * (day - 81)
return (9.87 * math.sin(2 *b)) - (7.53 * math.cos(b)) - (1.5 * math.sin(b))
def GetAberrationCorrection(radius_vector): # r is earth radius vector [astronomical units]
return -20.4898/(3600.0 * radius_vector)
def GetAltitude(latitude_deg, longitude_deg, utc_datetime, elevation = 0, temperature_celsius = 25, pressure_millibars = 1013.25):
'''See also the faster, but less accurate, GetAltitudeFast()'''
# location-dependent calculations
projected_radial_distance = GetProjectedRadialDistance(elevation, latitude_deg)
projected_axial_distance = GetProjectedAxialDistance(elevation, latitude_deg)
# time-dependent calculations
jd = julian.GetJulianDay(utc_datetime)
jde = julian.GetJulianEphemerisDay(jd, 65)
jce = julian.GetJulianEphemerisCentury(jde)
jme = julian.GetJulianEphemerisMillenium(jce)
geocentric_latitude = GetGeocentricLatitude(jme)
geocentric_longitude = GetGeocentricLongitude(jme)
radius_vector = GetRadiusVector(jme)
aberration_correction = GetAberrationCorrection(radius_vector)
equatorial_horizontal_parallax = GetEquatorialHorizontalParallax(radius_vector)
nutation = GetNutation(jde)
apparent_sidereal_time = GetApparentSiderealTime(jd, jme, nutation)
true_ecliptic_obliquity = GetTrueEclipticObliquity(jme, nutation)
# calculations dependent on location and time
apparent_sun_longitude = GetApparentSunLongitude(geocentric_longitude, nutation, aberration_correction)
geocentric_sun_right_ascension = GetGeocentricSunRightAscension(apparent_sun_longitude, true_ecliptic_obliquity, geocentric_latitude)
geocentric_sun_declination = GetGeocentricSunDeclination(apparent_sun_longitude, true_ecliptic_obliquity, geocentric_latitude)
local_hour_angle = GetLocalHourAngle(apparent_sidereal_time, longitude_deg, geocentric_sun_right_ascension)
parallax_sun_right_ascension = GetParallaxSunRightAscension(projected_radial_distance, equatorial_horizontal_parallax, local_hour_angle, geocentric_sun_declination)
topocentric_local_hour_angle = GetTopocentricLocalHourAngle(local_hour_angle, parallax_sun_right_ascension)
topocentric_sun_declination = GetTopocentricSunDeclination(geocentric_sun_declination, projected_axial_distance, equatorial_horizontal_parallax, parallax_sun_right_ascension, local_hour_angle)
topocentric_elevation_angle = GetTopocentricElevationAngle(latitude_deg, topocentric_sun_declination, topocentric_local_hour_angle)
refraction_correction = GetRefractionCorrection(pressure_millibars, temperature_celsius, topocentric_elevation_angle)
return topocentric_elevation_angle + refraction_correction
def GetAltitudeFast(latitude_deg, longitude_deg, utc_datetime):
# expect 19 degrees for solar.GetAltitude(42.364908,-71.112828,datetime.datetime(2007, 2, 18, 20, 13, 1, 130320))
day = GetDayOfYear(utc_datetime)
declination_rad = math.radians(GetDeclination(day))
latitude_rad = math.radians(latitude_deg)
hour_angle = GetHourAngle(utc_datetime, longitude_deg)
first_term = math.cos(latitude_rad) * math.cos(declination_rad) * math.cos(math.radians(hour_angle))
second_term = math.sin(latitude_rad) * math.sin(declination_rad)
return math.degrees(math.asin(first_term + second_term))
def GetApparentSiderealTime(julian_day, jme, nutation):
return GetMeanSiderealTime(julian_day) + nutation['longitude'] * math.cos(GetTrueEclipticObliquity(jme, nutation))
def GetApparentSunLongitude(geocentric_longitude, nutation, ab_correction):
return geocentric_longitude + nutation['longitude'] + ab_correction
def GetAzimuth(latitude_deg, longitude_deg, utc_datetime, elevation = 0):
# location-dependent calculations
projected_radial_distance = GetProjectedRadialDistance(elevation, latitude_deg)
projected_axial_distance = GetProjectedAxialDistance(elevation, latitude_deg)
# time-dependent calculations
jd = julian.GetJulianDay(utc_datetime)
jde = julian.GetJulianEphemerisDay(jd, 65)
jce = julian.GetJulianEphemerisCentury(jde)
jme = julian.GetJulianEphemerisMillenium(jce)
geocentric_latitude = GetGeocentricLatitude(jme)
geocentric_longitude = GetGeocentricLongitude(jme)
radius_vector = GetRadiusVector(jme)
aberration_correction = GetAberrationCorrection(radius_vector)
equatorial_horizontal_parallax = GetEquatorialHorizontalParallax(radius_vector)
nutation = GetNutation(jde)
apparent_sidereal_time = GetApparentSiderealTime(jd, jme, nutation)
true_ecliptic_obliquity = GetTrueEclipticObliquity(jme, nutation)
# calculations dependent on location and time
apparent_sun_longitude = GetApparentSunLongitude(geocentric_longitude, nutation, aberration_correction)
geocentric_sun_right_ascension = GetGeocentricSunRightAscension(apparent_sun_longitude, true_ecliptic_obliquity, geocentric_latitude)
geocentric_sun_declination = GetGeocentricSunDeclination(apparent_sun_longitude, true_ecliptic_obliquity, geocentric_latitude)
local_hour_angle = GetLocalHourAngle(apparent_sidereal_time, longitude_deg, geocentric_sun_right_ascension)
parallax_sun_right_ascension = GetParallaxSunRightAscension(projected_radial_distance, equatorial_horizontal_parallax, local_hour_angle, geocentric_sun_declination)
topocentric_local_hour_angle = GetTopocentricLocalHourAngle(local_hour_angle, parallax_sun_right_ascension)
topocentric_sun_declination = GetTopocentricSunDeclination(geocentric_sun_declination, projected_axial_distance, equatorial_horizontal_parallax, parallax_sun_right_ascension, local_hour_angle)
return 180 - GetTopocentricAzimuthAngle(topocentric_local_hour_angle, latitude_deg, topocentric_sun_declination)
def GetAzimuthFast(latitude_deg, longitude_deg, utc_datetime):
# expect -50 degrees for solar.GetAzimuth(42.364908,-71.112828,datetime.datetime(2007, 2, 18, 20, 18, 0, 0))
day = GetDayOfYear(utc_datetime)
declination_rad = math.radians(GetDeclination(day))
latitude_rad = math.radians(latitude_deg)
hour_angle_rad = math.radians(GetHourAngle(utc_datetime, longitude_deg))
altitude_rad = math.radians(GetAltitude(latitude_deg, longitude_deg, utc_datetime))
azimuth_rad = math.asin(math.cos(declination_rad) * math.sin(hour_angle_rad) / math.cos(altitude_rad))
if(math.cos(hour_angle_rad) >= (math.tan(declination_rad) / math.tan(latitude_rad))):
return math.degrees(azimuth_rad)
else:
return (180 - math.degrees(azimuth_rad))
def GetCoefficient(jme, constant_array):
return sum([constant_array[i-1][0] * math.cos(constant_array[i-1][1] + (constant_array[i-1][2] * jme)) for i in range(len(constant_array))])
def GetDayOfYear(utc_datetime):
year_start = datetime.datetime(utc_datetime.year, 1, 1, tzinfo=utc_datetime.tzinfo)
delta = (utc_datetime - year_start)
return delta.days
def GetDeclination(day):
'''The declination of the sun is the angle between
Earth's equatorial plane and a line between the Earth and the sun.
The declination of the sun varies between 23.45 degrees and -23.45 degrees,
hitting zero on the equinoxes and peaking on the solstices.
'''
return 23.45 * math.sin((2 * math.pi / 365.0) * (day - 81))
def GetEquatorialHorizontalParallax(radius_vector):
return 8.794 / (3600 / radius_vector)
def GetFlattenedLatitude(latitude):
latitude_rad = math.radians(latitude)
return math.degrees(math.atan(0.99664719 * math.tan(latitude_rad)))
# Geocentric functions calculate angles relative to the center of the earth.
def GetGeocentricLatitude(jme):
return -1 * GetHeliocentricLatitude(jme)
def GetGeocentricLongitude(jme):
return (GetHeliocentricLongitude(jme) + 180) % 360
def GetGeocentricSunDeclination(apparent_sun_longitude, true_ecliptic_obliquity, geocentric_latitude):
apparent_sun_longitude_rad = math.radians(apparent_sun_longitude)
true_ecliptic_obliquity_rad = math.radians(true_ecliptic_obliquity)
geocentric_latitude_rad = math.radians(geocentric_latitude)
a = math.sin(geocentric_latitude_rad) * math.cos(true_ecliptic_obliquity_rad)
b = math.cos(geocentric_latitude_rad) * math.sin(true_ecliptic_obliquity_rad) * math.sin(apparent_sun_longitude_rad)
delta = math.asin(a + b)
return math.degrees(delta)
def GetGeocentricSunRightAscension(apparent_sun_longitude, true_ecliptic_obliquity, geocentric_latitude):
apparent_sun_longitude_rad = math.radians(apparent_sun_longitude)
true_ecliptic_obliquity_rad = math.radians(true_ecliptic_obliquity)
geocentric_latitude_rad = math.radians(geocentric_latitude)
a = math.sin(apparent_sun_longitude_rad) * math.cos(true_ecliptic_obliquity_rad)
b = math.tan(geocentric_latitude_rad) * math.sin(true_ecliptic_obliquity_rad)
c = math.cos(apparent_sun_longitude_rad)
alpha = math.atan2((a - b), c)
return math.degrees(alpha) % 360
# Heliocentric functions calculate angles relative to the center of the sun.
def GetHeliocentricLatitude(jme):
b0 = GetCoefficient(jme, constants.B0)
b1 = GetCoefficient(jme, constants.B1)
return math.degrees((b0 + (b1 * jme)) / 10 ** 8)
def GetHeliocentricLongitude(jme):
l0 = GetCoefficient(jme, constants.L0)
l1 = GetCoefficient(jme, constants.L1)
l2 = GetCoefficient(jme, constants.L2)
l3 = GetCoefficient(jme, constants.L3)
l4 = GetCoefficient(jme, constants.L4)
l5 = GetCoefficient(jme, constants.L5)
l = (l0 + l1 * jme + l2 * jme ** 2 + l3 * jme ** 3 + l4 * jme ** 4 + l5 * jme ** 5) / 10 ** 8
return math.degrees(l) % 360
def GetHourAngle(utc_datetime, longitude_deg):
solar_time = GetSolarTime(longitude_deg, utc_datetime)
return 15 * (12 - solar_time)
def GetIncidenceAngle(topocentric_zenith_angle, slope, slope_orientation, topocentric_azimuth_angle):
tza_rad = math.radians(topocentric_zenith_angle)
slope_rad = math.radians(slope)
so_rad = math.radians(slope_orientation)
taa_rad = math.radians(topocentric_azimuth_angle)
return math.degrees(math.acos(math.cos(tza_rad) * math.cos(slope_rad) + math.sin(slope_rad) * math.sin(tza_rad) * math.cos(taa_rad - math.pi - so_rad)))
def GetLocalHourAngle(apparent_sidereal_time, longitude, geocentric_sun_right_ascension):
return (apparent_sidereal_time + longitude - geocentric_sun_right_ascension) % 360
def GetMeanSiderealTime(julian_day):
# This function doesn't agree with Andreas and Reda as well as it should. Works to ~5 sig figs in current unit test
jc = julian.GetJulianCentury(julian_day)
sidereal_time = 280.46061837 + (360.98564736629 * (julian_day - 2451545.0)) + (0.000387933 * jc ** 2) - (jc ** 3 / 38710000)
return sidereal_time % 360
def GetNutationAberrationXY(jce, i, x):
y = constants.aberration_sin_terms
sigmaxy = 0.0
for j in range(len(x)):
sigmaxy += x[j] * y[i][j]
return sigmaxy
def GetNutation(jde):
abcd = constants.nutation_coefficients
jce = julian.GetJulianEphemerisCentury(jde)
nutation_long = []
nutation_oblique = []
x = PrecalculateAberrations(constants.buildPolyDict(), jce)
for i in range(len(abcd)):
sigmaxy = GetNutationAberrationXY(jce, i, x)
nutation_long.append((abcd[i][0] + (abcd[i][1] * jce)) * math.sin(math.radians(sigmaxy)))
nutation_oblique.append((abcd[i][2] + (abcd[i][3] * jce)) * math.cos(math.radians(sigmaxy)))
# 36000000 scales from 0.0001 arcseconds to degrees
nutation = {'longitude' : sum(nutation_long)/36000000.0, 'obliquity' : sum(nutation_oblique)/36000000.0}
return nutation
def GetParallaxSunRightAscension(projected_radial_distance, equatorial_horizontal_parallax, local_hour_angle, geocentric_sun_declination):
prd = projected_radial_distance
ehp_rad = math.radians(equatorial_horizontal_parallax)
lha_rad = math.radians(local_hour_angle)
gsd_rad = math.radians(geocentric_sun_declination)
a = -1 * prd * math.sin(ehp_rad) * math.sin(lha_rad)
b = math.cos(gsd_rad) - prd * math.sin(ehp_rad) * math.cos(lha_rad)
parallax = math.atan2(a, b)
return math.degrees(parallax)
def GetProjectedRadialDistance(elevation, latitude):
flattened_latitude_rad = math.radians(GetFlattenedLatitude(latitude))
latitude_rad = math.radians(latitude)
return math.cos(flattened_latitude_rad) + (elevation * math.cos(latitude_rad) / constants.earth_radius)
def GetProjectedAxialDistance(elevation, latitude):
flattened_latitude_rad = math.radians(GetFlattenedLatitude(latitude))
latitude_rad = math.radians(latitude)
return 0.99664719 * math.sin(flattened_latitude_rad) + (elevation * math.sin(latitude_rad) / constants.earth_radius)
def GetRadiusVector(jme):
r0 = GetCoefficient(jme, constants.R0)
r1 = GetCoefficient(jme, constants.R1)
r2 = GetCoefficient(jme, constants.R2)
r3 = GetCoefficient(jme, constants.R3)
r4 = GetCoefficient(jme, constants.R4)
return (r0 + r1 * jme + r2 * jme ** 2 + r3 * jme ** 3 + r4 * jme ** 4) / 10 ** 8
def GetRefractionCorrection(pressure_millibars, temperature_celsius, topocentric_elevation_angle):
tea = topocentric_elevation_angle
temperature_kelvin = temperature_celsius + 273.15
a = pressure_millibars * 283.0 * 1.02
b = 1010.0 * temperature_kelvin * 60.0 * math.tan(math.radians(tea + (10.3/(tea + 5.11))))
return a / b
def GetSolarTime(longitude_deg, utc_datetime):
day = GetDayOfYear(utc_datetime)
return (((utc_datetime.hour * 60) + utc_datetime.minute + (4 * longitude_deg) + EquationOfTime(day))/60)
# Topocentric functions calculate angles relative to a location on the surface of the earth.
def GetTopocentricAzimuthAngle(topocentric_local_hour_angle, latitude, topocentric_sun_declination):
"""Measured eastward from north"""
tlha_rad = math.radians(topocentric_local_hour_angle)
latitude_rad = math.radians(latitude)
tsd_rad = math.radians(topocentric_sun_declination)
a = math.sin(tlha_rad)
b = math.cos(tlha_rad) * math.sin(latitude_rad) - math.tan(tsd_rad) * math.cos(latitude_rad)
return 180.0 + math.degrees(math.atan2(a, b)) % 360
def GetTopocentricElevationAngle(latitude, topocentric_sun_declination, topocentric_local_hour_angle):
latitude_rad = math.radians(latitude)
tsd_rad = math.radians(topocentric_sun_declination)
tlha_rad = math.radians(topocentric_local_hour_angle)
return math.degrees(math.asin((math.sin(latitude_rad) * math.sin(tsd_rad)) + math.cos(latitude_rad) * math.cos(tsd_rad) * math.cos(tlha_rad)))
def GetTopocentricLocalHourAngle(local_hour_angle, parallax_sun_right_ascension):
return local_hour_angle - parallax_sun_right_ascension
def GetTopocentricSunDeclination(geocentric_sun_declination, projected_axial_distance, equatorial_horizontal_parallax, parallax_sun_right_ascension, local_hour_angle):
gsd_rad = math.radians(geocentric_sun_declination)
pad = projected_axial_distance
ehp_rad = math.radians(equatorial_horizontal_parallax)
psra_rad = math.radians(parallax_sun_right_ascension)
lha_rad = math.radians(local_hour_angle)
a = (math.sin(gsd_rad) - pad * math.sin(ehp_rad)) * math.cos(psra_rad)
b = math.cos(gsd_rad) - (pad * math.sin(ehp_rad) * math.cos(lha_rad))
return math.degrees(math.atan2(a, b))
def GetTopocentricSunRightAscension(projected_radial_distance, equatorial_horizontal_parallax, local_hour_angle,
apparent_sun_longitude, true_ecliptic_obliquity, geocentric_latitude):
gsd = GetGeocentricSunDeclination(apparent_sun_longitude, true_ecliptic_obliquity, geocentric_latitude)
psra = GetParallaxSunRightAscension(projected_radial_distance, equatorial_horizontal_parallax, local_hour_angle, gsd)
gsra = GetGeocentricSunRightAscension(apparent_sun_longitude, true_ecliptic_obliquity, geocentric_latitude)
return psra + gsra
def GetTopocentricZenithAngle(latitude, topocentric_sun_declination, topocentric_local_hour_angle, pressure_millibars, temperature_celsius):
tea = GetTopocentricElevationAngle(latitude, topocentric_sun_declination, topocentric_local_hour_angle)
return 90 - tea - GetRefractionCorrection(pressure_millibars, temperature_celsius, tea)
def GetTrueEclipticObliquity(jme, nutation):
u = jme/10.0
mean_obliquity = 84381.448 - (4680.93 * u) - (1.55 * u ** 2) + (1999.25 * u ** 3) \
- (51.38 * u ** 4) -(249.67 * u ** 5) - (39.05 * u ** 6) + (7.12 * u ** 7) \
+ (27.87 * u ** 8) + (5.79 * u ** 9) + (2.45 * u ** 10)
return (mean_obliquity / 3600.0) + nutation['obliquity']
def PrecalculateAberrations(p, jce):
x = []
# order of 5 x.append lines below is important
x.append(p['MeanElongationOfMoon'](jce))
x.append(p['MeanAnomalyOfSun'](jce))
x.append(p['MeanAnomalyOfMoon'](jce))
x.append(p['ArgumentOfLatitudeOfMoon'](jce))
x.append(p['LongitudeOfAscendingNode'](jce))
return x
|